
����������
�������

Citation: Srivastava, H.M.;

Sahoo, S.K.; Mohammed, P.O.;

Kodamasingh, B.; Hamed, Y.S. New

Riemann–Liouville Fractional-Order

Inclusions for Convex Functions via

Interval-Valued Settings Associated

with Pseudo-Order Relations. Fractal

Fract. 2022, 6, 212. https://doi.org/

10.3390/fractalfract6040212

Academic Editor: David Kubanek

Received: 20 February 2022

Accepted: 7 April 2022

Published: 9 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fractal and fractional

Article

New Riemann–Liouville Fractional-Order Inclusions for
Convex Functions via Interval-Valued Settings Associated with
Pseudo-Order Relations
Hari Mohan Srivastava 1,2,3,4,* , Soubhagya Kumar Sahoo 5 , Pshtiwan Othman Mohammed 6,* ,
Bibhakar Kodamasingh 5,* and Yasser S. Hamed 7

1 Department of Mathematics and Statistics, University of Victoria, Victoria, BC V8W 3R4, Canada
2 Department of Medical Research, China Medical University Hospital, China Medical University,

Taichung 40402, Taiwan
3 Department of Mathematics and Informatics, Azerbaijan University, 71 Jeyhun Hajibeyli Street,

AZ1007 Baku, Azerbaijan
4 Section of Mathematics, International Telematic University Uninettuno, I-00186 Rome, Italy
5 Department of Mathematics, Institute of Technical Education and Research, Siksha O Anusandhan University,

Bhubaneswar 751030, India; soubhagyakumarsahoo@soa.ac.in
6 Department of Mathematics, College of Education, University of Sulaimani, Sulaimani 46001, Iraq
7 Department of Mathematics and Statistics, College of Science, Taif University, P.O. Box 11099, Taif 21944,

Saudi Arabia; yasersalah@tu.edu.sa
* Correspondence: harimsri@math.uvic.ca (H.M.S.); pshtiwan.muhammad@univsul.edu.iq (P.O.M.);

bibhakarkodamasingh@soa.ac.in (B.K.)

Abstract: In this study, we focus on the newly introduced concept of LR-convex interval-valued
functions to establish new variants of the Hermite–Hadamard (H-H) type and Pachpatte type
inequalities for Riemann–Liouville fractional integrals. By presenting some numerical examples,
we also verify the correctness of the results that we have derived in this paper. Because the results,
which are related to the differintegral of the $1+$2

2 type, are novel in the context of the LR-convex
interval-valued functions, we believe that this will be a useful contribution for motivating future
research in this area.

Keywords: convex interval-valued functions; pseudo-order relations; Hermite–Hadamard inequality;
Riemann–Liouville fractional integral operators; real vector space; fuzzy interval-valued analysis

1. Introduction

Convex functions have a long and illustrious history in science, and they have been
the subject of research for almost a century. Inequalities with distinct convex functions
have been an important research problem for several scholars due to the quick growth of
the theory and widespread applications of fractional calculus. Mathematical scientists have
proposed many types of inequalities or equalities, such as the H-H type, the Ostrowski type,
the H-H-Mercer type, the Bullen type, the Opial type, and other types, by using convex
functions. Among all of these integral inequalities, the H-H inequality [1] has attracted
the interest of most scholars. Since its discovery in 1883, it has been the most popular and
useful inequality in mathematical analysis. In addition, as shown in the publications [2–12],
other researchers have worked on refining this condition for various classes of convex
functions and mappings.

It is worth mentioning here that Leibniz and L’Hôspital (1695) were the ones who
first introduced the concept of fractional calculus. However, such other mathematicians
as (for example) Riemann, Liouville, Grünwald, Letnikov, Erdéli, and Kober have made
valuable contributions to the field of fractional calculus and its widespread applications.
Due to its behavior and capability to solve many real-life problems, fractional calculus has
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attracted many physical and engineering scientists. In the development of fractional calcu-
lus, fractional operators are particularly significant. Fractional calculus is used in a wide
range of engineering and science disciplines, including physics [13], epidemiology [14],
medicine [15], nanotechnology [16], economy [17], bioengineering [18], and fluid mechan-
ics [19]. Several investigations have shown that fractional operators may accurately explain
complex multiscale phenomena that are difficult to model using traditional mathematical
calculus. In the last few years, it has become clear that presenting well-known inequalities
involving different new notions of fractional integral operators is very popular among
mathematicians. In this connection, one can refer to the works presented in [20–29] for
various fractional-order integral inequalities.

Definition 1 (see [30]). Let F : X→ R be a function and X be a convex subset of a real vector
space R. Then, we say that the function F is convex if and only if the following condition

F
(
ς$1 + (1− ς)$2

)
5 ςF ($1) + (1− ς)F ($2) (1)

holds true for all $1, $2 ∈ X and ς ∈ [0, 1].

For further discussion, we first present the classical Hermite–Hadmard (H-H) inequal-
ity, which states that (see [1]):

If the function F : X ⊆ R→ R is convex in X for $1, $2 ∈ X and $1 < $2, then

F
(

$1 + $2

2

)
5

1
$2 − $1

∫ $2

$1

F (x)dx 5
F ($1) +F ($2)

2
. (2)

2. Preliminaries

Let the collection of all closed and bounded intervals of R be defined as follows:

KC = {[=∗, =∗] : =∗, =∗ ∈ R and =∗ 5 =∗}.

We say that the interval [=∗, =∗] is a positive interval if =∗ = 0 and it is defined as
follows:

K+
C = {[=∗, =∗] : =∗, =∗ ∈ KC and =∗ = 0}.

The algebraic addition, the algebraic multiplication, and the scalar multiplication for
[ℵ∗,ℵ∗], [=∗,=∗] ∈ KC and ς∈ R are defined as follows:

[ℵ∗, ℵ∗] + [=∗, =∗] = [ℵ∗ +=∗, ℵ∗ +=∗],

[ℵ∗,ℵ∗] · [=∗,=∗] = [min{ℵ∗=∗,ℵ∗=∗,ℵ∗=∗,ℵ∗=∗}, max{ℵ∗=∗,ℵ∗=∗,ℵ∗=∗,ℵ∗=∗}]

and

ς.[ℵ∗, ℵ∗] =


[ςℵ∗, ςℵ∗] (ς > 0)

{0} (ς = 0)

[ςℵ∗, ςℵ∗] (ς < 0),

respectively.
The Hausdorff–Pompeiu distance between intervals [ℵ∗, ℵ∗] and [=∗, =∗] is de-

fined by
d([ℵ∗, ℵ∗], [=∗, =∗]) = max{|ℵ∗ −=∗|, |ℵ∗ −=∗|}.

It is well known that (KC, d) is a complete metric space.
The inclusion “⊆” for [ℵ∗, ℵ∗], [=∗, =∗] ∈ KC, is defined as follows:
[ℵ∗, ℵ∗] ⊆ [=∗, =∗] if and only if =∗ 5 ℵ∗ and ℵ∗ 5 =∗.
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Khan et al. [31] proposed the following developments about the newly developed
concept, i.e., LR-convex interval-valued functions.

Remark 1 (see [31]). 1. The pseudo-order relation “5p" defined onKC by [ℵ∗, ℵ∗] 5p [=∗, =∗]
holds true if and only if ℵ∗ 5 =∗, ℵ∗ 5 =∗, for all [ℵ∗, ℵ∗], [=∗, =∗] ∈ KC. The relation
[ℵ∗, ℵ∗] 5p [=∗, =∗] is similar to [ℵ∗, ℵ∗] 5 [=∗, =∗] on KC.

2. It can be seen that “ 5p ” appears the same as that of “left and right” on the real line R, so
“ 5p ” can also be called “left and right” (or “LR” order in short).

Moore [32] first introduced the concept of the Riemann integral for interval-valued
functions, which is given as follows.

Theorem 1 (see [32]). Let F : [$1, $2] ⊂ R→ KC be an interval-valued function such that

F (x) = [F∗(x), F ∗(x)].

Then, F is Riemann-integrable over [$1, $2] if and only if F∗ and F ∗ are both Riemann-
integrable over [$1, $2].

(IR)
∫ $2

$1

F (x)dx =

[
(R)

∫ $2

$1

F∗(x)dx, (R)
∫ $2

$1

F ∗(x)dx
]

Definition 2 (see, for details, [33]; see also [34,35]). Let F ∈ L[$1, $2] be the set of all Lebesgue
measurable interval-valued functions on [$1, $2]. Then, for the order α > 0, the left and right
Riemann–Liouville R-L fractional integrals are defined as follows:

Jα
$+1
F (x) =

1
Γ(α)

∫ x

$1

(x− ς)α−1F (ς)dς, (x > $1)

and

Jα
$−2
F (x) =

1
Γ(α)

∫ $2

x
(ς− x)α−1F (ς)dς (x < $2),

respectively, where Γ(α) =
∫ ∞

0 ςα−1e−ςdς is the Euler gamma function.

Definition 3 (see [36]). The interval-valued function F : X → K+
C is said to be LR-convex

interval-valued on a convex set X if, for all $1, $2 ∈ X, and ς ∈ [0, 1], we have

F (ς$1 + (1− ς)$2) 5p ςF ($1) + (1− ς)F ($2). (3)

If the inequality (3) is reversed, then F is said to be LR-concave on X. Moreover, F is
affine on X if and only if it is both LR-convex and LR-concave on X.

Theorem 2 (see [36]). Let X be a convex set and F : X → K+
C be an interval-valued function

such that

F ($) = [F∗($), F ∗($)] (∀ $ ∈ X)

for all $ ∈ X. Then, F is an LR-convex interval-valued function on X if and only if both F∗($)
and F ∗($) are convex functions on X.

In recent years, interval-valued analysis has been utilized in order to prove integral
inequalities such as H-H type inequalities, Fejér type inequality, and Ostrowski type inequal-
ities by employing different convexities and different operators. For example, Abdeljawad
et al. [37] proved the Hermite–Hadamard inequality for an interval-valued p-convex func-
tion and Nwaeze et al. [38] improved the same inequality by introducing the m-polynomial
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convex interval-valued function. This inequality was further improved employing the
idea of interval-valued analysis for a coordinated convex function [39,40] and quantum
calculus [41]. Moreover, many researchers improved the concept of interval-valued anal-
ysis to fuzzy interval-valued analysis and LR-convex interval-valued analysis, where a
pseudo-order relation is considered. For example, Khan and his collaborators introduced
such concepts as LR-h-convex interval-valued functions (see [42]), LR-χ-preinvex functions
(see [43]), LR-(h1, h2)-convex interval-valued functions (see [44]), LR-p-convex interval-
valued functions (see [45]), and LR-log-h-convex interval-valued functions (see [46]). Sev-
eral recent developments of the concept of the fuzzy interval-valued analysis of various
familiar families of integral inequalities can indeed be found in the works by (for example)
Khan et al. [47–49].

Budak et al. [34] provided the following conclusions for interval-valued convex func-
tions by using the R-L fractional integral operator in order to examine the H-H type
inequalities and the Pachpatte type inequalities.

Theorem 3. Let F : [$1, $2] −→ R+
I be an interval-valued convex function with

F (x) = [F∗(x),F ∗(x)].

Then, the fractional-order H-H inequality of order α > 0 for interval-valued functions is
given by

F
(

$1 + $2

2

)
⊇ Γ(α + 1)

2($2 − $1)α

[
Jα
($1)+
F ($2) + Jα

($2)−
F ($1)

]
⊇ F ($1) +F ($2)

2
.

Theorem 4. If F ,G : [$1, $2] −→ R+
I are two interval-valued convex functions with

F (x) = [F∗(x),F ∗(x)]

and
G(x) = [G∗(x),G∗(x)],

then the fractional-order H-H type inequality for α > 0 holds true as follows:

Γ(α + 1)
2($2 − $1)α

[
Jα
($1)+
F ($2)G($2) + Jα

($2)−
F ($1)G($1)

]
⊇
[

1
2
− α

(α + 1)(α + 2)

]
Ψ($1, $2) +

[
α

(α + 1)(α + 2)

]
Ω($1, $2),

where
Ψ($1, $2) =

[
F ($1)G($1) +F

(
$2
)
G
(
$2
)]

and
Ω($1, $2) =

[
F ($1)G

(
$2
)
+F

(
$2
)
G($1)

]
.

Theorem 5. F ,G : [$1, $2] −→ R+
I are two interval-valued convex functions with

F (x) = [F∗(x),F ∗(x)]

and
G(x) = [G∗(x),G∗(x)].

Then, the fractional-order H-H type inequality for α > 0 is given by



Fractal Fract. 2022, 6, 212 5 of 17

2F
(

$1 + $2

2

)
G
(

$1 + $2

2

)
⊇ Γ(α + 1)

2($2 − $1)α

[
Jα
($1)+
F ($2)G($2) + Jα

($2)−
F ($1)G($1)

]
+

[
1
2
− α

(α + 1)(α + 2)

]
Ω($1, $2) +

[
α

(α + 1)(α + 2)

]
Ψ($1, $2).

The above (presumably new) concept was improved by Zhao et al. [50], who introduced
the concept of interval-valued coordinated convex functions. An et al. [51] went a step
forward by introducing the interval (h1, h2)-convex function. Srivastava et al. [52] presented
a new version of the H-H type inequalities via interval-valued preinvex functions. Recently,
Khan et al. [23] generalized this concept to fuzzy convex interval-valued functions.

The major goal of this paper is to use some pseudo-order relations in order to combine
the concepts of interval-valued analysis and fractional-order integral inequalities. For
LR-convex interval-valued functions, we first present a new midpoint type H-H inequality.
Then, by using differintegrals of the

(
$1+$2

2

)
type and the R-L fractional integral operator,

we present integral inequalities for the product of two LR-convex interval-valued functions.
Our present investigation is organized as follows. In Section 3, we derive some

new versions of the interval-valued H-H type inequalities for LR interval-valued convex
functions and for the product of two LR interval-valued convex functions, after having
reviewed the pre-requisite and relevant facts regarding the related inequalities and the
interval-valued analysis in Section 2. Some examples are also considered to see if the
established outcomes are beneficial. A brief conclusion and potential scopes for further
research, which are linked to the results presented in this paper, are explored in Section 4.

3. New Fractional Inequalities for Interval-Valued Functions

This section focuses on establishing some H-H type interval-valued fractional integral
inequalities for LR-convex interval-valued functions, as well as some inequalities of the
Pachhpatte type, which involve the product of two LR-convex interval-valued functions.

The family of Lebesgue measurable interval-valued functions is represented here by
L
(
[$1, $2],K+

C
)
.

Theorem 6. Let F : [$1, $2]→ K+
C be an LR-convex interval-valued function on [$1, $2], which

is given by
F (ω) = [F∗(ω), F ∗(ω)]

for all ω ∈ [$1, $2]. If F ∈ L
(
[$1, $2],K+

C
)
, then

F
(

$1 + $2

2

)
5p

2α−1Γ(α + 1)
($2 − $1)

α

(
Jα(

$1+$2
2

)+ F ($2) + Jα(
$1+$2

2

)− F ($1)

)

5p
F ($1) +F ($2)

2
.

Furthermore, if F (ω) is an LR-concave interval-valued function, then

F
(

$1 + $2

2

)
=p

2α−1Γ(α + 1)
($2 − $1)

α

(
Jα(

$1+$2
2

)+ F ($2) + Jα(
$1+$2

2

)− F ($1)

)

=p
F ($1) +F ($2)

2
.

Proof. Let F : [$1, $2]→ K+
C be an LR-convex interval-valued function. Then, by hypothe-

sis, we have

2F
(

$1 + $2

2

)
5p F

(
ς

2
$1 +

(
2− ς

2

)
$2

)
+F

((
2− ς

2

)
$1 +

ς

2
$2

)
.

Therefore, we have
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2F∗
(

$1 + $2

2

)
5 F∗

(
ς

2
$1 +

(
2− ς

2

)
$2

)
+F∗

((
2− ς

2

)
$1 +

ς

2
$2

)
(4)

and

2F ∗
(

$1 + $2

2

)
5 F ∗

(
ς

2
$1 +

(
2− ς

2

)
$2

)
+F ∗

((
2− ς

2

)
$1 +

ς

2
$2

)
. (5)

Multiplying both sides of Equations (4) and (5) by ςα−1 and integrating the obtained
results with respect to ς over (0, 1), we find that

2
∫ 1

0
ςα−1F∗

(
$1 + $2

2

)
dς

5
∫ 1

0
ςα−1F∗

(
ς

2
$1 +

(
2− ς

2

)
$2

)
dς +

∫ 1

0
ςα−1F∗

((
2− ς

2

)
$1 +

ς

2
$2

)
dς

and

2
∫ 1

0
ςα−1F ∗

(
$1 + $2

2

)
dς

5
∫ 1

0
ςα−1F ∗

(
ς

2
$1 +

(
2− ς

2

)
$2

)
dς +

∫ 1

0
ςα−1F ∗

((
2− ς

2

)
$1 +

ς

2
$2

)
dς,

respectively.
Now, if we let

ω =

(
2− ς

2

)
$2 +

ς

2
$1 and ν =

(
2− ς

2

)
$1 +

ς

2
$2,

then we obtain

2
α
F∗
(

$1 + $2

2

)
5

2α

($2 − $1)
α

∫ $1+$2
2

$1

(ν− $1)
α−1F∗(ν)dν

+
2α

($2 − $1)
α

∫ $2

$1+$2
2

($2 −ω)α−1F∗(ω)dω

=
2αΓ(α)

($2 − $1)
α

[
Jα(

$1+$2
2

)+F∗($2) + Jα(
$1+$2

2

)−F∗($1)

]

and

2
α
F ∗
(

$1 + $2

2

)
5

2α

($2 − $1)
α

∫ $1+$2
2

$1

(ν− $1)
α−1F ∗(ν)dν

+
2α

($2 − $1)
α

∫ $2

$1+$2
2

($2 −ω)α−1F ∗(ω)dω

=
2αΓ(α)

($2 − $1)
α

[
Jα(

$1+$2
2

)+F ∗($2) + Jα(
$1+$2

2

)−F ∗($1)

]
.

Consequently, we have
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2
α

[
F∗
(

$1 + $2

2

)
,F ∗

(
$1 + $2

2

)]
5p

2αΓ(α)
($2 − $1)

α

[(
Jα(

$1+$2
2

)+ F∗($2) + Jα(
$1+$2

2

)− F∗($1)

)
,(

Jα(
$1+$2

2

)+ F ∗($2) + Jα(
$1+$2

2

)− F ∗($1)

)]
,

that is,

F
(

$1 + $2

2

)
5p

2α−1Γ(α + 1)
($2 − $1)

α

(
Jα(

$1+$2
2

)+ F ($2) + Jα(
$1+$2

2

)− F ($1)

)
. (6)

In a similar way as above, we also have

2α−1Γ(α + 1)
($2 − $1)

α

(
Jα(

$1+$2
2

)+ F ($2) + Jα(
$1+$2

2

)− F ($1)

)
5p
F ($1) +F ($2)

2
. (7)

Next, from Equations (6) and (7), we obtain

F
(

$1 + $2

2

)
5p

2α−1Γ(α + 1)
($2 − $1)

α

(
Jα(

$1+$2
2

)+ F ($2) + Jα(
$1+$2

2

)− F ($1)

)

5p
F ($1) +F ($2)

2
.

This completes the proof of Theorem 6.

Remark 2. It can be clearly seen that if we put α = 1, then Theorem 6 reduces to the following
result given in [53]:

F
(

$1 + $2

2

)
5p

1
$2 − $1

∫ $2

$1

F (ω)dω 5p
F ($1) + F ($2)

2

If we take F∗(ω) = F ∗(ω) in Theorem 6, then the following fractional integral inequality of
the H-H type obtained by Sarikaya and Yildirim [22] is recaptured.

F
(

$1 + $2

2

)
5

2α−1Γ(α + 1)
($2 − $1)

α

(
Jα(

$1+$2
2

)+ F ($2) + Jα(
$1+$2

2

)− F ($1)

)

5
F ($1) +F ($2)

2
.

Let α = 1 and F∗(ω) = F ∗(ω). Then, the classical H-H type inequality (2) results from
Theorem 6.

Example 1. If we choose α = 1
2 , ω ∈ [0, 2], and the following interval-valued function: F (ω) =

[1, 2]
(

2−ω
1
2

)
. Then, F (ω) is an LR-convex interval-valued function as the left and right end-

points F∗(ω) = 2− ω
1
2 , F ∗(ω) = 2

(
2−ω

1
2

)
are LR-convex interval-valued functions. We

thus obtain

F∗
(

$1 + $2

2

)
= F∗(1) = 1,

F ∗
(

$1 + $2

2

)
= F ∗(1) = 2,

F∗($1) +F∗($2)

2
=

4−
√

2
2
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and

F ∗($1) +F ∗($2)

2
= 4−

√
2.

We note that

2α−1Γ(α + 1)
($2 − $1)

α

(
Jα(

$1+$2
2

)+ F∗($2) + Jα(
$1+$2

2

)− F∗($1)

)
≈ 4.42920

4

and

2α−1Γ(α + 1)
($2 − $1)

α

(
Jα(

$1+$2
2

)+ F ∗($2) + Jα(
$1+$2

2

)− F ∗($1)

)
≈ 4.42920

2
.

Therefore, we obtain

[1, 2] 5p

[
4.42920

4
,

4.42920
2

]
5p

[
4−
√

2
2

, 4−
√

2

]
,

which evidently verifies Theorem 6.

The major goal of the next two theorems is to prove the H-H type interval fractional
integral inequalities using the product of two LR-convex interval-valued functions.

Theorem 7. Let F ,G : [$1, $2] → K+
C be two LR-convex interval-valued functions on [$1, $2]

such that
F (ω) = [F∗(ω), F ∗(ω]) and G(ω) = [G∗(ω), G∗(ω)]

for all ω ∈ [$1, $2]. If F · G ∈ L
(
[$1, $2],K+

C
)
, then

2α−1Γ(α + 1)
($2 − $1)

α

(
Jα(

$1+$2
2

)+ F ($2)G($2) + Jα(
$1+$2

2

)−F ($1)G($1)

)

5p
α

4

(
1

α + 2
− 2

α + 1
+

2
α

)
Ψ($1, $2) +

α

4

(
2

α + 1
− 1

α + 2

)
Ω($1, $2),

where
Ψ($1, $2) = F ($1)G($1) + F ($2)G($2),

Ω($1, $2) = F ($1)G($2) + F ($2)G($1),

Ψ($1, $2) = [Ψ∗($1, $2), Ψ∗($1, $2)]

and
Ω($1, $2) = [Ω∗($1, $2), Ω∗($1, $2)].

Proof. Using F , G as LR-convex interval-valued functions, we have

F∗
(

ς

2
$1 +

(
2− ς

2

)
$2

)
5

ς

2
F∗($1) +

(2− ς)

2
F∗($2),

F ∗
(

ς

2
$1 +

(
2− ς

2

)
$2

)
5

ς

2
F ∗($1) +

(2− ς)

2
F ∗($2),

G∗
(

ς

2
$1 +

(
2− ς

2

)
$2

)
5

ς

2
G∗($1) +

(2− ς)

2
G∗($2)

and



Fractal Fract. 2022, 6, 212 9 of 17

G∗
(

ς

2
$1 +

(
2− ς

2

)
$2

)
5

ς

2
G∗($1) +

(2− ς)

2
G∗($2).

Now, by the definition of LR-convex interval-valued functions, we obtain

0 5p F (ω) and 0 5p G(ω),

so that

F∗
(

ς

2
$1 +

(
2− ς

2

)
$2

)
G∗
(

ς

2
$1 +

(
2− ς

2

)
$2

)
5
(

ς

2
F∗($1) +

(2− ς)

2
F∗($2)

)(
ς

2
G∗($1) +

(2− ς)

2
G∗($2)

)
=

ς2

4
F∗($1)G∗($1) +

(2− ς)2

4
F∗($2)G∗($2)

+
ς(2− ς)

4
[F∗($1)G∗($2) +F∗($2)G∗($1)]

and

F ∗
(

ς

2
$1 +

(
2− ς

2

)
$2

)
G∗
(

ς

2
$1 +

(
2− ς

2

)
$2

)
5
(

ς

2
F ∗($1) +

(2− ς)

2
F ∗($2)

)(
ς

2
G∗($1) +

(2− ς)

2
G∗($2)

)
=

ς2

4
F ∗($1)G∗($1) +

(2− ς)2

4
F ∗($2)G∗($2)

+
ς(2− ς)

4
[F ∗($1)G∗($2) +F ∗($2)G∗($1)].

Analogously, we have

F∗
(

2−ς
2 $1 +

ς
2 $2

)
G∗
(

2−ς
2 $1 +

ς
2 $2

)
5
(

2−ς
2 F∗($1) +

ς
2F∗($2)

)(
2−ς

2 G∗($1) +
ς
2G∗($2)

)
= (2−ς)2

4 F∗($1)G∗($1) +
ς2

4 F∗($2)G∗($2)

+ ς(2−ς)
4 [F∗($1)G∗($2) +F∗($2)G∗($1)]

(8)

and

F ∗
(

2−ς
2 $1 +

ς
2 $2

)
G∗
(

2−ς
2 $1 +

ς
2 $2

)
5
(

2−ς
2 F ∗($1) +

ς
2F ∗($2)

)(
2−ς

2 G∗($1) +
ς
2G∗($2)

)
= (2−ς)2

4 F ∗($1)G∗($1) +
ς2

4 F ∗($2)G∗($2)

+ ς(2−ς)
4 [F ∗($1)G∗($2) +F ∗($2)G∗($1)].

(9)

Adding (8) and (9), we have

F∗
(

ς

2
$1 +

2− ς

2
$2

)
G∗
(

ς

2
$1 +

2− ς

2
$2

)
+F∗

(
2− ς

2
$1 +

ς

2
$2

)
G∗
(

2− ς

2
$1 +

ς

2
$2

)
5

(
ς2 + (2− ς)

2

4

)
[F∗($1)G∗($1) +F∗($2)G∗($2)] (10)

+
ς(2− ς)

2
[F∗($2)G∗($1) +F∗($1)G∗($2)]
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and

F ∗
(

ς

2
$1 +

2− ς

2
$2

)
G∗
(

ς

2
$1 +

2− ς

2
$2

)
+F ∗

(
2− ς

2
$1 +

ς

2
$2

)
G∗
(

2− ς

2
$1 +

ς

2
$2

)
5

(
ς2 + (2− ς)

2

4

)
[F ∗($1)G∗($1) +F ∗($2)G∗($2)] (11)

+
ς(2− ς)

2
[F ∗($2)G∗($1) +F ∗($1)G∗($2)].

Multiplying both sides of Equations (10) and (11) by ςα−1 and then integrating with
respect to ς over (0,1), we have∫ 1

0
ςα−1F∗

(
ς

2
$1 +

2− ς

2
$2

)
G∗
(

ς

2
$1 +

2− ς

2
$2

)
dς

+
∫ 1

0
ςα−1F∗

(
2− ς

2
$1 +

ς

2
$2

)
G∗
(

2− ς

2
$1 +

ς

2
$2

)
dς

5 Ψ∗($1, $2)
∫ 1

0
ςα−1

(
ς2 + (2− ς)

2

4

)
dς + Ω∗($1, $2)

∫ 1

0
ςα−1 ς(2− ς)

2
dς

and ∫ 1

0
ςα−1F ∗

(
ς

2
$1 +

2− ς

2
$2

)
G∗
(

ς

2
$1 +

2− ς

2
$2

)
dς

+
∫ 1

0
ςα−1F ∗

(
2− ς

2
$1 +

ς

2
$2

)
G∗
(

2− ς

2
$1 +

ς

2
$2

)
dς

5 Ψ∗($1, $2)
∫ 1

0
ςα−1

(
ς2 + (2− ς)

2

4

]
dς + Ω∗($1, $2)

∫ 1

0
ςα−1 ς(2− ς)

2
dς.

It follows from the above developments that

2α−1Γ(α + 1)
($2 − $1)

α

(
Jα(

$1+$2
2

)+ F∗($2)G∗($2) + Jα(
$1+$2

2

)−F∗($1)G∗($1)

)

5
α

4

(
1

α + 2
− 2

α + 1
+

2
α

)
Ψ∗($1, $2) +

α

4

(
2

α + 1
− 1

α + 2

)
Ω∗($1, $2)

and

2α−1Γ(α + 1)
($2 − $1)

α

(
Jα(

$1+$2
2

)+ F ∗($2)G∗($2) + Jα(
$1+$2

2

)−F ∗($1)G∗($1)

)

5
α

4

(
1

α + 2
− 2

α + 1
+

2
α

)
Ψ∗($1, $2) +

α

4

(
2

α + 1
− 1

α + 2

)
Ω∗($1, $2).
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Consequently, we obtain

2α−1Γ(α + 1)
($2 − $1)

α

([
Jα(

$1+$2
2

)+ F∗($2)G∗($2) + Jα(
$1+$2

2

)−F∗($1)G∗($1)

]
,[

Jα(
$1+$2

2

)+ F ∗($2)G∗($2) + Jα(
$1+$2

2

)−F ∗($1)G∗($1)

])

5p
α

4

(
1

α + 2
− 2

α + 1
+

2
α

)
[Ψ∗($1, $2), Ψ∗($1, $2)]

+
α

4

(
2

α + 1
− 1

α + 2

)
[Ω∗($1, $2), Ω∗($1, $2)],

that is,

2α−1Γ(α + 1)
($2 − $1)

α

(
Jα(

$1+$2
2

)+ F ($2)G($2) + Jα(
$1+$2

2

)−F ($1)G($1)

)

5p
α

4

(
1

α + 2
− 2

α + 1
+

2
α

)
Ψ($1, $2) +

α

4

(
2

α + 1
− 1

α + 2

)
Ω($1, $2).

This completes the proof of Theorem 7.

Example 2. Let α = 1
2 and [$1, $2] = [0, 2 ]. Moreover, let the interval-valued functions be

given by
F (ω) = [ω, 2ω] and G(ω) =

[ω

2
, ω
]
.

Since both the left and right end-points F∗(ω) = ω, F ∗(ω) = 2ω, G∗(ω) = ω
2 and

G∗(ω) = ω are LR-convex functions, F (ω) and G(ω) are LR-convex interval-valued functions.
We then clearly see that F (ω)G(ω) ∈ L

(
[$1, $2],K+

C
)

and that

2α−1Γ(α + 1)
($2 − $1)

α

(
Jα(

$1+$2
2

)+ F∗($2)G∗($2) + Jα(
$1+$2

2

)−F∗($1)G∗($1)

)

=
Γ
( 3

2
)

2
1√
π

∫ 2

1
(2−ω)−

1
2

(
1
2

.ω2
)

dω +
Γ
( 3

2
)

2
1√
π

∫ 1

0
(ω)

−1
2

(
1
2

.ω2
)

dω

≈ 0.7666

and

2α−1Γ(α + 1)
($2 − $1)

α

(
Jα(

$1+$2
2

)+ F ∗($2)G∗($2) + Jα(
$1+$2

2

)−F ∗($1)G∗($1)

)

=
Γ
( 3

2
)

2
1√
π

∫ 2

1
(2−ω)−

1
2 ·2ω2dω +

Γ
( 3

2
)

2
1√
π

∫ 1

0
(ω)−

1
2 ·2ω2dω

≈ 3.0667.

We also note that

α

4

(
1

α + 2
− 2

α + 1
+

2
α

)
Ψ∗($1, $2)

=
23
60

[F∗($1) · G∗($1) +F∗($2) · G∗($2)] =
23
30

,
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α

4

(
1

α + 2
− 2

α + 1
+

2
α

)
Ψ∗($1, $2)

=
23
60

[F ∗($1) · G∗($1) +F ∗($2) · G∗($2)] =
92
30

,

α

4

(
2

α + 1
− 1

α + 2

)
Ω∗($1, $2)

=
7

60
[F∗($1) · G∗($2) +F∗($2) · G∗($1)] = 0

and

α

4

(
2

α + 1
− 1

α + 2

)
Ω∗($1, $2)

=
7

60
[F ∗($1) · G∗($2) +F ∗($2) · G∗(s$1)] = 0.

Therefore, we have

α

4

(
1

α + 2
− 2

α + 1
+

2
α

)
Ψ($1, $2) +

α

4

(
2

α + 1
− 1

α + 2

)
Ω($1, $2)

=

[
23
30

,
92
30

]
+

7
60

[0, 0] =
[

23
30

,
92
30

]
.

It follows that

[0.7666, 3.0667] 5p

[
23
30

,
92
30

]
.

Hence, Theorem 7 has been demonstrated.

Theorem 8. Let F ,G : [$1, $2]→ K+
C be two LR-convex interval-valued functions such that

F (ω) = [F∗(ω), F ∗(ω)] and G(ω) = [G∗(ω), G∗(ω)]

for all ω ∈ [$1, $2]. If
F · G ∈ L

(
[$1, $2],K+

C
)
,

then each of the following interval-valued fractional inequalities holds true:

2 F
(

$1 + $2

2

)
G
(

$1 + $2

2

)
5p

2α−1Γ(α + 1)
($2 − $1)

α

(
Jα(

$1+$2
2

)+ F ($2)G($2) + Jα(
$1+$2

2

)−F ($1)G∗($1)

)

5p
α

2

(
1

α + 1
− 1

2(α + 2)

)
Ψ($1, $2) +

α

4

(
1

α + 2
− 2

α + 1
+

2
α

)
Ω($1, $2),

where
Ψ($1, $2) = F ($1)G($1) + F ($2)G($2),

Ω($1, $2) = F ($1)G($2) + F ($2)G($1)

and
Ψ($1, $2) = [Ψ∗($1, $2), Ψ∗($1, $2)]

and
Ω($1, $2) = [Ω∗($1, $2), Ω∗($1, $2)].
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Proof. Suppose that F ,G : [$1, $2]→ K+
C are LR-convex interval-valued functions. Then,

by hypothesis, we have

4F∗
(

$1 + $2

2

)
G∗
(

$1 + $2

2

)
5 F∗

(
ς

2
$1 +

2− ς

2
$2

)
G∗
(

ς

2
$1 +

2− ς

2
$2

)
+F∗

(
2− ς

2
$1 +

ς

2
$2

)
G∗
(

2− ς

2
$1 +

ς

2
$2

)
+F∗

(
ς

2
$1 +

2− ς

2
$2

)
G∗
(

2− ς

2
$1 +

ς

2
$2

)
+F∗

(
2− ς

2
$1 +

ς

2
$2

)
G∗
(

ς

2
$1 +

2− ς

2
$2

)
and

4F ∗
(

$1 + $2

2

)
G∗
(

$1 + $2

2

)
5 F ∗

(
ς

2
$1 +

2− ς

2
$2

)
G∗
(

ς

2
$1 +

2− ς

2
$2

)
+F ∗

(
2− ς

2
$1 +

ς

2
$2

)
G∗
(

2− ς

2
$1 +

ς

2
$2

)
+F ∗

(
ς

2
$1 +

2− ς

2
$2

)
G∗
(

2− ς

2
$1 +

ς

2
$2

)
+F ∗

(
2− ς

2
$1 +

ς

2
$2

)
G∗
(

ς

2
$1 +

2− ς

2
$2

)
.

We thus find that

4 F∗
(

$1+$2
2

)
G∗
(

$1+$2
2

)
5 F∗

(
ς
2 $1 +

2−ς
2 $2

)
G∗
(

ς
2 $1 +

2−ς
2 $2

)
+F∗

(
2−ς

2 $1 +
ς
2 $2

)
G∗
(

2−ς
2 $1 +

ς
2 $2

)
+
(

ς(2−ς)
2

)
Ψ∗($1, $2) +

(
ς2+2−2ς

2

)
Ω∗($1, $2)

(12)

and

4 F ∗
(

$1+$2
2

)
G∗
(

$1+$2
2

)
5 F ∗

(
ς
2 $1 +

2−ς
2 $2

)
G∗
(

ς
2 $1 +

2−ς
2 $2

)
+F ∗

(
2−ς

2 $1 +
ς
2 $2

)
G∗
(

2−ς
2 $1 +

ς
2 $2

)
+
(

ς(2−ς)
2

)
Ψ∗($1, $2) +

(
ς2+2−2ς

2

)
Ω∗($1, $2).

(13)
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Multiplying Equations (12) and (13) by ςα−1 and then integrating over (0, 1), we obtain

4 F∗
(

$1 + $2

2

)
G∗
(

$1 + $2

2

) ∫ 1

0
ςα−1dς

5
∫ 1

0
ςα−1F∗

(
ς

2
$1 +

2− ς

2
$2

)
G∗
(

ς

2
$1 +

2− ς

2
$2

)
dς

+
∫ 1

0
ςα−1F∗

(
2− ς

2
$1 +

ς

2
$2

)
G∗
(

2− ς

2
$1 +

ς

2
$2

)
dς

+ Ψ∗($1, $2)
∫ 1

0
ςα−1 ς(2− ς)

2
dς + Ω∗($1, $2)

∫ 1

0
ςα−1 ς2 + 2− 2ς

2
dς

and

4 F ∗
(

$1 + $2

2

)
G∗
(

$1 + $2

2

) ∫ 1

0
ςα−1dς

5
∫ 1

0
ςα−1F ∗

(
ς

2
$1 +

2− ς

2
$2

)
G∗
(

ς

2
$1 +

2− ς

2
$2

)
dς

+
∫ 1

0
ςα−1F ∗

(
2− ς

2
$1 +

ς

2
$2

)
G∗
(

2− ς

2
$1 +

ς

2
$2

)
dς

+ Ψ∗($1, $2)
∫ 1

0
ςα−1 ς(2− ς)

2
dς + Ω∗($1, $2)

∫ 1

0
ςα−1 ς2 + 2− 2ς

2
dς.

In view of the above equations, we find that

4
α
F∗
(

$1 + $2

2

)
G∗
(

$1 + $2

2

)
5

2αΓ(α)
($2 − $1)

α

(
Jα(

$1+$2
2

)+ F∗($2)G∗($2) + Jα(
$1+$2

2

)−F∗($1)G∗($1)

)

5
(

1
α + 1

− 1
2(α + 2)

)
Ψ∗($1, $2) +

1
2

(
1

α + 2
− 2

α + 1
+

2
α

)
Ω∗($1, $2)

and

4
α
F ∗
(

$1 + $2

2

)
G∗
(

$1 + $2

2

)
5

2αΓ(α)
($2 − $1)

α

(
Jα(

$1+$2
2

)+ F ∗($2)G∗($2) + Jα(
$1+$2

2

)−F ∗($1)G∗($1)

)

5
(

1
α + 1

− 1
2(α + 2)

)
Ψ∗($1, $2) +

1
2

(
1

α + 2
− 2

α + 1
+

2
α

)
Ω∗($1, $2).

Consequently, we have

2 F∗
(

$1 + $2

2

)
G∗
(

$1 + $2

2

)
5

2α−1Γ(α + 1)
($2 − $1)

α

(
Jα(

$1+$2
2

)+ F∗($2)G∗($2) + Jα(
$1+$2

2

)−F∗($1)G∗($1)

)

5
α

2

(
1

α + 1
− 1

2(α + 2)

)
Ψ∗($1, $2) +

α

4

(
1

α + 2
− 2

α + 1
+

2
α

)
Ω∗($1, $2)
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and

2 F ∗
(

$1 + $2

2

)
G∗
(

$1 + $2

2

)
5

2α−1Γ(α + 1)
($2 − $1)

α

(
Jα(

$1+$2
2

)+ F ∗($2)G∗($2) + Jα(
$1+$2

2

)−F ∗($1)G∗($1)

)

5
α

2

(
1

α + 1
− 1

2(α + 2)

)
Ψ∗($1, $2) +

α

4

(
1

α + 2
− 2

α + 1
+

2
α

)
Ω∗($1, $2).

It follows from the above developments that

2
[
F∗
(

$1 + $2

2

)
G∗
(

$1 + $2

2

)
, F ∗

(
$1 + $2

2

)
G∗
(

$1 + $2

2

)]
5p

2α−1Γ(α + 1)
($2 − $1)

α

[(
Jα(

$1+$2
2

)+ F∗($2)G∗($2) + Jα(
$1+$2

2

)−F∗($1)G∗($1)

)
,(

Jα(
$1+$2

2

)+ F ∗($2)G∗($2) + Jα(
$1+$2

2

)−F ∗($1)G∗($1)

)]

5p
α

2

(
1

α + 1
− 1

2(α + 2)

)
[Ψ∗($1, $2), Ψ∗($1, $2)]

+
α

4

(
1

α + 2
− 2

α + 1
+

2
α

)
[Ω∗($1, $2), Ω∗($1, $2)],

which readily yields

2 F
(

$1 + $2

2

)
G
(

$1 + $2

2

)
5p

2α−1Γ(α + 1)
($2 − $1)

α

(
Jα(

$1+$2
2

)+ F ($2)G($2) + Jα(
$1+$2

2

)−F ($1)G∗($1)

)

5p
α

2

(
1

α + 1
− 1

2(α + 2)

)
Ψ($1, $2) +

α

4

(
1

α + 2
− 2

α + 1
+

2
α

)
Ω($1, $2).

This leads us to the desired result asserted by Theorem 8.

4. Conclusions

The use of fractional calculus for finding various integral inequalities via convex
functions has skyrocketed in recent years. This paper addresses a novel type of interval-
valued convex function of a pseudo-order relation, as well as the associated integral
inequalities. In order to generalize some H-H (Hermite–Hadamard) type inequalities, the
interval-valued R-L (Riemann–Liouville) fractional integral operator is employed. The
concept of LR-convex interval-valued functions and fuzzy interval-valued functions will
be highly fascinating to apply to the Hadamard–Mercer type and other related integral
inequalities in a future study.

We choose to conclude our present investigation by remarking that, in many recent
publications, fractional-order analogues of various families of familiar integral inequalities
have been routinely derived by using some obviously trivial or redundant parametric
variations of known as well as widely and extensively studied operators of fractional
integrals and fractional derivatives (see, for details, [54]).
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3. Mumcu, İ.; Set, E.; Akdemir, A.O.; Jarad, F. New extensions of Hermite-Hadamard inequalities via generalized proportional

fractional integral. Numer. Methods Partial Differ. Equ. 2021, 2021, 1–12. [CrossRef]
4. Liu, K.; Wang, J.; O’Regan, D. On the Hermite-Hadamard type inequality for ψ-Riemann-Liouville fractional integrals via convex

functions. J. Inequal. Appl. 2019, 2019, 27. [CrossRef]
5. Xi, B.Y.; Qi, F. Some integral inequalities of Hermite-Hadamard type for convex functions with applications to means. J. Funct.

Spaces Appl. 2012, 2012, 980438. [CrossRef]
6. Kirmaci, U.S.; Özdemir, M.E. On some inequalities for differentiable mappings and applications to special means of real numbers

and to midpoint formula. Appl. Math. Comput. 2004, 153, 361–368. [CrossRef]
7. Srivastava, H.M.; Kashuri, A.; Mohammed, P.O.; Nonlaopon, K. Certain Inequalities pertaining to some new generalized fractional

integral operators. Fractal Fract. 2021, 5, 160. [CrossRef]
8. Dragomir, S.S.; Agarwal, R.P. Two inequalities for diferentiable mappings and applications to special means fo real numbers and

to trapezoidal formula. Appl. Math. Lett. 1998, 11, 91–95. [CrossRef]
9. Özdemir, M.E.; Avci, M.; Set, E. On some inequalities of Hermite-Hadamard type via m-convexity. Appl. Math. Lett. 2010, 23,

1065–1070. [CrossRef]
10. Íşcan, Í. Hermite-Hadamard type inequalities for harmonically convex functions. Hacettepe J. Math. Statist. 2013, 43, 935–942.
11. Ahmad, H.; Tariq, M.; Sahoo, S.K.; Baili, J.; Cesarano, C. New estimations of Hermite–Hadamard type integral inequalities for

special functions. Fractal Fract. 2021, 5, 144. [CrossRef]
12. Dragomir, S.S.; Pearce, C.E.M. Selected Topics on Hermite-Hadamard Type Inequalities and Applications. RGMIA Monographs.

2000. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3158351 (accessed on 1 July 2021).
13. Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000.
14. Atangana, A. Application of fractional calculus to epidemiology. In Fractional Dynamics; De Gruyter Open Poland: Warsaw,

Poland, 2016; pp. 174–190.
15. El Shaed, M. A Fractional Calculus Model of Semilunar Heart Valve Vibrations; International Mathematica Symposium: London, UK,

2003.
16. Baleanu, D.; Güvenç, Z.B.; Machado, J.T. (Eds.) New Trends in Nanotechnology and Fractional Calculus Applications; Springer:

New York, NY, USA, 2010.
17. Caputo, M. Modeling social and economic cycles. In Alternative Public Economics; Forte, F., Navarra, P., Mudambi, R., Eds.; Elgar:

Cheltenham, UK, 2014.
18. Magin, R.L. Fractional Calculus in Bio-Engineering; Begell House Inc.: Danbury, CT, USA, 2006.
19. Kulish, V.V.; Lage, J.L. Application of fractional calculus to fluid mechanics. J. Fluids Eng. 2002, 124, 803–806.
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