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Abstract: In this paper, the design of a fractional-order proportional integral (FOPI) controller
and integer-order (IOPI) controller are compared for the permanent magnet synchronous motor
(PMSM) speed regulation system. A high-precision implementation method of a fractional-order
proportional integral (FOPI) controller is proposed in this work. Three commonly used numerical
implementation methods of fractional operators are investigated and compared for comprehensively
evaluating the numerical implementation performance in this work. Furthermore, for the impulse
response invariant implementation method, the effects of different discretization orders on the
control performance of the system are compared. The high-order fractional-order controller can
be implemented accurately in a control system with the field-programmable gate array (FPGA)
with the capability of parallel calculation. The simulation and experimental results show that the
high-precision numerical implementation method of the designed high-order FOPI controller has
better performance than the ordinary precision fractional operation implementation method and
traditional order integer order PI controller.

Keywords: fractional-order proportional integral (FOPI); PMSM speed system; numerical implemen-
tation; field-programmable gate array (FPGA)

1. Introduction

As a generalization of integer calculus, fractional calculus can describe the actual
physical objects more accurately. Fractional calculus has attracted more and more attention
in engineering and physics, such as physical modeling, controller design [1–3], chaotic
systems [4,5], and so on [6]. In the field with specific characteristics such as viscoelasticity
and friction, fractional calculus can be used to describe some important applications [7].
Moreover, the fractional-order controller has more parameters and can improve the overall
performance of the control systems, such as robustness and disturbance rejection [3,8].
Field-Programmable Gate Array (FPGA) has been widely used for digital system imple-
mentation due to its concurrency, programmability, and short development cycle [9–13].
Regardless of the complexity of the control algorithm, the computation cycle of controller
based on FPGA can be relatively short compared to a pipelined digital signal processor
(DSP) and personal computer (PC) because of its parallel architecture [14]. The implemen-
tation of the servo system based on FPGA can achieve high performance such as high
bandwidth and good dynamic response performance [15,16]. A high-precision digital
proportional integral derivative (PID) controller based on FPGA is implemented in [17].

A permanent magnet synchronous motor (PMSM) has advantages of high power, low
loss, and high efficiency, providing the desired control performance and flexibility [18].
The field-oriented control (FOC) algorithm is generally regarded as a good method to
control the PMSM. It has been applied in many fields, such as industrial robots, precision
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machining platforms, and so on. In view of the coupling, time-varying, and other nonlinear
characteristics of PMSM, fractional-order controllers can achieve better control performance
over traditional controllers [19–21].

The discretization of the fractional order operator is essential for fractional-order
numerical implementation. The mathematical problems are more complex for a fractional-
order integrator/differentiator than an integer-order integrator/differentiator. Ideally, an
integer-order transfer function containing infinite poles and zeros is required to implement
a fractional-order transfer function, which is impossible in practical systems. However, the
proper approximation can be obtained with finite zeros and poles. Due to resource and
computing time constraints, fractional-order discretization order is usually less than 7th in
the microprocessor system. In [22], a fractional-order active disturbance rejection controller
(FOADRC) is proposed for the speed servo system of PMSM, which has good tracking
and anti-load disturbance performance. Experimental verification is carried out based on
the DSP platform with the 5th fractional discretization order. In [23], a fractional-order
proportional integral derivative (FOPID) controller is used to control the position of sus-
pended objects in a magnetic levitation system (MLS), which has a better position accuracy
with fewer efforts than conventional methods. In addition, the fractional-order operator
is implemented with the 7th-order discretization with Visual C. Therefore, the traditional
microprocessors are limited by resources and algorithm running time, and it is challenging
to realize high-order discretization fractional operators. Many researchers study the numer-
ical discretization of fractional-order operators based on FPGA implementation. In [24,25],
a fractional-order discretization method is proposed based on the Grunwald Letnikov (GL)
definition, which is numerically discretized based on FPGA implementation and applied to
practical fractional-order systems. This method effectively reduces the memory dependence
of fractional order operators, but it can only have a good fitting effect of a fractional-order
operator in a small frequency range. In [26], a fractional-order operators discretization
method is proposed based on the GL definition using the piecewise linear approximation
algorithm. The implementation is based on FPGA with better fitting accuracy and high
FPGA resource utilization. However, the effective fitting frequency range of the fractional
operator is still tiny. A few people have studied and compared the FPGA implementation
performance of fractional operators with other commonly used methods.

In this paper, the high-precision numerical implementation of FOPI is carried out
based on FPGA. Based on the PMSM model, an FOPI controller is designed with the
given frequency domain index for the speed control of PMSM. The influential factors of
discretization accuracy are investigated, including different discretization methods and
discretization orders. The field-oriented control method is realized based on FPGA. Experi-
mental results show that the high-precision numerical implementation method has better
dynamic response characteristics and robustness.

The main contributions of this paper are as follows: (1) Three commonly used
fractional-order operator discretization methods are compared in the frequency-domain,
including the impulse response invariant method, Oustaloup method, and GL method.
Furthermore, the fitting effects are investigated with different discretization orders of three
methods. (2) The numerical implementation method of the field-oriented control and the
high-precision FOPI controller is proposed based on FPGA, which can achieve higher
precision with less time delay. (3) PMSM speed servo simulation and experimental results
are presented to show the control performance advantages of the designed high-order FOPI
controller based on FPGA.

The research process of this paper is shown in Figure 1. We introduce the design of the
FOPI controller in Section 2. Section 3 presents the comparison of numerical implementation
methods of fractional order operators. Section 4 demonstrates the simulation analysis of
PMSM speed control performance of different controllers. Section 5 introduces the FPGA
structure design and the experimental research. Finally, we give the conclusion in Section 6.
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Figure 1. The research workflow of this paper.

2. The Plant Model and Controller Design
2.1. The Plant Model of PMSM Servo System

In this paper, the speed loop of PMSM is taken as the controlled object. Figure 2 is
the PMSM speed servo system, where C(s) and Ci(s) are the speed controller and the
current controller. K0, K1, and K2 are the voltage, current, and speed conversion factors,
respectively. Ti is the current filter coefficient. The red dotted block and blue dotted block
are electromagnetic components and mechanical components. The electromagnetic part
can be described by

uq − E = uq − Cen = Riq + L
diq
dt

, (1)

where uq is the q axis voltage, E is the electromotive force, Ce is the electromotive force
coefficient, n is the speed, iq is the q axis current, and R and L are the stator equivalent
resistance and inductance, respectively. The mechanical part can be described by,

Te − TL = Cm(iq − iL) =
J

km

dn
dt

+
B

km
n, (2)

where Te and TL are the electromagnetic torque and equivalent torque of the load, km = 30/π,
Cm is the torque coefficient, iL is the equivalent load current, J is the flywheel inertia, and B
is the viscosity coefficient.

C(s)
1

+ 1
( )

1/

+ / +

1

+ 1

+++

Figure 2. The PMSM speed control system.

The transfer functions of the electromagnetic and mechanical parts can be calculated by,

G1(s) =
Iq

Uq − E
=

1
Ls + R

, (3)
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G2(s) =
N

Iq − IL
=

kv

Js + B
, (4)

where kv = kmCm.
A nonlinear identification approach based on output error is adopted to get the model

parameters [27]. Based on this method, the electromagnetic part model and mechanical
part model can be identified as,

G1(s) =
415.60

s + 190.4715
, (5)

G2(s) =
2213.5

s + 1.3771
. (6)

In order to reduce the influence of current disturbance, we introduce a first-order
digital low-pass filter as follows:

G f (s) =
1

Tis + 1
, (7)

where Ti is the filter coefficient.
The current loop controller model is

Ci(s) = Kpc +
Kic
s

. (8)

where Kpc and Kic are proportional and integral coefficients. The open-loop transfer
function of the current loop can be seen in Figure 2, and its definition is as follows:

Po(s) = K0K1Ci(s)G1(s)G f (s) = K0K1
b

s + a

(
Kpcs + Kic

s

)
1

Tis + 1
. (9)

In this paper, K0 = 213.667, K1 = 19.2, K2 = 0.0005, and Ti = 0.000318. The current
controller is designed by the cancellation method with relationship Kpc/Kic = 1/a. The
gain crossover frequency is set as wc = 3000 rad/s,

|Po(jωc)| = 1. (10)

The current loop controller model can be obtained as follows:

Ci(s) = 0.8971 +
170.8720

s
. (11)

Based on the principle of FOC, the parameters of the Iq controller and Id controller
are the same. So, the plant model of the PMSM speed control system is as follows,

P(s) =
2.76847× 108

s3 + 3141.38s2 + 1.30327× 107s + 1.79413× 107 . (12)

2.2. The Controller Design
2.2.1. Fractional Order PI Controller Design

Compared with the traditional linear PI controller, FOPI has more flexibility in pa-
rameters adjustment, including the fractional order. In order to make the speed control of
PMSM robust to loop gain variation, an FOPI controller is considered with the structure as,

C(s) = KP

(
1 +

Ki
sα

)
, (13)



Fractal Fract. 2022, 6, 218 5 of 21

where KP is the proportional gain, Ki is the integral gain, and α is the order of the integration.
The open-loop transfer function Gs(s) can be written as,

Gs(s) = C(s)P(s). (14)

The controller C(s) contains three unknown parameters. The gain crossover frequency
is given as ωc, and the phase margin is given as φm. Three specifications are imposed
as follows,

(1) Phase margin specification,

Arg[G(jωc)] = Arg[C(jωc)P(jωc)] = −π + φm. (15)

(2) Gain crossover frequency specification,

|G(jωc)| = |C(jωc)P(jωc)| = 1. (16)

(3) Flat phase specification,∣∣∣∣d(Arg(G(jω)))

dω

∣∣∣∣
ω=ωc

= 0. (17)

The flat phase specification demands the phase is flat around the gain crossover
frequency ωc. It means that the system is robust to loop gain variation and maintains a
constant overshoot as the gain changes.

The control design specifications are set as φm = 60◦ and ωc = 20 rad/s. By calcula-
tion, the intersection value of Ki and α is obtained as KP = 0.252623, Ki = 3.28026, and
α = 0.494177. The open-loop Bode diagram is obtained, which meets the design index, as
shown in Figure 3. The dots with different colors in the figure represent the phase at the
gain crossover frequency.
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Figure 3. Open−loop Bode plot with the different controllers.

2.2.2. Integer-Order PI Controller Design

In order to compare with the fractional-order controller, we also design an integer-
order proportional intregral (IOPI) controller for the PMSM system. The structure of the
IOPI controller is,

C2(s) = Kp +
Ki
s

, (18)
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where KP, Ki are the parameters for proportional and integral items. The open-loop transfer
function G2(s) with plant and IOPI controller can be written as,

G2(s) = C2(s)P(s). (19)

The phase margin and gain crossover frequency are,

Arg[G2(jωc)] = −π + φm, (20)

|G2(jωc)| = |C2(jωc)P(jωc)| = 1. (21)

The controller of IOPI consists of two unknown control parameters. The control design
specifications are set as φm = 60◦ and ωc = 20 rad/s. According to the constraint conditions,
Ki = 10.4586, KP = 0.78521. The open-loop Bode diagram of G2(s) is obtained, which
meets the design index, as shown in Figure 3.

3. Numerical Implementation of Fractional Order Operators

The order of the fractional-order operator can be any real number or even a complex
number. The basic operator of fractional calculus is aDα

t [28], where a and t are the upper
and lower limits of the fractional-order operator, and α is the order of the operator. The
fractional-order differential and integral of function f (t) are as follows,

aDα
t f (t) =


dα

dtα f (t), Re(α) > 0
f (t), Re(α) = 0∫ t

a f (t)(dτ)−α, Re(α) < 0,
(22)

where the operator aDα
t represents the α order derivative or integral of the function. It can

be seen that a fractional-order operator combines a fractional integral with a fractional
differential. Therefore, the integer order is a special case of fractional-order operator. Three
of the most commonly used definitions of fractional calculus are Caputo [29], Riemann-
Liouville (RL) [30], and Grunwald-Letnikov (GL) [31].

The fractional-order operator sα is an infinite dimensional system and cannot be
directly applied to an integer-order system. Therefore, the approximation of fractional-
order control systems is very important. The discretization methods of fractional order can
be divided into direct discretization and indirect discretization. The idea of a direct discrete
method is divided into two parts. The first part is the conversion of a fractional operator
from the s-domain to discrete time domain z-domain. The commonly used methods include
Euler, Tustin, and Al-Alaoui. The second part is to use a function of finite order in the
z-domain to approximate the z-domain model of the operator. The discretization process
is realized through a power series expansion (PSE) [32] and continued fraction expansion
(CFE) [33]. The indirect discrete method approximates the fractional-order system to
a continuous high-order integer-order system, such as the Oustaloup method [34] and
Carlson method [35]. In this paper, three commonly used numerical methods are studied:
impulse response invariant method, Oustaloup method, and GL discretization method.

3.1. Impulse Response Invariance Method

The impulse response invariance method was proposed for the discretization of
fractional order operators [36]. According to the RL definition of fractional order integral,
the α-order integral of unit impulse function δ(t) can be expressed as:

g(t) = 0D−α
t δ(t) =

1
Γ(α)

∫ t

0

δ(τ)

(t− τ)−α+1 dτ =
1

Γ(α)
tα−1, (23)



Fractal Fract. 2022, 6, 218 7 of 21

where g(t) is the impulse response function of fractional-order integral operator 1/sα. g(t)
is sampled by an ideal pulse sequence with impulse 1, and the sampling signal of the
impulse response is obtained as:

g∗(t) = g(t)
∞

∑
n=−∞

δ(t− nTs) =
∞

∑
n=−∞

1
Γ(α)

(nTs)
α−1, (24)

where Ts is the sampling period. The pulse response sampling signal is modified as,

g∗m(t) = Tsg∗(t) =
∞

∑
n=−∞

1
Γ(α)

Tα
s nα−1. (25)

The discretization transfer function of the fractional-order integral operator 1/sα can
be obtained,

G(z) =
∑

q
k=0 b[k]z−k

1 + ∑
p
l=1 a[l]z−l

, (26)

where p and q are the orders of the polynomials.

3.2. Oustaloup Method

The Oustaloup method was developed on the basis of the study of complex calculus
operators. In a certain approximation frequency range, the global approximation of the
fractional-order operator is realized by assigning the zeros and poles of the integer-order
transfer function. Since the frequency characteristic curve of the fractional order operator
is a slant line, there is no filter to approach the fractional-order operator on the whole
frequency band but only one frequency band. This method has a good fitting effect in the
concerned frequency band. However, the disadvantage of this method is that the effect is
not ideal in the high-frequency range. Assuming that the band of interest is (ωL, ωH) and
the number of filters is 2N + 1, the recursive filter can be expressed as:

G f (s) = K
N

∏
k=−N

s + ωk
s + ωk

′
. (27)

The zeros ω′k, poles ωk, and gains K of the filter are shown as,

ω′k = ωL

(
ωH
ωL

) k+N+ 1
2 (1−α)

2N+1
, (28)

ωk = ωL

(
ωH
ωL

) k+N+ 1
2 (1+α)

2N+1
, (29)

K = ωα
H . (30)

3.3. GL Method

The direct discretization of GL with finite memory length is the simplest way to
implement fractional operators [33]. The GL fractional order operator is defined as follows:

GL
a Dα

t f (t) = lim
h→0

1
hα

b(t−a)/hc

∑
j=0

W(α)
j f (t− jh), (31)

where W(α)
j is the binomial coefficients and a is the interval superscript.

In order to facilitate the implementation in the control system, the approximated
version of the GL definition is given by [24]:
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GL
t−L Dα

t f (t) =
1
hα

L

∑
j=0

W(α)
j f (t− jh), (32)

where h is the step size, L is the window size (the discretization order), and W(α)
j is

calculated recursively by,

W(α)
0 = 1, W(α)

j =

(
1− α + 1

j

)
W(α)

j−1, j = 1, 2, 3, ... (33)

Considering the principle of short memory, the error in calculating the approximated
derivative is:

∆(t) =
∣∣∣∣GL

a Dα
t f (t)− GL

t−LDα
t f (t)

∣∣∣∣ ≤ ML−α

|Γ(1− α)| , (34)

where a + L < t < b and | f (t)| < M when a < t < b. It can be seen from the definition that
the fitting error will decrease with the increase of window size. From Equation (32), the
GL equation can be divided into two steps: first, the binomial coefficients W(α)

n , where all
coefficients are multiplied by 1

hα ; second, multiplication is performed between the input
and the coefficients.

4. Simulation Analysis

Theoretically, the higher the approximation order is, the higher the approximation
accuracy is. However, in the real systems, a high approximation order will significantly
affect the operation time and resource occupation in embedded controllers with micro-
processors. So, in practical application, the order of approximation is selected based on the
trade-off of the control performance requirement and hardware limitation. In this paper, in
order to demonstrate the advantages of the high-order implementation of the fractional-
order operator on FPGA with parallel calculation, different implementation methods and
discretization orders are executed on FPGA for the PMSM control system.

4.1. Comparison of Three Discretization Methods

In order to evaluate the performance of the three numerical methods, given the same
discretization order, the results of the three numerical methods are compared. The Bode
plots of three fractional operator numerical methods are studied and compared with the
ideal value. In order to study the implementation of three fractional-order numerical
discretization methods, typical different fractional-order operator orders and frequency
bands are given, and the effects of different discretization orders are compared. The
designed parameters are shown in Table 1. Considering the actual digital system realization
of the PMSM speed loop, the discretization sampling frequency is 4 kHz. The following are
the detailed comparisons:

Table 1. Parameters of discretization methods.

Operator Considered Frequency The Discretization
Band (Hz) Order N

Case 1 s0.5 [0.01,1000] 7
Case 2 s0.5 [0.01,1000] 24
Case 3 s0.5 [0.01,10,000] 24
Case 4 s0.1 [0.01,1000] 24
Case 5 s0.9 [0.01,1000] 24
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(1) The comparison of case 1 is shown in Figure 4. It can be seen that the fitting
performance of the GL definition implementation method is not very close to the ideal
value. In this case, the Oustaloup method has a good fitting performance. However, the
effect of Oustaloup still has some shortcomings. The fitting error of the phase at high and
low frequency is large, and the accuracy of amplitude fitting needs to be improved.

(2) The comparison of case 2 is shown in Figure 5. It can be seen that the fitting
effect of the GL definition implementation method is improved. With the increase of
discretization order, the fitting effect of the impulse response invariant method is greatly
improved. In the amplitude frequency diagram, in the frequency range [3 Hz, 1000 Hz],
the impulse response invariant method has higher amplitude frequency fitting accuracy
than the Oustaloup method. For the phase, the Oustaloup method has a better fitting
performance at low frequency, and the impulse response invariance method has better
fitting performance at high frequency.
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amplitude frequency diagram, in the frequency range [3 Hz, 1000 Hz], impulse response
invariant method has higher amplitude frequency fitting accuracy than Oustaloup method.
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(3) The comparison of case 3 is shown in Figure 6. Increasing the frequency range of
interest [1 Hz, 10,000 Hz], the amplitude and phase fitting accuracy of Oustaloup at high
frequency is reduced, while the impulse response invariance method still maintains a good
fitting performance.

(4) The comparison of cases 4 and 5 is shown in Figures 7 and 8. The order of the three
methods is 24th. The fractional order operators are s0.1 and s0.9, respectively. It can be seen
that with the increase of fractional order at (0,1), the fitting accuracy of the GL method
and impulse response invariant method is improved compared with the ideal value. For
s0.1, the Oustaloup method has a good fitting performance in the case of discretization
order 24th. For s0.9, in the frequency range [1 Hz, 1000 Hz], the impulse response invariant
method has a better amplitude and phase-fitting performance than the Oustaloup method
in the case of the 24th discretization order.
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frequency is reduced, while the impulse response invariance method still maintains a good
fitting performance.

(4) The comparison of case 4, 5 is shown in Figure 7 and Figure 8. The order of the
three methods is 24th. The fractional order operators are s0.1 and s0.9 respectively. It can be
seen that with the increase of fractional order at (0,1), the fitting accuracy of GL method
and impulse response invariant method is improved compared with the ideal value. For
s0.1, the Oustaloup method has a good fitting performance in the case of discretization
order 24th. For s0.9, in the frequency range [1Hz, 1000Hz], the impulse response invariant
method has a better amplitude and phase fitting performance than the Oustaloup method
in the case of discretization order 24th.
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For the speed loop control of PMSM, the FOPI controller is implemented by using
the impulse response invariance method. The fractional integral operator 1/sα can be
approximated by an integrator in series with an approximate fractional differential operator.
The fractional order integral operator 1/s0.494177 can be approximated by an integrator

Figure 7. 24th−order discretization approximate Bode graph of s0.1 in the frequency band [0.01,
1000] Hz.
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For the speed loop control of PMSM, the FOPI controller is implemented by using
the impulse response invariance method. The fractional integral operator 1/sα can be
approximated by an integrator in series with an approximate fractional differential operator.
The fractional order integral operator 1/s0.494177 can be approximated by an integrator
in series with an approximate fractional differential operator s0.5058. In order to evaluate
the influence of the discretization order of the impulse response invariant method on the
system performance, different discretization orders (7th and 24th) are given, and their
performances are compared. The Bode diagram of fractional order s0.5058 is shown in
Figure 9. It can be seen that the fitting effect of the 24th is better than that of the 7th, which
is closer to the design value at the frequency of 20 rad/s, and the phase is smoother. In
Figure 10, the dots with different colors represent the phase at the gain crossover frequency.
The gain crossover frequency of the open-loop Bode diagram of the 24th is larger than
that of the 7th, which is closer to the design value. The phase of the open-loop Bode
diagram corresponding to IOPI at 20 rad/s is not as flat as that for the FOPI controller, so
the robustness to loop gain variation for IOPI should not be as good as that for FOPI.
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in series with an approximate fractional differential operator s0.5058. In order to evaluate
the influence of the discretization order of the impulse response invariant method on the
system performance, different discretization orders of 7th and 24th are given and their
performances are compared. The Bode diagram of fractional order s0.5058 is shown in
Figure 9. It can be seen that the fitting effect of the 24th is better than that of the 7th, which
is closer to the design value at the frequency of 20 rad/s, and the phase is smoother. In
Figure 10, the gain crossover frequency of the open-loop Bode diagram of the 24th is larger
than that of the 7th, which is closer to the design value. The phase of the open-loop Bode
diagram corresponding to IOPI at 20 rad/s is not as flat as that for FOPI controller, so the
robustness to loop gain variation for IOPI should not be as good as that for FOPI.
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Figure 10. Open−loop Bode plot with the different controllers.

4.2. The Influence of Discretization Order of Impulse Response Invariant Method

The step response waveform is shown in Figure 11, and it can be seen that FOPI has a
smaller overshooting and setting time than IOPI. The response of 24th order has a smaller
overshoot and smaller setting time than that of 7th order. The comparison of the closed-
loop transfer function Bode diagram is shown in Figure 12. The peak value of 24th-order
discretization is smaller than that of 7th-order discretization. Therefore, the high-order
implementation of the fractional-order operator is more consistent with the expected value
and has better performance. In Figure 13, the 24th-order discretization controller input
has smaller amplitude oscillations and reaches steady state faster. In Figure 14, the output
peak value of the FOPI controller is smaller than the IOPI, and the 24th-order discretization
FOPI controller reaches the steady state faster than 7th-order discretization.
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Figure 11. Speed response comparison with different controllers.
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Figure 12. Closed−loop Bode plot with different discretization orders.
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Figure 13. The controllers input signals.

The unit step responses of the designed IOPI and FOPI controllers are plotted with
controller gain change 0.9 to 1.1 (±10% variations from the nominal value 1), as shown in
Figure 15. It can be seen that the designed high-order FOPI controller has a lower overshoot
than the IOPI controller. In addition, the overshoots of the high-order FOPI controller
remain almost constant under loop gain variations, which means the system is more robust
to loop gain changes.
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Figure 14. The controllers output signals.
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Figure 15. Step responses with loop gain variations.

The simulation results of speed reference variations are shown in Figure 16. The
speed reference changes from 200 to 400 r/min. Compared with the IOPI controller, the
FOPI controller has better dynamic response performance with less overshoot and less
adjustment time. In addition, the 24th-order discretization method has better response
performance than the 7th-order discretization method.
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Figure 16. Speed variations response.

5. FPGA Design Experimental Verification
5.1. FOC Algorithm Implementation Based on FPGA

The speed loop control of PMSM is based on the field-oriented control (FOC) method,
which decouples the excitation current from the torque current. The FOC structure is shown
in Figure 17, where id is the d-axis current, Ud is the d-axis voltage, nr is the reference speed,
and ia and ib are the two phase currents of the motor. Generally, FOC consists of seven parts:
namely, Clark transform, Park transform, inverse Park transform, space vector pulse-width
modulation (SVPWM), speed controller, current controller, and speed calculation module.
Each part requires a specific computation period, and the longest signal path in each stage
determines the bandwidth of this phase. The seven parts together determine the bandwidth
of the entire system.

Speed

controller

+ Iq

controller Inverse

park
SVPWM

Power

inverter

ClarkPark 

Motor

+

+

Id

controller

Figure 17. FOC algorithm.

The FOC structure based on FPGA is shown in Figure 18, where θ is the motor encoder
angle value. The whole algorithm process is divided into five states. While the Clark
module and the Park module are running, the speed calculation module and the speed
controller module can run independently at the same time. Similarly, the Iq controller and
the Id controller can operate independently at the same time. Each module makes full use
of the FPGA’s concurrent operation to reduce the running time and improve the operation
bandwidth. In this paper, the FPGA clock signal is 100 Mhz. Regardless of the current acquisition
and encoder acquisition time, the calculation time of the whole speed loop is 127 FPGA clocks.
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Figure 18. FOC algorithm control based on FPGA.

5.2. FPGA Implementation of Fractional-Order Operator

The structure of the fractional PI controller is presented in Figure 17, in which an inte-
grator is connected in series with fractional differential. We study the FPGA implementation
of fractional-order operators with reference to FOPI, and the FPGA-based fractional-order
operator module can also be used independently for other fractional-order systems. Accord-
ing to the impulse response invariance method, the z-domain expression of the fractional
operator sα can be obtained,

sα =
NUM
DEN

, (35)

NUM = w0 + w1z−1 + w2z−2 + ... + wnz−n, (36)

DEN = 1 + d1z−1 + d2z−2 + ... + dnz−n, (37)

where wi and di(i = 1...n) are the discretization coefficients of fractional-order operators.
The fractional differential operator function is as follows,

y = xsα, (38)

where x and y are the input and output. According to Equations (35) and (38), the i-th
output can be expressed as

yi = (wixi + wi−1xi−1 + wi−2xi−2 + ... + wi−nxi−n)− (di−1yi−1 + di−2yi−2 + ... + di−nyi−n). (39)

The hardware implementation of the fractional operator is illustrated in Figure 19.
The input and output signals are 37-bit fixed-point numbers, with 5-bits for the integer
part and 32-bits for the fractional part. The fractional order operator discretization is an
83-bit fixed-point number, with 13-bits for the integer part and 70-bits for the fractional
part. The parameter k0 is the conversion factor, and k0 = 1

238 . While improving the imple-
mentation accuracy of the fractional-order operator, the number of bits of the output signal
remains unchanged. Based on the concurrency of FPGA, wixi multiplication and di−1yi−1
multiplication can be carried out at the same time. While implementing high-precision
fractional-order operator, the internal concurrent structure of the module improves the
running speed.

Reg w0
w1

…

wn

Reg

k0

clk

rst

xi yi
Coefficients(83b)

37b

xi

…
d1
d2

…

dn
…

37b

Figure 19. The hardware architecture of fractional operator.
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The approximate z-domain transfer function of sα (α = 0.5058) is shown as
Equations (41)–(43) with the sampling period Ts = 0.00025 s. The integer-order integral
operator is discretized using the backward difference method with the same sampling
period. When the fractional discretization order is 7,

NUM = 71.0130967087276− 308.361372264005z−1 + 544.269486732419z−2

− 498.545074063010z−3 + 249.992643030789z−4 − 65.9346494416871z−5

+ 7.82911333155244z−6 − 0.263186494725346z−7,

(40)

DEN = 1− 3.73181345431067z−1 + 5.44679111687348z−2

− 3.86873670327290z−3 + 1.32371721700043z−4 − 0.164037126272245z−5

− 0.00750528404544043z−6 + 0.00161501600045280z−7.

(41)

When the fractional discretization order is 24,

NUM = 71.0130967087276− 284.064316641232z−1 + 337.351221684772z−2

− 177.279830260836z−4 + 162.127638162878z−8 − 191.405704502426z−10

+ 106.826515785161z−12 − 40.3918077785183z−15 + 22.7466788382580z−17

− 12.7261323351444z−19 + 7.48334445354109z−20 − 1.89892481499192z−21

+ 0.229665363193541z−22 − 0.0115954062078416z−23 + 0.000150746521401462z−24,

(42)

DEN = 1− 3.38966451631363z−1 + 2.74186995466488z−2

+ 1.52114228620950z−3 − 1.54865386366973z−4 − 0.794250251335307z−5

− 0.470762396086378z−6 − 0.350412508116731z−7 + 1.99620214850720z−8

+ 1.14667011512325z−9 − 1.92550294458525z−10 − 1.03508909072953z−11

+ 0.854840960387078z−12 + 0.420251295731053z−13 + 0.236729664910028z−14

− 0.397330340171471z−15 − 0.209087294971177z−16 + 0.191654930415509z−17

+ 0.0979007198034854z−18 − 0.121300895228491z−19 + 0.0392770038980040z−20

− 0.00442457810491528z−21 − 0.000100857599349359z−22 + 4.17152916747670e− 05z−23

− 1.25464323233953e− 06z−24.

(43)

5.3. Experimental Verification

The experimental platform is shown in Figure 20, including a PMSM, servo driver,
and PC interface. The servo drive is based on FPGA-10M50DAF484C7G, which is used
for encoder reading, AD sampling, and control algorithm implementation. The FPGA-
10M50DAF484C7G has 484 pins and 50K logic elements, and the maximum frequency is
450 MHz. The motor is VM7-M13A-2R020-D1, and the parameters are shown in Table 2.

Table 2. Parameters of PMSM.

Motor Parameters Value Unit

Rated power 2.0 kW
Rated speed 2000 r/min

Rated voltage 220 V
Rated current 9.1 A
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Figure 20. The experimental platform.

The speed responses of the FOPI and IOPI are shown in Figure 21. The discretization
order 24th step response has a smaller overshoot and adjustment time. For a fair compari-
son, the controllers gain are set as 90%, 100%, and 110% of the nominal value. As shown in
Figures 22 and 23, the high-order fractional order controller achieves better robustness.

Figure 24 shows that the FOPI controller has better dynamic response performance
than the IOPI controller when speed changes. In addition, the 24th-order discretization
method based on FPGA implementation has better response performance than the 7th-order
discretization method.
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Figure 21. PMSM speed step response (Experiment).
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Figure 22. The speed responses of the PMSM system with different IOPI controller gains (Experiment).
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Figure 23. The speed responses of the PMSM system with different FOPI controller gains (Experiment).
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6. Conclusions

In this paper, an FOPI controller is designed to control the speed of PMSM, and
the numerical implementation accuracy of the fractional-order operator is investigated.
Three common numerical implementation methods of the fractional-order operator are
studied. Both the impulse response invariant method and the Oustaloup method have good
fitting performance with 24th-order discretization. The effects of different discretization
orders with the impulse response invariant method on the control performance of the
system are compared. The FOC algorithm is implemented based on very high speed
integrated circuit hardware description language (VHDL), including the IOPI controller
and high-performance FOPI controller. Compared with the traditional pipelined structure
microprocessor, FPGA can break through the limitation of data bits, and the parallel
characteristic can improve the running speed. According to the simulation and experimental
results of the PMSM speed loop, the servo system based on the high-order FOPI controller can
obtain better dynamic response performance and robustness. The FPGA-based fractional-order
operator module can be integrated into other fractional-order systems.
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