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Abstract: In this paper, the problem of the uniform stability for a class of fractional-order fuzzy
impulsive complex-valued neural networks with mixed delays in infinite dimensions is discussed
for the first time. By utilizing fixed-point theory, theory of differential inclusion and set-valued
mappings, the uniqueness of the solution of the above complex-valued neural networks is derived.
Subsequently, the criteria for uniform stability of the above complex-valued neural networks are
established. In comparison with related results, we do not need to construct a complex Lyapunov
function, reducing the computational complexity. Finally, an example is given to show the validity of
the main results.
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1. Introduction

Fractional calculus is an effective tool for dealing with arbitrary derivatives and inte-
grals. Since fractional operators are non-local, they become an excellent tool for describing
some materials and processes with memory and genetic properties. In addition, because the
fractional-order model has more degrees of freedom and unlimited memory, some scholars
introduced fractional operators into neural networks. Fractional neural networks provide a
single neuron with general computing power for signal processing, frequency-independent
phase shifting of oscillatory neuron firing, and simulation of the human brain.

Currently, neural networks are widely used for their applications in optoelectronics,
imaging, remote sensing, quantum neural devices and systems, spatiotemporal analysis
of physiological nervous systems, artificial neural information processing, and so on [1].
These applications strongly depend on the dynamic behavior of the network. Therefore,
some existing results on stability analysis of neural networks have been studied in [2,3].
In recent years, research on the dynamic performance of fractional-order neural networks
has achieved remarkable results [4,5]. For instance, Lundstrom et al. has shown that
neural network approximation at fractional scale leads to higher approximation rates [6]. It
should also be noted that fractional-order neural networks may play an important role in
parameter estimation. Therefore, it is extremely important to study the stability of fractional
neural networks.

Note that all the references mentioned above deal with real-valued systems. In recent
years, due to the successful applications of complex-valued neural networks (CVNNSs) in
optoelectronics, remote sensing and artificial neural information processing, the research
on the dynamic behavior of complex-valued neural networks has attracted more and more
attention [7-10]. For some problems, complex-valued systems can better describe and
solve them, while real-valued systems cannot solve such problems. For example, the
XOR problem and the detection of a symmetry problem cannot be solved with a single
real-valued neuron, but a single complex-valued neuron with an orthogonal decision
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boundary [11]. The main difficulty faced by CVNNSs is the choice of activation functions. If
the activation function in CVNNs is both bounded and analytic, according to Liouville’s
theorem [12,13], the activation function is constant. In general, CVNNs have more complex
properties than real-valued neural networks. Therefore, it is desirable to study the dynamics
of CVNN s intensively.

In many dynamical systems, processes and phenomena mutate at certain stages of
development. For instance, sudden noise can cause instantaneous disturbance to the state
in the electronic network. These sudden changes are shorter than the whole process. This
instantaneous change is called an impulsive phenomenon [14-17]. On the other hand,
fractional derivative has aroused research interest, and it has been incorporated into the
model of CVNNs by numerous academics, which stirs a surge of research interest of the
fractional-order CVNNSs. Therefore, it is necessary to analyze the influence of impulsive
fractional-order complex-valued neural networks (FOCVNNSs). In addition to impulses,
several other factors such as complexity, uncertainty or vagueness can be considered while
modeling the neural network problems, and this can be studied through the application
of fuzzy set theory [18]. In this context, due to the applications in image processing,
pattern recognition etc., [19], it is an endeavour to study the dynamics of impulsive fuzzy
FOCVNNSs, which are challenging for the study of dynamic behavior from both theoretical
and application perspectives.

However, it is important to note that the presence of time delays, whatever the delay
in control or state deadlines, can cause the system to go from stable to unstable. There have
been many interesting results on the stability of time delays [20-25], most of which were
obtained by use of the Lyapunov method. However, the above method is only applicable
when an appropriate Lyapunov function can be constructed, otherwise the stability of
the system cannot be proved. Therefore, how to analyze the stability of impulsive fuzzy
FOCVNNSs with delays without applying the Lyapunov method is quite necessary and
more interesting. For example, in [26], using the iterative method, finite-time stability of
delayed memristor-based fractional-order neural networks was discussed. In [27], using
fixed-point theory, dynamic stability of genetic regulatory networks was studied.

Previous studies show that there is very little existing work on existence and uniform
stability for fuzzy infinite-dimensional FOCVNNs with impulses and mixed delays, which
is valuable for enabling FOCVNNSs for remote sensing, pattern recognition and artificial
intelligence. This constitutes the motivation for the present research. Inspired by the
aforementioned discussions, we discuss the uniform stability of a class of fuzzy fractional-
order infinite-dimensional complex-valued neural networks with mixed delays. The main
contributions of this paper lie in the following aspects:

(1) Based on fixed-point theory, theory of differential inclusion and set-valued map-
pings, several novel criteria on the existence and uniqueness for solution and uniformly
stability for the addressed infinite-dimensional FOCVNNSs are derived for the first time.

(2) A numerical example is provided to demonstrate the effectiveness and feasibility
of the proposed results. Compared with [28], our model is more general.

(3) Our approach avoids constructing a Lyapunov function directly and reduces the
computational complexity.

2. Preliminaries

Notations: in this paper, R and C represent a real number set and a complex number
set, respectively. i presents the imaginary unit, i.e., i* = —1. Let I° be the space of all
complex sequences and ! denote the space of all absolutely summable sequences. For
z € I, |z| is the module of z, and z = (z1, 2z3,...)T € I, withzj = xj +iy; € C, xj, y; € R,
x = (x1,x0,...)T € Mandy = (y1,y2,...)T € I', where ‘T’ represents the transpose, and
2]l = X521 (Ix5] + ly;])- C([=1, +00), I') stands for the space of all continuous functions
on [—T,+00).

Now we consider the space
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PC

{z(t) = x(t) +iy(t) : [—T, +00) =I5, x(¢), y(t) : [-7T, +00) — I

[e9)

Z(\x]«(s)\ + [yj(s)|) is bounded with respect to s, s € [~T, +00), there is
=1

0=ty <t <...suchthatzF e C((t_1, t, 19),z() = lim(t) and z(t) = z(t; )
t=tp
>t

= }ij}zz(t), and z(t) = {(t) +in(t), whent <0, {(t), n(t) € C([-7, 0], I').}

If the space PC is endowed with the norm
Izl = [Izll1 + [@ll, z € PC,

where [z[|1 = supc (g o) (721 (1% ()| + [y () [[@ll = supse| 10521 (16 (s) [+ () ])],
then (PC, || - ||) is a Banach space.

We consider infinite-dimensional fractional-order impulsive fuzzy CVNNs with mixed
delays, as follows:

(e )

£ Dizi(t) = —cizi(t) + i i (zi(4)) fi(zi(1)) + Y bij(z (£))hy(z(t — 77)) + N\ agjhi(zj(t))

j=1 j=1 j=1

o [} t
il (zi(t d;;
+me4»+§][(

I(t

1
() + 10, 1€ (i, b, @

Azi(te) = zi(t]) —zi(ty ) = Gi(zi(t)), i, ke ] = {1, 2,...},

where “D? is the Caputo’s fractional derivative with order 0 < A < 1, zj(t) = x;(t) +
iy;j(t) € Cand zj(t — 7;) = xj(t — ;) +iy;(t — 7;) € C denote the state variable with
respect to the jth neuron at t and t — 7, respectively ; 7; € R is the time delay, 7; > 0.

¢j = Cf + ic][ represents the self-feedback connection weight of jth neuron, where Cf,

c]l € R, 4;j(zi(t)) : C - Cand Eij(zi(t)) : C — C are memristor-based connective weights,
A\ and V denote the fuzzy AND and fuzzy OR operations, respectively; «;; and B;; are the
elements of fuzzy feedback MIN template and fuzzy feedback MAX template, respectively.
dij = df} + idfj, where ds, dll]- € R; I(t) € R is the distributed time-delay, which satisfies
0 <I(t) <1 fi(z(t)) : C — Cand hj(zj(t)) : C — C are the state-activation functions;
Ii(t) = IR(t) +iI[(t) is the external input bias, where I}, Il € R; Gy(zi(t)) : C — C,
zi(t}) = lim,, zi(t) and z;(t) = zi(t; ) = lim,;, z;(t); Az;(#) stands for the impulsive
ump at >ty t<ty
Additionally, the state z; satisfies the initial condition as follows:

zj(t) = @j(t) = g;(t) +in;(t), as t € [-7,0],
where ¢;(t) € C([-7,0],C).

Assumption 1. Let ¢ = u + iv; the state activation functions of ith neuron can be represented
as follows:

fi(®) = fRuv)+ifl (wv), () =hf(u,v) +ihi (u,v),



Fractal Fract. 2022, 6, 281

40f18

Dy;(t) =

»+f§ﬁa@%a

+Z ”/ t)]

Ayi(ty) = }/z‘(f;f) —yi(ty) = Gl (zi(t))-

where fiR(V’ v), fiI(V/ v), ng(l‘/ v), 81‘1(% v) € R, and for any u, v, fi, U, there are positive constants
RR PRI IR ©IT 1RR “1gRI 17IR' 1711
ER%, BN, ES, FY HES, HY, Hi®, H;, such that

Rwv) - R < FRp—pl+ My —1,
fHpv) =L@ o) < FRp—pl+Fv-7],
R (u,v) —hR(p,0)] < HFR|u—p|+HN v -9,
W, v) —nl(@,0)| < HR|p—a|+H v -7

Assumption 2. Let & = y + iv, the function Gy (8) = GJ (u,v) + 1le(y, v), where G§ (u,v),
GiIk(}l, v) € R, and for any u, v, fi, U, there are positive constants Gz‘k , Gﬁcl, GZIkR, Gilkl, such that
the following inequalities hold

|Gik(n,v) = G (7, 7)
|Gik(n,v) = Gie(, )

K — )+ GRllv — 7,

| <
| < \u il + Gif|v — ).

Under Assumptions 1 and 2, system (1) can be expressed as follows:

Drx;(t) = —cRoi(t) + clyi(t +Za ),y Zﬁz]f] +Zb
< R (3t = ),y (£ — -»—iwﬂum—qmwu—m»+Aawﬂwm,
= j=1
+Vm (0, 0) + L [ W), y5(5))ds @
j=1 E=I(t)
Zd/} B (31 (5),(5) s + 1R (1), £ € (b, 1,
Axi(te) = xi(t]) — xi(t) = G (xi(te)),
ﬂ%u—wz+2%@ Am+iﬁmmmwm+i%
j= j=
x B (xi(t — 7)), yj )+ Z bR (xj(t — ), yi(t — 1)) + /\ aihf (x;(8),
j=1
)

+Zd/lwau%@m

yi(s))ds + Ii(t), t € (fr1, tl,

According to the memristor feature, denote

&, lu()] < T,
x(t)] > T,

aj; (xi(t)) = {

Z]’

z[ . ) 27 ' '
A (1) :{ p WOIST {b,], i)l < T

ajj, |yi(D] > T !
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Dhxi(t) €

Ay;(ty)

where T;>0is the switching jump, ajj, djj, bl], bl] al] l], blI]{ and bI are constants related to
memristances.

Let co[m, n] represent the convex closure which is generated by m and n. Then, we
will get

Q

a8, ()] < T b, |xi(t)] < T
colaf(xi(t)] = { co{df, iR}, |xi(t)] =Ty, cobR(xi(t))] = cofBR, B8}, |xi(t) = T3,
ik, %t > T bR, |xi(H)] > Ty
i, (0] < T, bl (1) < T,
colafi(yi(t))] = S cofdl, a}, [yi(H)| = T;, colbl(yi()] = < co{bl,bL}, |yi(H)| =T;.
ik, )] > T, B, lyit)] > T;

Since the right-hand sides of the systems (2) and (3) are discontinuous, its solutions cannot
be represented by traditional methods. Thus, the solution of the following system should be
considered in the sense of Filippov [29]. In the light of differential inclusion and set-valued
mappings theory, we deduce

%L(+wl+2w”% R (x(0) i DI (1),
+Za)U% uﬁ—qme—w)—ia%ﬁ%UHWhﬂ—qh
L
)+ A ahf ),y +V%J O+ Ll [ i),
j=1 =1 *)

—ctyi(t) = cjxi(t) + ) colaj;(xi (1)1 (x;( +ZCO 5 (i (D)If (% (D),

)+ i colB;(yi ()15 (xj (¢ = 77), y;(t = 7)) + ; colB (yi ()] (xj(t — 77),

=

ylt=7)+ A ijh}* (x;(8), y; (1)) + V Bijh (xj(£),y;(D)) + Zd / o 1)
j=1

j=1

%+zd/ll#<>%mwwww»ew4»@

= yi(t)) —vity) = Gie(zi(t)),

or af-} € cola 5(xl(t))] al. € cola 11]( ()], b}} € co[Ef}(yi(t))] bI € colb 1](%( ))] exist, such
that
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Drx;(t) = —cRai(t) + clyi( )+iaf}ff(x] Zauf] xj(t +Zb
X B (x(t = 1), y;(t — 7)) Zﬁ%} —7),yi(t— 1)) +Aa”
VB 00+ T /H B (x5), y(5) s @
—):d [ O s+ IR, 1 (i,
M) = ) 5(67) = CRGx )

Dry;(t) = —cRyi(t) — clxi(t) + Zal]f] xj(t )+ Za”f] xi(t),y;(t) + ilbf]
P
Xh]R(x]( ) ]/] t_T +Zb1] j T]),]/](t—’f]))—i-/\10(1]]’1;{(3(](1'),
A
0)+ VB 00) + / OO ®
j=1
PR [ W)y (s)ds (), £ (5, 1]
j=1 (

Ayi(t) = yi(t§) =ity ) = Gie(zi(t),

wherealj—a +1a bij —bR—i—lbI herea] bR bI €R.

To study the umform stablhty of fractlonal—order fuzzy impulsive complex-valued
neural networks, critical definitions and lemmas are presented as follows.

Definition 1 ([30]). The fractional integral (Riemann—Liouville integral) IZ)  With fractional order
v € R of function ¢(t) is defined as

00 = s [ (=07 (0100,

where T (+) is the gamma function.

Definition 2 ([30]). The Caputo derivative of fractional order -y of function ¢(t) is defined as

: Ot
Pttt = T J, G gy

wherem —1<y<meZ".

Definition 3. The solution of system (1) is said to be uniformly stable (6 is independent of to) if
for any € > 0, there exists § = 5(t, €) such that t > ty > 0, for any two solutions z'(t), z(t) of
system (1) with different initial conditions, it holds that ||z’ — z||« < € forall t > to > 0, whenever

o' — ol <é.
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—C; xz( )+C]/1( )+Z] laR ]R(x() ())+Z] 1b’1]{h5( (

= al f1(x1(5),y;(5)) — £ L (g (s — ), (s —

Lemma 1 ([31]). Suppose that u, v, fi, ¥ € R, h; is continuous function, j = 1,2, ... Then, one
has as

[e.0)

Z “1]||h Hv (ﬁ,f/)\,

A wihi(u,
j=1

1/) — /\ ocl]h](ﬁ, 7)) <
j=1

=
<1
S—

\/ Bijhi(u,v \/ﬁz/ (7,7) <Z|ﬁz;|\h (wv) = hi(g,
j=1

Lemma 2 ([32] Contraction Mapping Principle). Let A be a contraction operator on a complete
metric space X; then, there is a unique point x € X that satisfies A(x) = x.

Lemma 3. If x;(t) and y;(t) are the solutions of system (4) and system (5), respectively, then func-
tions x;(t), y;(t) are the solutions of the following fractional-order integral differential equations:

Z;(0) + r(l/\) /t:(t — s))‘*lgR(s)ds, t € [to, t1],

xi(t) = Z /tm1

+ Z G{]{'(x,‘(f]‘), yi(t]‘)),t € (b, teeal, k=1,2,...,
=1

5 1gR s )ds—l—r(l/\)/t:(t—s)/\lgR(s)ds

and
ORI O )

yi(t) = { mO) + ﬁ > / " (= )M g (s)ds + 1"(1)\) /t:(t — )¢ (s)ds

m]tml

+2G ))tE(tk,tk+1] k=1,2,...,
where
—7)¥i(s = 1))

7)) + A wighyt (xj(5), yj(5))

V) BhR (x5(5),y(5)) + £ dR [, R (x;(0), ;(0))ds
=Xy dl 5y i (xj(0),y;(0))d0 + If (),

—cRyi(s) — cfxi(s) + 52y afl £ (xj(5), yj(s)) + L2y bR (xi(s — 1), yj(s — 7))

+ L2 al £ (x5(5), y(5)) + 2 bR (xi(s — 1), (s — 1)) + AfZq aijh (x;(5), 4 (s))
VL Bl (x5(s),yy(5)) + K2 dR 2, 1 x;(0),;(6))do

FL2q Al 5 BR (xi(6),y;(8))d6 + I (s).

Remark 1. Since the proof of Lemma 3 is similar to the proof of Lemma 2 in [28], we omit it here.
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3. Main Results

In this section, first, we introduce some notations:

&1i = sup{[af|FFRY, & = SUP{W [FRTY, Gai = SUP{|%|FIR} Cai = SUP{|%|FH}
jeJ
= SUPW’ [HFRY, vai = SUP{|b [HR'Y, i =Sup{|b [H®Y, i = Sup{|b 1=},
p1i = SUP{M [HRRY, 00 = SUP{\“ [HY'Y, r0i = SUP{U%\HRR} Ki = SuP{|ﬂz]|HRI}
—SUP{|d [HFRY, v —Sup{|d [HR'Y, v —Sup{|d [H®}, vy —Sup{|d 1=},
&= SUP{W [E/RY, & = SuP{|a E1Y, & = SUP{|ﬂ1]|FRR} Cyi = SuPﬂ%\FRI}
Vi = Sup{|bij|HjIR}r Vai = SUP{\biﬂH}I}f Vai = SuP{|bij|H}{R}/ Vai = SUP{|bij|HFI}/
j€] j€l j€] j€l
;o IRy o _ . _ IRy ./ _ 11
P1i = SUP{|“z‘j|Hj b2 = SUP{|"‘1‘]‘|H]' boxy = SUP{|/3ij|Hj }oKyi = SUP{|/31‘]‘|H]‘ %
j€J IS j€J j€J

vy = sup{|dif|H}, vy; = sup{|dff|H["}, vh; = sup{|dj;|H}, vl = sup{|djj|H"}.
jel jel jel jel

Assumption 3. For i=1,2, ..., the following conditions hold,

i=1

i 4 oo
Z(Gﬁcl + GZIIQCR) < oo, Z 2(6]1 + Yji +Pji + Kji + Uji) < oo,
j=1i=1

ZZ i+ 7+ 0+ + vly) < oo
j=1i=1

3.1. Uniform Stability
Theorem 1. Under Assumptions 1-3, system (1) is uniformly stable, if goqa > q1q3 holds, where

(bt t—t )t
=Y A+1§) +(r(A+k)1) < oo

[ee) (o]
f o= Y GR 4 (—cf + Y (&ai + Cai + vai + vai + p2i + K0i + V2 + vai) ),
-1 i—1
o0
= 1- Z GRR + (R = Y (&1i + Eai + 110 + 731 + p1i + %11 + 1 4+ v3) 1),
i—1 i-1
1 I, v
3 = )G —c; + ) (8o + Gy + v+ v+ 05 Ky + VY U4 ),
i—1 i—1
o ~IR R
qa = 1=Y Gyt + (¢t = Y (& + & + 71 + 73 + 0 +x; + vl; +v5) ).
i=1 i=1

Proof. Let z(t) = x(t) +iy(t) and 2/(t) = x'(t) +iy/(t), x # ¥’ and y # y'. Suppose
that z(t) = [z1(t),za(t),...]T and 2/ (t) = [ (t), Z}(t),. ]T are two solutions of system (1),
equipped with different initial conditions ¢(t) = (¢ ) +in(t) and @(t) = J'(t) +in'(t),
where {(t), 7(t), I'(t), #'(t) € C([-7,0], I'), z(0") = z(0) and Z/(0") = 2/(0). For
t € [to, t1], we have
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IN

IN

INA

IN

(6) = xi(0)
240 = GO+ w57 [ (= ()

240 =80+ g [ (=9 ga(e)ds
1

240) = 80+ g [ (=9 =RIaf9) = 566)| + cllls) o))

§1i+§3i+P1i+K1i/ g1 _

+ T ; Z\x x;(s)|ds
Czi+§4i+P2i+K4i/ M1

+ T0A) s E\y] s)|ds
’71i+’73i/ A 1

+71"(/\) ; 2|x xj(s — 7j)|ds

+’)’2i+’)’4i/ s)A- 1Z|y (s — 7)) — (s — ) |ds

T(/\) fo J

+vzfa§41/ (f— )M 12/ Iy] — ;(0)|dds

640 ~ GiO)] + {0 e al() — (6 + el — (0]

) e ol + O s e
_ A
+m(Czi+C4i+Pzi+K2i)||y/_y||1 (t to )) (v2i + 74 Iy = ylloo

t1—tp

0 (gl + vs) Iy’ = il + S (gl + o)) [ = x|

< 1GH0) — Gi(0)] + Bt (—eRIxi() — xi(t) | + el (1) — (1))

+ (h—t)*

+(Goi + Cai + Y2i + vai + 021 + 25 + Voil + val) ||y — ylleo],

where

T(A+1) (&1 + G3i + 710 + 730 + p1i + K1i + vl + vzl || X — x|eo

(6)
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g1s) = —cRlxl(s) — x(s)] + cllyi(s) — vils)| + K2 [aBl R (x(5), v} (s)) — FR(xj(s), y,(5))]
T b1 5), ) ()) — £ (1), w5 (6)) | + 52 [DRIHR(xl(s — 1), (s — )

—h{ (xj(s — 1), y(s — ) + T2y bR (x}(s — 1), yj(s — 7)) — hj(x;(s — T7),

yi(s = )| + I A2 aihf (xi(s), yi(s)) — A2y 1 (x5(5), ()] + | ViZq Bijhf (x;(s), ?
() = V2 B (x;(5), ()| + K2 AR 21 IR (21(6), 4(6)) — R (x,(6),
yi(0))lds + X52q df; [3 ) 1] (x}(0),45(0)) — hi(x;(6),y;(6))lde,
and
g2(5) = —cflxi(s) = xi(s)] + cflyi(s) — i) + L2y aff| (ERR |x](s) — x;(s)]
+EMyH(s) = yi(s)]) + L5y lafil (F/R [ (s) — xj(s)] + M lyi(s) — y;(s)])
+ 5520 [BE[(HRR (s — 1) — xj(s — )| + HN [yi(s — 77) — y;(s — 7))
+ 172 LI (HR (s = 1) = xi(s — 5) | + H|yi(s — ) — (s — 7)) o

I gl (HER[(s) — x1(5)] + HEy!(s) — y;(s)])
T 1B (HER[x)(s) — xi(s)] + HRJy/(s) — y(s)])
T R| S (HERIX(6) — x,(0)] + HEI]y!(6) — y;(0)])d6

+ L2 1] i) (R |x5(0) — x;(0)| + H[T|y}(8) — y;(0)])do.

Fort € (t, tyy1],k=1,2,..., we deduce
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IN

IN

IN

IN

|xi(£) — xi(t)]

10) = GO) |+ iy T Sy (b = )" g1 (5)ds + iy [ (8= 9) g (5)es
FERAIGH(xi(h), wi6)) — GF (xiCh), (1))

10) = GO) |+ iy T Sy (b = )2 ()ds + iy [l (£ = ) T gals)es
FERICKNxi () — i) = GEyi(t7) — it

00) = GO) |+ iy T Sy (b =)' (=eF () = xi(5) + €llf(s) — yi(o)])ds
+7§1i+§3fa’;1i+xli Yn=1 fttmfl(l‘m —s)M ds||x’ — x|y

R T (b = ) sy — vl

I e fi (b = 9 S Y = xleo o+ T S (b = 5V 5]y e

U11+U31 tm
o .

ml

tm — )M Uds||x — x||q + 2itbs f

ot o (b

17 Jin (= )M (=cRIxi(s) = xi(s) | + ey (s) — yi(s)|)ds

it8sito1itx1 ot -
SR (¢ — )M L2 — x| yds

itCaito2i K4 [t -
lctbcprta [ ATy ||y ds

+71z+731 ft t—s)/\ Lds||x’ _x||00+721+74z ft A 1ds||y —Ylleo

Ui +044

R [, (8= )" ds|ly — ylh

+ U [ (f = )M — xads +

+ L2 [GER i (1) — xi(ty)| = GElyit)) — yi(ty)]

(t=t)*
T(A+1)

184(0) = 2i(0)| + (—cR (T Urrfnst)® 4 U2y (1) — i (1)

(tm tm ) (t tm
-t

RR
T(A+1) [Gik

yi()[] + + (G1i + 83 + 71i

tm b 1)
T(A+1)

+(c] (Zh= Dyi(t) —

_t\A
+ S5l — xlles

+93i + 01 + K15 + V1 + 03i) (To—1

b=ty 1)
+[G§<I + (Goi + Cai + v2i + Yvai + P21 + K2i + V2 + v4) | (T—q Tll))

t—t
+1(“(/\+k)1))

where g1 (s) and g»(s) are the same as previously defined.
According to (6) and (9), we obtain

— )M ds||y =yl

)
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IN

IN

[Ed IS
SUPye|_,00) Lzt {17 (£) — xi(£) [}
SUP; e[ —1,00) 2?11{|€f(f)*éz‘(f)|+( Ry )f’ill )|xi(t) — xi(t)]

+(cf Tt %) supy [¥i(£) = yi(#)[] + 1524 (GRR + Gui + Gai + 71 + 730 + pui

g+ 011+ 030) 37— ¥eo (Do it 4 L) oy (GRE+ &y + E

Y21 + Yai + 020 + K2i + V2i + 04i) |y — ylleo L=y (t"f(_ﬂﬁ)/\ + %t(;:k)l; )}
17" =2l = cfpllx" = xllo = cl plly = ylleo
+ X2 [GRR + (&1i + &30 + 710 + 73 + p1i + K1 + v1 + 03i) ] | ¥ — x| oo
+ 22 [GRU 4+ (22; + Cai + vai + ai + p2i + K2i + V2 + Vad) W] 1Y — Ylllco
Similarly, for the imaginary parts y’ and y, we deduce that
1y = yllos
= SUPyc|_q00) it { Vi (£) —yi(D)[}

IN

" =7l = cRully’ = ylloo + clpllx’ = x[|oo

+ X2 [GRR 4+ (1 + 85 + 04 + b+ 0 o + 0+ s [y — ylleo

+ L2 (Gl A+ (85 + i+ o + 1 + 0h; + Ky + U + 0 ) ] |1 — x| oo-

From (10) and (11), we can derive

(10)

(11)

2" = x|eo
/ RI

< {”C _§H+ —Cj +Z le +(521+§4:+72:+’Y4:+P21+K21+U21
Fog))ly —y|oo}/{1+c - z; GER (G + o + v+
1 4 v + vz u) },

and

1Y = ylleo

< Al =l +[=¢ +Z Gl + (&% + Tl + o + Yai + P + Kb + U

L) ]I — o} / {1+ R Z CGIR - (E+ B+ s Y+l

+; + vy + vg) )
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By combining with the above two inequalities, we conclude

! _ !/

||x/_xHoo < ”C g” +‘71||y 3/||oo, (12)
q2
and

! _ !

||]/_y||oo < H’? ’7||+’13||x xHOO, (13)

q4

where q1, 42, g3 and g4 are defined as in Theorem 1.
Substituting (13) into (12), we obtain

1/92
1—q193/9294

/

/
¥ —xllo < —DLBRBE o gy

T 1-q193/9204 =1l

7

For any € > 0, if we take ||’ — {|| < 45 and ||’ — 7| < g5, then we can deduce that

€
I =l < 3, (14)
VA1 - Ve
where 6, = 1-0193/9294 and &, = 1-q195/q294"
Similarly, by substituting (12) and (13), we derive
€
Iy —ylle < 3 (15)

_ _q3/929 _ 1/q
where ¢/ —¢I| < g5, 11’ — | < 5, 05 = P and &) = il

Considering (14) and (15), we conclude that for any € > 0, we have § =
such that,

€
max{d1,02,03,04}”

|z —z||lo < €, whence ||¢' — ¢| <6.

Therefore, system (1) is uniformly stable. The proof is completed. O

Remark 2. In [28], the authors considered uniform stability analysis of fractional-order complex-
valued neural networks with linear impulses and fixed time-delays in R". The authors obtained
the existence and uniqueness results by utilizing fixed-point theory, sufficient conditions for the
uniform stability of solutions for the networks. However, due to the combination of fractional
calculus and fuzzy logic, the fuzzy complex-valued neural networks have more complex dynamic
behavior, and the discussion of infinite-dimensional complex-valued neural networks with mixed
delay is more complicated.

3.2. Existence and Uniqueness

Theorem 2. Let 0 < A < 1, and let Assumptions 1 — 3 hold, then the system (1) has a unique
solution satisfying the initial condition, if the following condition holds:

0 < k = max{ky, kp} <1,

where

ky = Y52y GRI(—cl+ 52 1 (Goi+Eaitv2i+7aiH02i +K2i+H02i +04i) )
1= GRR+cRpu—y2 ) ((G1i+8sitritrsitoritri+vii+us) )1

(16)
ky = L521 Gl (—ef 38 (8 i+ Yy Py 15, 05, 04, )
1-Y32 Gt e =2 (81,85 1 H 7o i oy 05
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Proof. Let z(t) = x(t) +iy(t) and 2/(t) = x/(t) + iy'(t), x # x’ and y # y'. Suppose that
z(t) = [z1(t),z2(t),...]T and 2/ (t) = [z](t),Z}(t) ...]T are two solutions of system (1). First
of all, we construct an operator A : PC — PC as follows,

Amm>=a@+éw$ww“ﬂwwemm,
Ai(xi(t) = Z /t’"1 sV 1gR(s )ds+r(1A)/t(t—s))‘lgR(s)ds

+ Z Gf;(xi(fj), yi(t), t € (te, tial, k=1,2,...,
i=1

M) = w0+ g7 [ (= g0, £l 1],

Ai(yi(t)) = 77i(0)+1~(1}0 i /t'" (tm—s)/\1gI(S)ds+r(1/\)/t:(t—s))‘1g1(s)ds

m=1 bm—1
+ Z ij(xi(t]«), ]/i(tj))/ t e (t, tk-i—l}/ k=1,2,....
j=1

Next, we will show that A is a contraction mapping. For t € [ty, t;], in light of (6), we can

deduce
IAGH() ~ AG() )
< i [ -9 o,
< 00 (e te) — )]+ ) — )

+(&1i + &ai + 71 + v3i + p1i + K1i + V1 + U3 [¥) — x][oo
+(Eai + Cai + Yai + Yai + p2i + K2i + V2 + Vai) [V — Ylloo- (18)

For t € (t, tyi1],k=1,2,..., due to (9), we deduce

[A(xj(£)) = Alxi(1))]

< 1"(/\ 7 Lm=1 ftm . — )" 1gi(s)ds + ﬁ fti(t —s)"g1(s)ds
+Eal(GE (xi(4), yi()) = G (xi(t), vi(t))]
< (Zfil Gle{cR - R Zm 1 (b )f”.:_ll )|x ( ) (t)‘ + (Z:il G}]{{I + Cll (19)

X Yo=1 %”%( ) = yi()[] + (S1i + Cai + 710 + 730 + p1i
_ A
+x1i + v1; + U3 [ — x| Ky % + (82 + Cai + 72i

W]itnl* A
+74i + p2i + %2i + V2 + va) [IY = Ylleo Lo %

where g1(s) is defined by (7).
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Next, from (17) and (19), we can derive

[A(x") = A(x)]]eo (20)
= [silp )};{Ix§<t)—xi(t>|}

IN

ZG —cfu)||x" = x|l + Zsz—CVHy’—yHoo

Mg

+ (81 + 83 + y1i + v3i + 010 + K16 + V1 + vz X — x[|eo

I
—

Mz

(621 + (:41 + Yoi + Yai + 02i + 1 + Ui + U41)V”y - }/”00 (21)

I
—

Similarly, for the imaginary parts y" and y, we conclude that

IA(Y) = AW) e 22)
= sup ) {lvi(t) —wi(B)]}

te[—1,00) i=1
< (Zsz — Ry = ylleo + (L G+ clp) 12 — X0

i=1 i=1

+ Z(glz + C3l + 711 + '731 JrPlz + Klz + Ulz + U31)V‘|y yHOO

—_

Mz

(621 + (;(41 + '721 + 741 Jrp21 + K21 + v21 + U41)V‘|x - x||°°' (23)

From (20) and (22), we obtain

[A(x") = A(x)]o
(2524 GRI+ (—cl 4+ 521 (8o + Eai + vai + vai + p2i + Koi + 02 + vi) )] ||y — y||oo
1- 2;021 GZRR +C H— 21 1(611 + 83 + 718 + V3 + 01 + K15 + V15 + U3Z)V

and
[AY) = AW) e

[Efil GiIkI+(7CI+2701(€£1+§£}z+7/21+%llz+p/21+Kéz+vél+v4/lz)) ”lx 7x||°°
1-Y2 GI'IR+C D DR (ST SV e T o T o TR sk S P S P S

IN

Then, we can get

IA(Z) = A2)]leo IAG) = A [loo + IAY) = AY)lleo
k(llx" = xlloo + [y = yleo)

= Kl = zlles,

IN

where 0 < k < 1is defined by (16).

Consequently, the mapping A is a contraction mapping. It follows the Contraction
Mapping Principle; the mapping A has a unique fixed-point. That is, we can conclude
that the system (1) has a unique solution satisfying the initial condition. The proof is
accomplished. O

4. Numerical Example

Example 1. Consider the following two-dimensional fuzzy impulsive fractional-order complex-
value neural networks with random discrete delays and distributed delays:
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2 2
G Dizi(t) = —cizi(t) + Ziﬂkj(zi(f))fj(zj(f)) + Z%bij(zi(f))h (t—1)) + /\ w;ijhj(z
= ]:
2 2 ¢ (24)
FV BilyCey0) + Ly [ hy(ay(s))ds £ 1), £ (i, 1
j=1 j=1 -
Azi(ty) = zi(t)) — zi(ty ) = Ga(zi(te)),
where we suppose A =08, t=1=05 1 =-1—-i, L =3-2i,
2 —exp(—xj) 2—exp(—xj) . 1
() — L hi(z) = ,
fi(z)) 2 4 exp(—xj) i 2+exp( yj) (z) 2 4 exp(—xj) JrlZ—i—exp(—xj +3y;)
1
Gi(z) — 4 . i=1,2.
i) 2+exp(—xj+3y;)  3+exp(—y;) J
The memristive connective weights are given as follows:
0.1, |x1(1)] <1, —0.2, |x(t)] <1,
~R
a1 (x1(t)) = as(x-(t)) =
n(x () {0.2, I (£)] > 1, (2t =9 _g, xa(t)] > 1,
02, |x1(t)] <1, R 0.1, |x(t)] <1,
t)) = t)) =
0L, (1)l <1, 01, pa()] <1,
11 (x1(t)) = din(x- (1)) =
nn () {o.z, mol>1, 2O = os, > 1,
0.1, |y1(H)| <1, 0.25, |y2(8H)] <1,
t - t =
ay (y1(t)) {0.3, ()] > 1, iy (ya(t)) 02, lya(6)] > 1,
) 0.15, |x1(£)] <1, —0.02, |x(H)] <1,
() { 02, ()] >1, 2R2O)= 00 1nm > 1,
- 0.02, |x(H)] <1, - 0.15, |x2(t)] <1,
b ) = b H) =
2 () {0.03, mn)>1, 2R =000 o s
7 0L [y <1, —0.05, |y2(t)] <1,
b = bl
005, [l <1, (B <1,
by (1 (1)) = (y2(t)) =
- 008, () >1, 2V 2, [ya(t)] > 1
The network parameters are chosenasci = cy = —1+3i, djy =dip =dpy =dp =141, 91 =

a2 = app = agp = 0.01, B11 = 12 = Po1 = P22 = 0.02, Frgr = 0.5, Fr; = Fir = 0, Fyp
0.125, Hrg = 0.5, Hg; = 0, Hjg = 0.125, Hj; = 0.1, Grg = 0.125, Gg; = 0.1, Gig =
0, Gj; = 0.125.

Finally, we can obtain q1 =~ 0.56, q2 ~ 0.73, q3 ~ 0.76, q4 ~ 0.85, which satisfy q2qs4 >
q193. Thus, owing to Theorem 1, system (24) is uniformly stable.

5. Conclusions

In this work, we have considered a class of fractional-order fuzzy infinite dimensional
neural networks with time delays. We derived sufficient conditions for the uniform stability
of the above systems, which is a significant property for the differential systems. The
Lyapunov function method is a common method for solving the stability of neural networks.
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It should be pointed out that in order to reduce the possible conservatism, we need to
construct a more complex Lyapunov functional to test the high-dimensional linear matrix
inequality, and the computational complexity increases. This paper is based on the fixed-
point theory for analysis. An improved criterion for the uniform stability of the network
system has been established. Example 1 shows that the derived criteria are applicable to
the uniform stability of fractional-order fuzzy neural networks and can be used for the
generalization of the results in the existing literature. It should be mentioned that in real
life, many systems and natural processes are often subject to stochastic disturbances; thus,
the dynamical behavior of stochastic neural networks has attracted much attention in view
of its wide range of applications. Finding more practical and stochastic models of complex
FOCVNNSs and applying FOCVNNS in secure communication and image encryption will
be a part of our future work. To sum up, the fractional-order complex-valued neural
networks still have many problems worthy of further study.
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