
����������
�������

Citation: Arif, M.; Barukab, O.M.;

Afzal Khan, S.; Abbas, M. The Sharp

Bounds of Hankel Determinants for

the Families of Three-Leaf-Type

Analytic Functions. Fractal Fract.

2022, 6, 291. https://doi.org/

10.3390/fractalfract6060291

Academic Editor: Mahamadi Warma

Received: 23 April 2022

Accepted: 24 May 2022

Published: 26 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fractal and fractional

Article

The Sharp Bounds of Hankel Determinants for the Families of
Three-Leaf-Type Analytic Functions

Muhammad Arif 1,* , Omar Mohammed Barukab 2 , Sher Afzal Khan 1 and Muhammad Abbas 1

1 Faculty of Physical and Numerical Sciences, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan;
sher.afzal@awkum.edu.pk (S.A.K.); muhammad_abbas@awkum.edu.pk (M.A.)

2 Faculty of Computing and Information Technology, King Abdulaziz University, P.O. Box 411,
Jeddah 21911, Saudi Arabia; obarukab@kau.edu.sa

* Correspondence: marifmaths@awkum.edu.pk

Abstract: The theory of univalent functions has shown strong significance in the field of mathematics.
It is such a vast and fully applied topic that its applications exist in nearly every field of applied
sciences such as nonlinear integrable system theory, fluid dynamics, modern mathematical physics,
the theory of partial differential equations, engineering, and electronics. In our present investigation,
two subfamilies of starlike and bounded turning functions associated with a three-leaf-shaped domain
were considered. These classes are denoted by BT 3l and S∗3l , respectively. For the class BT 3l , we
study various coefficient type problems such as the first four initial coefficients, the Fekete–Szegö
and Zalcman type inequalities and the third-order Hankel determinant. Furthermore, the existing
third-order Hankel determinant bounds for the second class will be improved here. All the results
that we are going to prove are sharp.

Keywords: analytic (or holomorphic) functions; univalent functions; subordination principle; Schwarz
function; coefficient bounds; Hankel determinant

1. Introduction, Definitions and Preliminaries

For a better understanding of the work studied in this article, we have to provide
certain elementary geometric function theory literature. In this regard, we first express the
classes of normalized analytic and univalent functions by the letters A and S , respectively.
These classes are defined in the following set-builder form by

A :=

{
f : f ∈ H(E) and f (z) =

∞

∑
j=1

ajzj (a1 = 1)

}
(1)

and
S :={ f : f ∈ A and f is univalent in E},

where H(E) stands for the set of analytic functions in the region E = {z ∈ C : |z| < 1}.
The set S was developed by Köebe [1] in 1907, and it has become a key component of
advanced study in this subject. Later in 1916, Bieberbach [2] conjectured the coefficient
estimate for the class S and proved it for the second coefficient. The proof of this conjecture
attracted researchers, whose work developed this field immensely. In 1985, de-Branges [3]
proved this famous conjecture. From 1916 to 1985, many of the world’s most distinguished
scholars sought to prove or disprove this claim. As a result, they investigated a number
of subfamilies of the class S of univalent functions that are associated with various image
domains. The most fundamental and significant subclasses of the set S are the families of
starlike and convex functions, represented by S∗ and C, respectively.

It is worth noting that Aleman and Constantin [4] recently gave a beautiful interaction
between univalent function theory and fluid dynamics. In fact, they demonstrated a
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simple method for how to use a univalent harmonic map to obtain explicit solutions of
incompressible two-dimensional Euler equations.

For the given functions g1, g2 ∈ A, we say g1 ≺ g2, if an analytic function v exists in
E with the restrictions v(0) = 0 and |v(z)| < 1 such that g1(z) = g2(v(z)). If g2 in E is
univalent, then we have the following relationship given by

g1(z) ≺ g2(z) (z ∈ E) ⇐⇒ g1(E) ⊂ g2(E) with g1(0) = g2(0).

In 1992, Ma and Minda [5] presented a unified version of the class S∗(ψ) using
subordination terminology. They introduce the S∗(ψ) defined by

S∗(ψ) :=
{

f ∈ S :
z f ′(z)

f (z)
≺ ψ(z) (z ∈ E)

}
, (2)

where ψ is a univalent function with ψ′(0) > 0 and <ψ > 0. In addition, the region ψ(E)
is star-shaped about the point ψ(0) = 1 and is symmetric along the real line axis. They
focused on distortion, growth, and covering theorems, among other interesting properties
of functions in this class. Later in 2007, Rosihan et al. [6] determined the sharp bounds of
problems involving coefficients for a generalized class of Ma-Minda type starlike functions.
The class S∗(ψ) unifies various sub-families of starlike functions, which are attained by an
appropriate choice of ψ. For instance:

(i). By choosing the function

ψ(z) =
1 +Mz
1 +N z

(M ∈ C, − 1 5 N 5 0, M 6= N ),

we achieve the class

S∗[M,N ] ≡ S∗
(

1 +Mz
1 +N z

)
which was studied in [7]. The above described class, with the limitation −1 ≤ N <
M ≤ 1, represents the class of Janowski starlike functions investigated in [8]. The
special case by takingM = 1− 2ξ1 and N = −1 with 0 ≤ ξ1 < 1 leads to the class
S∗(ξ1) ≡ S∗[1− 2ξ1,−1] of starlike function of order ξ1.

(ii). The below listed class

SS∗(ξ2) ≡ S∗(ψ(z)), with ψ(z) =
(

1 + z
1− z

)ξ2

,

for 0 < ξ2 5 1 was introduced as the collection of strongly starlike functions of order
ξ2 investigated in [9].

(iii). In [10], Sharma et al. discussed the class S∗car defined by

S∗car := S∗(ψ(z))
(

ψ(z) = 1 +
4
3

z +
2
3

z2
)

.

Geometrically, it is a subclass of functions f ∈ A with

Q(z) =
z f ′(z)

f (z)

contained in the cardioid domain given by

(9x2 + 9y2 − 18x + 5)2 − 16(9x2 + 9y2 − 6x + 1) = 0.
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(iv). By setting ψ(z) = 1 + sin z, we attain the class S∗(ψ(z)) ≡ S∗sin of starlike functions
connected with the eight-shaped domain which was introduced by Cho et al. [11].
Moreover, the below mentioned classes

S∗cos ≡ S∗(cos z) & S∗cosh ≡ S
∗(cosh z),

were analyzed, respectively, by Raza and Bano [12] and Alotaibi et al. [13].
(v). By picking ψ(z) = 1 + tanh z, we obtain the class S∗tanh

S∗tanh := S∗(1 + tanh z),

which was established by Ullah et al. [14]. Moreover, they examined the radii re-
sults for the class S∗tanh. Further, in [15] the authors computed third-order Hankel
determinant sharp bounds for this class.

Finding bounds for the function coefficients in a given collection has been one of the
most fundamental problems in geometric function theory since it impacts geometric fea-
tures. The constraint on the second coefficient, for example, provides the growth and distor-
tion features. The general form of the Hankel determinant ∆q,n( f ) (with n, q ∈ N = {1, 2, . . .})
for the function f ∈ S was explored by Pommerenke [16,17] in the form of

∆q,n( f ) :=

∣∣∣∣∣∣∣∣∣
an an+1 . . . an+q−1
an+1 an+2 . . . an+q
...

... . . .
...

an+q−1 an+q . . . an+2q−2

∣∣∣∣∣∣∣∣∣.
In fact, the determinants listed below are referred to as first-, second-, and third-order

Hankel determinants, respectively.

∆2,1( f ) = a3 − a2
2, (3)

∆2,2( f ) = a2a4 − a2
3, (4)

∆3,1( f ) = 2a2a3a4 − a3
3 − a2

4 + a3a5 − a2
2a5. (5)

Only a few articles on the Hankel determinant for the class S can be found in the
literature. The earliest recorded sharp inequality for f ∈ S is stated by

|∆2,n( f )| 5 |ν|
√

n, ν is a constant.

This outcome is due to Hayman [18]. Likewise, for the same set S , the following
bounds were derived in [19]:

|∆2,2( f )| ≤ ν

(
1 ≤ ν 5

11
3

)
,

and

|∆3,1( f )| ≤ ν

(
4
9
5 ν ≤ 32 +

√
285

15

)
.

The problem of determining the sharp inequalities of Hankel determinants for a certain
set of functions attracted the minds of many experts. Janteng et al. [20,21] computed the
sharp bound of |∆2,2( f )| for the S sub-families C, S∗ and BT , where C and BT are the
sets of convex and bounded turning functions. These results are based on estimations
provided by

|∆2,2( f )| ≤


1
8 , for f ∈ C,
1, for f ∈ S∗,
4
9 , for f ∈ BT .
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For the following two families S∗(ξ1) (0 ≤ ξ1 < 1), and SS∗(ξ2) (0 < ξ2 ≤ 1), the
experts [22,23] obtained that |∆2,2( f )| is bounded by (1− ξ1)

2 and ξ2
2, respectively. This

problem was also investigated for different families of bi-univalent functions in [24–29].
The formulae in (3)–(5) make it quite evident that calculating the bound for |∆3,1( f )|

is significantly more difficult than calculating the bound for |∆2,2( f )|. Babalola [30] was
the first mathematician who studied third-order Hankel determinant for the C, S∗ and
BT families. Though after the Babalola’s article, several papers appeared on obtaining the
bounds of the determinant |∆3,1( f )| for various subclasses of analytic functions. However,
Zaprawa’s article [31] gained the attention of the readers in which he enhanced Babalola’s
conclusions by employing a new approach to demonstrate that

|∆3,1( f )| ≤


49

540 , for f ∈ C,
1, for f ∈ S∗,
41
60 , for f ∈ BT .

In addition, he points out that such bounds are not sharp. Later, in 2018, Kwon et al. [32] en-
hanced the Zaprawa inequality for f ∈ S∗ by achieving |∆3,1( f )| ≤ 8

9 , and Zaprawa et al. [33]
polished this bound even further in 2021 by proving that |∆3,1( f )| ≤ 5

9 for f ∈ S∗. Moreover,
for q-starlike type functions classes, such problems were determined in [34]. Furthermore,
the non-sharp bounds of this determinant for the sets S∗sin and S∗car were also computed in
the articles [35,36], respectively. They achieved

|∆3,1( f )| ≤
{

0.51856, for f ∈ S∗sin,
1.1989, for f ∈ S∗car.

The sharp bounds of the determinant have been sought by many experts, but none
have succeeded. Eventually, in 2018, Kowalczyk et al. [37] and Lecko et al. [38] achieved
the following sharp bounds of |∆3,1( f )| for the sets C and S∗

(
1
2

)
:

|∆3,1( f )| ≤
{ 4

135 , for f ∈ C,
1
9 , for f ∈ S∗

(
1
2

)
.

Barukab et al. [39], in the year 2021, computed the sharp bounds of |∆3,1( f )| for
functions of bounded turning set related with the petal-shaped domain. Later at the end
of 2021, Ullah et al. [15] and Wang et al. [40] contributed the following sharp bounds of
this determinant:

|∆3,1( f )| ≤
{ 1

16 , for f ∈ BT L,
1
9 , for f ∈ S∗tanh,

where the family BT L is given by

BT L =
{

f ∈ A : f ′(z) ≺
√

1 + z (z ∈ E)
}

.

The interested readers can look at the work of Srivastava et al. [41] for further con-
tributions in this area. They successfully obtained the bounds of the fourth-order Hankel
determinant for various analytic and univalent functions.

In [42], Gandhi introduced a subclass of starlike functions defined by

S∗3l :=
{

f ∈ S :
z f ′(z)

f (z)
≺ 1 +

4
5

z +
1
5

z4 (z ∈ E)
}

.
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For functions belonging to this class, it means that z f ′(z)
f (z) lie in a three-leaf-shaped

region in the right-half plane. From the definition of the family S∗3l , the authors [42]
deduced that:

f ∈ S∗3l ⇔ f (z) = z exp

 z∫
0

u(t)− 1
t

dt

, (6)

for some u(z) ≺ u0(z). By substituting u(z) = u0(z) in (6), we acquire the function

f0(z) = z exp
(∫ z

0

(
4
5
+

1
5

t3
)

dt
)
= z +

4
5

z2 + · · · . (7)

Similar to the definition of S∗3l , we now define a new subfamily of bounded turning
functions by the following set builder notation:

BT 3l :=
{

f : f ∈ A and f ′(z) ≺ 1 +
4
5

z +
1
5

z4 (z ∈ E)
}

. (8)

For g(z) = z, it can be noted that BT 3l is a subclass of functions f ∈ S satisfying
the condition

z f ′(z)
g(z)

≺ 1 +
4
5

z +
1
5

z4 (z ∈ E).

In [43], Shi et al. gave some coefficient estimates on functions belonging to the class S∗3l .
However, the bound |∆3,1( f )| ≤ 242

1125 that they obtained for the third Hankel determinant
is not sharp. In the current paper, we aim to prove some sharp bounds on the coefficient
problems associated with S∗3l and BT 3l using a new method. The main results are organized
as follows. The first part ais coefficient problems connected with the newly defined subclass
BT 3l of bounded turning functions. In the second part, we give some sharp bounds of third
Hankel determinant for the functions in the class S∗3l which improve the known results.

2. A Set of Lemmas

Before stating the results that are applied in the main contributions, we define the
class P in terms of a set-builder notation:

P =

{
q ∈ A : q(z) ≺ 1 + z

1− z
(z ∈ E)

}
,

where the function q has the below series form:

q(z) = 1 +
∞

∑
n=1

cnzn (z ∈ E). (9)

The subsequent Lemma is essential for the proofs of our main findings. It includes the
well-known c2 formula [44], the c3 formula credited to Libera and Złotkiewicz [45], and the
c4 formula proven in [46].

Lemma 1. Let q ∈ P be in the form of (9). Then, for x, σ, ρ ∈ E we have

2c2 = c2
1 + x

(
4− c2

1

)
, (10)

4c3 = c3
1 + 2

(
4− c2

1

)
c1x− c1

(
4− c2

1

)
x2 + 2

(
4− c2

1

)(
1− |x|2

)
σ, (11)

8c4 = c4
1 + (4− c2

1)x
[
c2

1

(
x2 − 3x + 3

)
+ 4x

]
− 4(4− c2

1)(1− |x|
2)[

c(x− 1)σ + xσ2 − (1− |σ|2)ρ
]
. (12)
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Lemma 2. If q ∈ P has the form of (9), then

|cn| ≤ 2 (n ≥ 1). (13)

and

|cn+k − µcnck| ≤ 2 max(1, |2µ− 1|) =
{

2 f or 0 5 µ 5 1;
2|2µ− 1| otherwise.

. (14)

Moreover, if B ∈ [0, 1] with B(2B− 1) ≤ D ≤ B, we have∣∣∣c3 − 2Bc1c2 + Dc3
1

∣∣∣ ≤ 2. (15)

The inequalities (13)–(15) in the last Lemma are taken from [44,47] and [35,36],
respectively.

Lemma 3 ([48]). Let α, β, γ and a satisfy the inequalities 0 < α < 1, 0 < a < 1 and

8a(1− a)
(
(αβ− 2γ)2 + (α(a + α)− β)2

)
+ α(1− α)(β− 2aα)2 5 4aα2(1− α)2(1− a). (16)

If q ∈ P is of the form (9), then∣∣∣∣γc4
1 + ac2

2 + 2αc1c3 −
3
2

βc2
1c2 − c4

∣∣∣∣ ≤ 2.

3. Coefficient Inequalities and Second Hankel Determinant for the Function
Class BT3l

Theorem 1. If f ∈ BT 3l has the series expansion (1), then

|a2| ≤
2
5

, (17)

|a3| ≤
4

15
, (18)

|a4| ≤
1
5

, (19)

|a5| ≤
4

25
. (20)

These bounds are sharp with the extremal functions given by

f1(z) =
∫ z

0

(
1 +

4
5
(t) +

1
5

(
t4
))

dt = z +
2
5

z2 +
1
25

z5,

f2(z) =
∫ z

0

(
1 +

4
5

(
t2
)
+

1
5

(
t8
))

dt = z +
4

15
z3 +

1
45

z9,

f3(z) =
∫ z

0

(
1 +

4
5

(
t3
)
+

1
5

(
t12
))

dt = z +
1
5

z4 +
1

65
z13,

f4(z) =
∫ z

0

(
1 +

4
5

(
t4
)
+

1
5

(
t16
))

dt = z +
4

25
z5 +

1
85

z17.

Proof. Let f ∈ BT 3l . Then from the definition, there exists a Schwarz function ω such that

f ′(z) = 1 +
4
5

ω(z) +
1
5
(ω(z))4, (z ∈ E).

Suppose that p ∈ P be described in terms of the Schwarz function ω as

p(z) =
1 + ω(z)
1−ω(z)

= 1 + c1z + c2z2 + c3z3 + · · · . (21)
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Equivalently, we have

ω(z) =
p(z)− 1
p(z) + 1

=
c1z + c2z2 + c3z3 + c4z4 + · · ·

2 + c1z + c2z2 + c3z3 + c4z4 + · · · . (22)

From (1), we obtain

f ′(z) = 1 + 2a2z + 3a3z2 + 4a4z3 + 5a5z4 + · · · . (23)

Using the series expansion of (22), we obtain

1 +
4
5

ω(z) +
1
5

ω(z)4 = 1 +
(

2
5

c1

)
z +

(
2
5

c2 −
1
5

c2
1

)
z2 +

(
1

10
c3

1 −
2
5

c1c2 +
2
5

c3

)
z3

+

(
− 3

80
c4

1 +
3

10
c2

1c2 −
1
5

c2
2 −

2
5

c1c3 +
2
5

c4

)
z4 + · · · . (24)

Comparing (23) and (24), we find that

a2 =
1
5

c1, (25)

a3 =
1
3

(
2
5

c2 −
1
5

c2
1

)
, (26)

a4 =
1
4

(
1

10
c3

1 −
2
5

c1c2 +
2
5

c3

)
, (27)

a5 =
1
5

(
− 3

80
c4

1 +
3

10
c2

1c2 −
1
5

c2
2 −

2
5

c1c3 +
2
5

c4

)
. (28)

The inequalities on a2, a3 and a4 follow directly by using Lemma 2. For a5, we can
rewrite (28) as

a5 = − 2
25

(
3

32
c4

1 +

(
1
2

)
c2

2 + 2
(

1
2

)
c1c3 −

3
2

(
1
2

)
c2

1c2 − c4

)
.

= − 2
25

(
γc4

1 + ac2
2 + 2αc1c3 −

3
2

βc2
1c2 − c4

)
, (29)

where
γ =

3
32

, a =
1
2

, α =
1
2

, β =
1
2

.

It can be easily verified that 0 < α < 1, 0 < a < 1 and

8a(1− a)
(
(αβ− 2γ)2 + (α(a + α)− β)2

)
+ α(1− α)(β− 2aα)2 ≤ 4aα2(1− α)2(1− a).

Therefore, from Lemma 3 we have

|a5| ≤
4
25

.

The proof of Theorem 1 is thus completed.

Theorem 2. Let γ ∈ C and f ∈ BT 3l be the form of (1). Then the sharp bound of the Fekete–Szegö
inequality is ∣∣∣a3 − γa2

2

∣∣∣ ≤ max
{

4
15

,
12
75
|γ|
}

.
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Proof. By employing (25) and (26), we have∣∣∣a3 − γa2
2

∣∣∣ = ∣∣∣∣ 2
15

c2 −
1
15

c2
1 − γ

1
25

c2
1

∣∣∣∣.
An application of Lemma 2 leads to the desired result. The inequality is sharp with

the extremal function given by

f2(z) =
∫ z

0

(
1 +

4
5

(
t2
)
+

1
5

(
t8
))

dt = z +
4

15
z3 +

1
45

z9.

Theorem 3. If f ∈ BT 3l has the form (1), then

|a2a3 − a4| ≤
1
5

.

This result is sharp.

Proof. Using (25)–(27), we have

|a2a3 − a4| =
1

10

∣∣∣∣c3 − 2
(

19
30

)
c1c2 +

23
60

c3
1

∣∣∣∣.
Let B = 19

30 and D = 23
60 . It can seen that 0 ≤ B 5 1, B ≥ D and

B(2B− 1) =
38

225
≤ D =

23
60

.

Applying Lemma 2, we obtain the inequality in Theorem 3. This result is sharp with
the extremal function given by

f3(z) =
∫ z

0

(
1 +

4
5

(
t3
)
+

1
5

(
t12
))

dt = z +
1
5

z4 +
1

65
z13.

The second-order Hankel determinant ∆2,2( f ) for f ∈ BT 3l will be estimated next.

Theorem 4. If f ∈ BT 3l , then

|∆2,2( f )| =
∣∣∣a2a4 − a2

3

∣∣∣ ≤ 16
225

.

The result is sharp.

Proof. By the virtue of (25)–(27), we have

∆2,2( f ) =
1

1800
c4

1 −
4

225
c2

2 +
1

50
c1c3 −

1
450

c2
1c2.

Using (10) and (11) to express c2 and c3 in terms of c1 = c and x, σ in E, we obtain

|∆2,2( f )| =
∣∣∣∣− 1

200
c2
(

4− c2
)

x2 − 1
225

(
4− c2

)2
x2 +

1
100

c
(

4− c2
)(

1− |x|2
)

σ

∣∣∣∣.
Applying the triangle inequality and using |x| = b, |σ| ≤ 1 , we have

|∆2,2( f )| ≤ 1
200

c2
(

4− c2
)

b2 +
1

225

(
4− c2

)2
b2 +

1
100

c
(

4− c2
)(

1− b2
)

:= Θ(c, b).
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It is an easy task to illustrate that ∂Θ
∂b ≥ 0 for b ∈ [0, 1]. This means that Θ(c, b) ≤ Θ(c, 1).

Thus
|∆2,2( f )| ≤ 1

200
c2
(

4− c2
)
+

1
225

(
4− c2

)2
:= v(c).

By observing that v′(c) < 0 for c ∈ [0, 2], we see that v(c) ≤ v(0). Thus, we have

|∆2,2( f )| ≤ 16
225

.

Equality is attained by the function given by

f2(z) =
∫ z

0

(
1 +

4
5

(
t2
)
+

1
5

(
t8
))

dt = z +
4

15
z3 +

1
45

z9.

4. Results on the Third Hankel Determinant of Functions f ∈ BT 3l

Now we study the determinant ∆3,1( f ) for f ∈ BT 3l .

Theorem 5. If f ∈ BT 3l has the series expansion (1), then

|∆3,1( f )| ≤ 1
25

.

The bound is sharp.

Proof. Let c1 = c and put the values of ai’s from (25)–(28) into (5), we obtain that

∆3,1( f ) =
1

1080000

(
−211c6 − 192c4c2 + 936c3c3 + 528c2c2

2 − 9216c2c4

+15840cc2c3 − 8320c3
2 + 11520c2c4 − 10800c2

3

)
. (30)

For some ρ, x, σ ∈ E, by substituting t = 4− c2 in (10)–(12), we have

192c4c2 = 96
(

c6 + c4tx
)

,

936c3c3 = −234c4tx2 + 468c3t
(

1− |x|2
)

σ + 468c4tx + 234c6,

528c2c2
2 = 132c6 + 264c4tx + 132c2t2x2,

9216c2c4 = 1152c4tx3 − 4608c3tx
(

1− |x|2
)

σ− 4608c2tx
(

1− |x|2
)

σ2

−3456c4tx2 + 4608c2t
(

1− |x|2
)(

1− |σ|2
)

ρ + 4608c3t(
1− |x|2

)
σ + 3456c4tx + 1152c6 + 4608c2tx2,

15840cc2c3 = −1980c2t2x3 − 1980c4tx2 + 3960ct2x
(

1− |x|2
)

σ + 3960c2t2x2

+ 3960c3t
(

1− |x|2
)

σ + 5940c4tx + 1980c6,

8320c3
2 = 1040c6 + 3120c4tx + 3120c2t2x2 + 1040t3x3,
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11520c2c4 = 2880c2tx2 + 2880t2x3 + 720c6 + 2880c4tx + 2880c3t
(

1− |x|2
)

σ

+ 2880c2t
(

1− |x|2
)(

1− |σ|2
)

ρ + 2160c2t2x2 + 2880ct2x(
1− |x|2

)
σ + 2880t2x

(
1− |x|2

)(
1− |σ|2

)
ρ− 2160c4tx2

− 2880c2tx
(

1− |x|2
)

σ2 − 2880c3tx
(

1− |x|2
)

σ− 2160c2t2x3

− 2880t2xx
(

1− |x|2
)

σ2 − 2880ct2x2
(

1− |x|2
)

σ

+ 720c4tx3 + 720c2t2x4,

10800c2
3 = 675c2t2x4 − 2700ct2x2

(
1− |x|2

)
σ− 2700c2t2x3 − 1350c4tx2

+ 2700t2
(

1− |x|2
)2

σ2 + 5400ct2x
(

1− |x|2
)

σ + 2700c2t2x2

+ 2700c3t
(

1− |x|2
)

σ + 2700c4tx + 675c6.

Putting the above expressions in (30) yields to

∆3,1( f ) =
1

1080000

{
−108c6 + 1728c3tx

(
1− |x|2

)
σ + 1728c2tx

(
1− |x|2

)
σ2 − 1728c2t(

1− |x|2
)(

1− |σ|2
)

ρ− 180ct2x2
(

1− |x|2
)

σ− 2880t2xx
(

1− |x|2
)

σ2

+2880t2x
(

1− |x|2
)(

1− |σ|2
)

ρ + 1440ct2x
(

1− |x|2
)

σ + 2880t2x3

−1040t3x3 + 180c4tx + 45c2t2x4 − 1440c2t2x3 + 432c2t2x2

−2700t2
(

1− |x|2
)2

σ2 − 1728c2tx2 − 432c4tx3 + 432c4tx2
}

.

By virtue of t = 4− c2, we see that

∆3,1( f ) =
1

1080000

(
v1(c, x) + v2(c, x)σ + v3(c, x)σ2 + Ψ(c, x, σ)ρ

)
,

where

v1(c, x) = −108c6 +
(

4− c2
)[(

4− c2
)(
−400c2x3 − 1280x3 + 45c2x4 + 432c2x2

)
−1728c2x2 + 432c4x2 − 432c4x3 + 180c4x

]
,

v2(c, x) =
(

4− c2
)(

1− |x|2
)[(

4− c2
)(
−180cx2 + 1440cx

)
+ 1728c3x

]
,

v3(c, x) =
(

4− c2
)(

1− |x|2
)[(

4− c2
)(
−180|x|2 − 2700

)
+ 1728c2x

]
,

Ψ(c, x, σ) =
(

4− c2
)(

1− |x|2
)(

1− |σ|2
)[

2880x
(

4− c2
)
− 1728c2

]
.

By setting |x| = x, |σ| = y and utilizing the fact |ρ| ≤ 1, we obtain

|∆3,1( f )| ≤ 1
1080000

(
|v1(c, x)|+ |v2(c, x)|y + |v3(c, x)|y2 + |Ψ(c, x, σ)|

)
.

≤ 1
1080000

(G(c, x, y)), (31)

where
G(c, x, y) = g1(c, x) + g2(c, x)y + g3(c, x)y2 + g4(c, x)

(
1− y2

)
,
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with

g1(c, x) = 108c6 +
(

4− c2
)
[
(

4− c2
)(

400c2x3 + 1280x3 + 45c2x4 + 432c2x2
)

+ 1728c2x2 + 432c4x2 + 432c4x3 + 180c4x],

g2(c, x) =
(

4− c2
)(

1− x2
)[(

4− c2
)(

180cx2 + 1440cx
)
+ 1728c3x

]
,

g3(c, x) =
(

4− c2
)(

1− x2
)[(

4− c2
)(

180x2 + 2700
)
+ 1728c2x

]
,

g4(c, x) =
(

4− c2
)(

1− x2
)[

2880x
(

4− c2
)
+ 1728c2

]
.

Now, we have to maximize G(c, x, y) in the closed cuboid Υ : [0, 2]× [0, 1]× [0, 1]. For
this, we have to discuss the maximum values of G(c, x, y) in the interior of Υ, in the interior
of its 6 faces and on its 12 edges.

1. Interior points of cuboid Υ:
Let (c, x, y) ∈ (0, 2)× (0, 1)× (0, 1), and differentiating partially G(c, x, y) with respect

to y, we have

∂G
∂y

=
(

4− c2
)
(1− x2)

[
360y(x− 1)

((
4− c2

)
(x− 15) +

48
5

c2
)

+180c
(

x
(

4− c2
)
(8 + x) +

48
5

c2x
)]

.

Plugging ∂G
∂y = 0, we obtain

y =
180c

(
x
(
4− c2)(8 + x) + 48

5 c2x
)

360(x− 1)
(
(4− c2)(15− x)− 48

5 c2
) = y0.

If y0 is a critical point within Υ, then y0 ∈ (0, 1), which is only achievable if

1728c3x + 180cx
(

4− c2
)
(8 + x) + 360(1− x)

(
4− c2

)
(15− x) < 3456c2(1− x). (32)

and

c2 >
20(15− x)
123− 5x

. (33)

Now, we must find solutions that meet both inequality (32) and (33) for the existence
of critical points.

Let g(x) = 20(15−x)
123−5x . As g′(x) < 0 in (0, 1), it is noted that g(x) is decreasing over

(0, 1). Hence c2 > 140
59 and an easy calculation indicates that (32) is impossible for all

x ∈ [ 1
2 , 1),Ṫhus there are no critical points of G in (0, 2)× [ 1

2 , 1)× (0, 1).
Suppose that there is a critical point (c̃, x̃, ỹ) of G existing in the interior of cuboid

Υ. Clearly it must satisfy that x̃ < 1
2 . From the above discussion, it can also be known

that c̃2 > 580
241 and ỹ ∈ (0, 1). In the following, we will prove that G(c̃, x̃, ỹ) < 43200 in this

situation. For (c, x, y) ∈
(√

580
241 , 2

)
× (0, 1

2 )× (0, 1), by invoking x < 1
2 and 1− x2 < 1, it

is not hard to observe that
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g1(c, x) ≤ 108c6 +
(

4− c2
)
[
(

4− c2
)(

400c2(1/2)3 + 1280(1/2)3 + 45c2(1/2)4 + 432c2(1/2)2
)

+ 1728c2(1/2)2 + 432c4(1/2)2 + 432c4(1/2)3 + 180c4(1/2)],

= 108c6 +
1
16

(
4− c2

)(
1459c4 + 14644c2 + 10240

)
:= ϕ1(c),

g2(c, x) ≤
(

4− c2
)[(

4− c2
)(

180c(1/2)2 + 1440c(1/2)
)
+ 1728c3(1/2)

]
,

= (4− c2)
(

99c3 + 3060c
)

:= ϕ2(c),

g3(c, x) ≤
(

4− c2
)[(

4− c2
)(

180(1/2)2 + 2700
)
+ 1728c2(1/2)

]
,

= (4− c2)
(
−1881c2 + 10980

)
:= ϕ3(c),

g4(c, x) ≤
(

4− c2
)[

2880(1/2)
(

4− c2
)
+ 1728c2

]
.

= (4− c2)
(

288c2 + 5760
)

:= ϕ4(c).

Therefore, we have

G(c, x, y) ≤ ϕ1(c) + ϕ4(c) + ϕ2(c)y + [ϕ3(c)− ϕ4(c)]y2 := Ξ1(c, y).

Obviously, it can be seen that

∂Ξ1

∂y
= ϕ2(c) + 2[ϕ3(c)− ϕ4(c)]y

and
∂2Ξ1

∂y2 = 2[ϕ3(c)− ϕ4(c)] = 2(4− c2)(−2169c2 + 5220).

Since ϕ3(c)− ϕ4(c) ≤ 0 for c ∈
(√

580
241 , 2

)
, we obtain that ∂2Ξ1

∂y2 ≤ 0 for y ∈ (0, 1), and

thus it follows that

∂Ξ1

∂y
≥ ∂Ξ1

∂y
|y=1 = (4− c2)(99c3 − 4338c2 + 3060c + 10440) ≥ 0, c ∈

(√
580
241

, 2

)
.

This implies that

Ξ1(c, y) ≤ Ξ1(c, 1) = ϕ1(c) + ϕ2(c) + ϕ3(c) := ι1(c).

It is easy to calculate that ι1(c) attains its maximum value 25,311.25 at c ≈ 1.551335.
Thus, we have

G(c, x, y) < 43200, (c, x, y) ∈
(√

580
241

, 2

)
× (0,

1
2
)× (0, 1).

Hence G(c̃, x̃, ỹ) < 43,200. This implies that G is less than 43,200 at all the critical
points in the interior of Υ. Therefore, G has no optimal solution in the interior of Υ.

2. Interior of all the six faces of cuboid Υ:
(i) On the face c = 0, G(c, x, y) becomes to

T1(x, y) = G(0, x, y) = 640
[

32x3 +
9
2
(1− x2)(16x + y2(x− 1)(x− 15))

]
, x, y ∈ (0, 1).
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Differentiating partially with respect to y, we obtain

∂T1

∂y
= 5760y(1− x2)(x− 1)(x− 15), x, y ∈ (0, 1).

It is easy to see that T1(x, y) has no critical point in the interval (0, 1)× (0, 1).
(ii) On the face c = 2, G(c, x, y) yields

G(2, x, y) ≡ 6912 < 43200.

(iii) On the face x = 0, G(c, x, y) becomes

T2(c, y) = G(c, 0, y) = 108c6 + (4− c2)((10800− 2700c2)y2 + 1728c2(1− y2)).

Differentiating T2(c, y) partially with respect to y, we know that

∂T2

∂y
= (4− c2)(21600y− 8856c2y).

Also derivative of T2(c, y) partially with respect to c is

∂T2

∂c
= 648c5 + (4− c2)(−5400cy2 + 3456c(1− y2))− 3456c3(1− y2)

+
(

5400c3 − 21600c
)

y2.

By using Newton’s methods for the system of nonlinear equations in Maple, we have
found no solution to the system of equations in the interval (0, 2)× (0, 1). That is, T2(c, y)
has no optimal solution in (0, 2)× (0, 1).

(iv) On the face x = 1, G(c, x, y) takes the form

T3(c, y) = G(c, 1, y) = 108c6 + (4− c2)((4− c2)(1280 + 877c2) + 1728c2 + 1044c4).

Then
∂T3

∂c
= −354c5 − 13152c3 + 21408c.

Putting ∂T3
∂c = 0 and solving we obtain c ≈ 1.2498244295. Thus we have

G(c, 1, y) ≤ max T3(c, y) = 28952.5898 < 43200, (c, y) ∈ (0, 2)× (0, 1).

(v) On the face y = 0, G(c, x, y) yields

T4(c, x) = G(c, x, 0) = 45c6x4 − 32c6x3 − 360c4x4 − 180c6x− 3072c4x3

+ 108c6 − 1728c4x2 + 720c2x4 + 3600c4x + 19200c2x3

− 1728c4 + 6912c2x2 − 23040c2x− 25600x3 + 6912c2

+ 46080x.

Now differentiating partially with respect to c, then with respect to x and simplifying
we have

∂T4

∂c
= 270c5x4 − 192c5x3 − 1440c3x4 − 1080c5x− 12288c3x3 + 648c5

− 6912c3x2 + 1440cx4 + 14400c3x + 38400cx3 − 6912c3

+ 13824cx2 − 46080cx + 13824c. (34)
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and

∂T4

∂x
= 180c6x3 − 96c6x2 − 1440c4x3 − 180c6 − 9216c4x2 − 3456c4x

+ 2880c2x3 + 3600c4 + 57600c2x2 + 13824c2x

− 23040c2 − 76800x2 + 46080. (35)

Applying Newton’s methods to the system of nonlinear Equations (34) and (35)
in Maple Software, we noticed that the given system of equations has no solution in
(0, 2)× (0, 1).

(vi) On the face y = 1, G(c, x, y) reduces to G(c, x, 1) given by

T5(c, x) = G(c, x, 1) = 45c6x4 − 32c6x3 − 180c5x4 + 288c5x3 − 540c4x4

−180c6x + 180c5x2 + 1536c4x3 + 1440c3x4 + 108c6 − 288c5x

− 5976c4x2 + 4608c3x3 + 2160c2x4 − 1008c4x− 1440c3x2

− 10752c2x3 − 2880cx4 + 2700c4 − 4608c3x + 33984c2x2

− 23040cx3 − 2880x4 + 6912c2x + 2880cx2 + 20480x3

− 21600c2 + 23040cx− 40320x2 + 43200.

Partial derivative of T5(c, x) with respect to c and then with respect to x, we have

∂T5

∂c
= 270c5x4 − 192c5x3 − 900c4x4 + 1440c4x3 − 2160c3x4 − 1080c5x

+900c4x2 + 6144c3x3 + 4320c2x4 + 648c5 − 1440c4x− 23904c3x2

+ 13824c2x3 + 4320cx4 − 4032c3x− 4320c2x2 − 21504cx3

− 2880x4 + 10800c3 − 13824c2x + 67968cx2 − 23040x3

+ 13824cx + 2880x2 − 43200c + 23040x. (36)

and

∂T5

∂x
= 180c6x3 − 96c6x2 − 720c5x3 + 864c5x2 − 2160c4x3 − 180c6

+ 360c5x + 4608c4x2 + 5760c3x3 − 288c5 − 11952c4x

+ 13824c3x2 + 8640c2x3 − 1008c4 − 2880c3x− 32256c2x2

− 11520cx3 − 4608c3 + 67968c2x− 69120cx2 − 11520x3

+ 6912c2 + 5760cx + 61440x2 + 23040c− 80640x. (37)

In Maple Software, we used Newton’s techniques to solve the system of nonlinear
Equations (36) and (37) and observed that the above system of equations has no solution
in (0, 2)× (0, 1). Thus T5(c, x) has no optimal solution in (0, 2)× (0, 1).

3. On the Edges of Cuboid Υ:
(i) On the edge x = 0 and y = 0, then G(c, x, y) becomes

G(c, 0, 0) = 108c6 − 1728c4 + 6912c2 = U1(c).

Clearly,
U′1(c) = 648c5 − 6912c3 + 13824c.

Putting U′1(c) = 0 gives the critical point c0 ≈ 1.632993161 at which G(c, 0, 0) = U1(c)
obtains its maximum. Hence

G(c, 0, 0) ≤ max U1(c) = U1(c0) = 8192 < 43200, c ∈ [0, 2].
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(ii) On the edge x = 0 and y = 1, then G(c, x, y) takes the form

G(c, 0, 1) = 108c6 + 2700c4 − 21600c2 + 43200 = U2(c).

It follows that
U′2(c) = 648c5 + 10800c3 − 43200c.

As U′2(c) < 0 in [0, 2], we see that U2(c) is decreasing over [0, 2]. Thus U2(c) has its
maxima at c = 0. Therefore max U2(c) = U2(0) = 43200. Thus

G(c, 0, 1) ≤ max U2(c) = U2(0) = 43200.

(iii) On the edge c = 0 and x = 0, then G(c, x, y) yields

G(0, 0, y) = 43200y2 = U3(y) ≤ 43200, y ∈ [0, 1].

(iv) On the edges G(c, 1, 0) and G(c, 1, 1), it is noted that G(c, 1, y) is free of y, therefore

G(c, 1, 0) = G(c, 1, 1) = −59c6 − 3288c4 + 10704c2 + 20480 = U4(c).

Then
U′4(c) = −354c5 − 13152c3 + 21408c.

Putting U′4(c) = 0, we obtain the critical point c0 ≈ 1.249824429 at which G(c, 1, 0) =
G(c, 1, 1) = U4(c) attains its maximum. Therefore max U4(c) = U4(c0) = 28,952.5898. Thus

G(c, 1, 0) = G(c, 1, 1) ≤ max U4(c) = U4(c0) = 28952.5898 < 43200, c ∈ [0, 2].

(v) On the edge c = 0 and x = 1, then G(c, x, y) reduces to

G(0, 1, y) = 20480 < 43200, y ∈ [0, 1].

(vi) On the edge c = 2, then G(c, x, y) becomes

G(2, x, y) ≡ 6912.

G(2, x, y) is independent of x and y; therefore

G(2, 0, y) = G(2, 1, y) = G(2, x, 0) = G(2, x, 1) = 6912 < 43200, x, y ∈ [0, 1].

(vii) On the edge c = 0 and y = 1, then G(c, x, y) yields

G(0, x, 1) = −2880x4 + 20480x3 − 40320x2 + 43200 = U5(x).

Then
U′5(x) = −11520x3 + 61440x2 − 80640x.

Since U′5(x) < 0 in [0, 1], it follows that U5(x) is decreasing over [0, 1]. Thus U5(x) has
its maxima at x = 0. Therefore max U5(x) = U5(0) = 43,200. Hence

G(0, x, 1) ≤ max U5(x) = U5(0) = 43200, x ∈ [0, 1].

(viii) On the edge c = 0 and y = 0 then G(c, x, y) takes the form

G(0, x, 0) = −25600x3 + 46080x = U6(x).

Then
U′6(x) = −76800x2 + 46080.
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The equation U′6(x) = 0 gives the critical point x0 ≈ 0.774596669 at which U6(x)
obtains its maximum. Therefore max U6(x) = U6(x0) = 23,795.60968. Hence

G(0, x, 0) ≤ max U6(x) = U6(x0) = 23795.60968, x ∈ [0, 1].

From above cases we conclude that

G(c, x, y) ≤ 43200 on [0, 2]× [0, 1]× [0, 1].

Using (31), it is clear that

|∆3,1( f )| ≤ 1
1080000

(G(c, x, y)) ≤ 1
25

.

The bound is sharp with the extremal function given by

f3(z) =
∫ z

0

(
1 +

4
5

(
t3
)
+

1
5

(
t12
))

dt = z +
1
5

z4 +
1

65
z13.

5. Zalcman Functional

In 1960, Lawrence Zalcman proposed the following conjecture based on a coefficient
for the functions belonging to the class S .∣∣∣a2

n − a2n−1

∣∣∣ ≤ (n− 1)2.

Equality will be obtained when taking the Köebe function or its rotations. The particu-
lar case of the familiar Fekete–Szegö inequality will be achieved when we put n = 2. For
more contributions on this particular topic, see the work [49,50].

Theorem 6. Let f belong to BT 3l and be of the form (1). Then∣∣∣a5 − a2
3

∣∣∣ ≤ 4
25

.

The inequality is sharp.

Proof. From (26) and (28), we obtain∣∣∣a5 − a2
3

∣∣∣ = ∣∣∣∣− 43
3600

c4
1 −

13
225

c2
2 −

2
25

c1c3 +
7

90
c2

1c2 +
2

25
c4

∣∣∣∣.
It follows that∣∣∣a5 − a2

3

∣∣∣ = 2
25

∣∣∣∣ 43
288

c4
1 +

13
18

c2
2 + 2

(
1
2

)
c1c3 −

3
2

(
35
54

)
c2

1c2 − c4

∣∣∣∣. (38)

Let γ = 43
288 , a = 13

18 ,α = 1
2 , β = 35

54 . It can be found that 0 < α < 1, 0 < a < 1 and

8a(1− a)
(
(αβ− 2γ)2 + (α(a + α)− β)2

)
+ α(1− α)(β− 2aα)2 5 4aα2(1− α)2(1− a).

From Lemma 3, we have ∣∣∣a5 − a2
3

∣∣∣ ≤ 4
25

.
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The inequality is sharp and is achieved by

f4(z) =
∫ z

0

(
1 +

4
5

(
t4
)
+

1
5

(
t16
))

dt = z +
4

25
z5 +

1
85

z17.

Theorem 7. If f belongs to BT 3l , and has the form (1). Then∣∣∣a3a5 − a2
4

∣∣∣ ≤ 1
25

.

This result is sharp.

Proof. Setting (26)–(28) with c1 = c, we obtain

a3a5 − a2
4 =

1
8000

(
−c6 +

8
3

c3c3 +
16
3

c2c2
2 −

128
3

c2c4 +
224

3
cc2c3

−128
3

c3
2 +

256
3

c2c4 − 80c2
3

)
. (39)

Using t = 4− c2 in (10)–(12), some basic calculations show that

8
3

c3c3 =
2
3

c6 +
4
3

c4tx− 2
3

c4tx2 +
4
3

c3t
(

1− |x|2
)

σ,

16
3

c2c2
2 =

4
3

c6 +
8
3

c4tx +
4
3

c2t2x2,

128
3

c2c4 =
16
3

c6 +
16
3

c4tx3 − 16c4tx2 + 16c4tx +
64
3

tc2x2 − 64
3

c3tx(
1− |x|2

)
σ− 64

3
c2tx

(
1− |x|2

)
σ2 +

64
3

c2t
(

1− |x|2
)

(
1− |σ|2

)
ρ +

64
3

c3t
(

1− |x|2
)

σ,

224
3

cc2c3 =
28
6

c6 + 28c4tx− 28
3

c4tx2 +
56
3

c3t
(

1− |x|2
)

σ +
56
3

c2x2t2

−28
3

c2x3t2 +
56
3

cxt2
(

1− |x|2
)

σ,

128
3

c3
2 =

16
3

c6 + 16c4xt + 16c2x2t2 +
16
3

x3t3,

256
3

c2c4 =
16
3

c6 +
16
3

c4x3t− 16c4x2t +
64
3

c4xt +
64
3

c2x2t− 64
3

c3xt(
1− |x|2

)
σ− 64

3
c2tx

(
1− |x|2

)
σ2 +

64
3

c2t
(

1− |x|2
)(

1− |σ|2
)

ρ

+
64
3

c3t
(

1− |x|2
)

σ +
16
3

c2x4t2 − 16c2x3t2 + 16c2x2t2

+
64
3

x3t2 − 64
3

cx2t2
(

1− |x|2
)

σ− 64
3

xt2x
(

1− |x|2
)

σ2

+
64
3

xt2
(

1− |x|2
)(

1− |σ|2
)

ρ +
64
3

cxt2
(

1− |x|2
)

σ,

80c2
3 = 5c2x4t2 − 20cx2t2

(
1− |x|2

)
σ− 20c2x3t2 − 10c4x2t

+20t2
(

1− |x|2
)2

σ2 + 40cxt2
(

1− |x|2
)

σ + 20c2x2t2

+ 20c3t
(

1− |x|2
)

σ + 20c4xt + 5c6.
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Putting the above expressions in (39), we obtain

a3a5 − a2
4 =

1
8000

{
64
3

x3t2 − 16
3

x3t3 +
4
3

c4tx +
1
3

x4t2c2 − 16
3

x3t2c2 − 20t2

(
1− |x|2

)2
σ2 − 4

3
x2t2

(
1− |x|2

)
cσ− 64

3
xt2
(

1− |x|2
)

xσ2

+
64
3

xt2
(

1− |x|2
)(

1− |σ|2
)

ρ

}
.

It can be noted that

a3a5 − a2
4 =

1
8000

(
u1(c, x) + u2(c, x)σ + u3(c, x)σ2 + φ(c, x, σ)ρ

)
,

where

u1(c, x) =
(

4− c2
)[(

4− c2
)(1

3
c2x4

)
+

4
3

c4x
]

,

u2(c, x) =
(

4− c2
)(

1− |x|2
)[(

4− c2
)(
−4

3
cx2
)]

,

u3(c, x) =
(

4− c2
)(

1− |x|2
)[(

4− c2
)(
−4

3
|x|2 − 20

)]
,

φ(c, x, σ) =
(

4− c2
)(

1− |x|2
)(

1− |σ|2
)[64

3
x
(

4− c2
)]

.

By taking |x| = x, |σ| = y and utilizing the fact |ρ| ≤ 1, we obtain∣∣∣a3a5 − a2
4

∣∣∣ ≤ 1
8000

(
|u1(c, x)|+ |u2(c, x)|y + |u3(c, x)|y2 + |φ(c, x, σ)|

)
.

≤ 1
8000

(F(c, x, y)), (40)

where
F(c, x, y) = f1(c, x) + f2(c, x)y + f3(c, x)y2 + f4(c, x)

(
1− y2

)
,

with

f1(c, x) =
(

4− c2
)[(

4− c2
)(1

3
c2x4

)
+

4
3

c4x
]

,

f2(c, x) =
(

4− c2
)(

1− x2
)[(

4− c2
)(4

3
cx2
)]

,

f3(c, x) =
(

4− c2
)(

1− x2
)[(

4− c2
)(4

3
x2 + 20

)]
,

f4(c, x) =
(

4− c2
)(

1− x2
)[64

3
x
(

4− c2
)]

.

Obviously, it can be seen that

∂F
∂y

= f2(c, x) + 2[ f3(c, x)− f4(c, x)]y

and
∂2F
∂y2 = 2[ f3(c, x)− f4(c, x)] =

8
3
(4− c2)2(1− x)2(15− x).
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Since f3(c, x) − f4(c, x) ≥ 0 for (c, x) ∈ [0, 2] × [0, 1], we obtain that ∂2F
∂y2 ≥ 0 for

y ∈ (0, 1), and thus it follows that

∂F
∂y
≥ ∂F

∂y
|y=0 = f2(c, x) ≥ 0, (c, x) ∈ [0, 2]× [0, 1].

Therefore, we have

F(c, x, y) ≤ F(c, x, 1) = f1(c, x) + f2(c, x) + f3(c, x) := τ(c, x).

It is not hard to calculate that

τ(c, x) = F(c, x, 1) =
1
3

c6x4 − 4c4x4 + 16c2x4 − 4
3

c6x +
16
3

c4x

− 4
3

c5x4 +
4
3

c5x2 +
32
3

c3x4 − 32
3

c3x2 − 64
3

cx4

+
64
3

cx2 − 56
3

c4x2 + 20c4 +
448

3
c2x2 − 160c2

− 896
3

x2 + 320− 64
3

x4.

Partial derivative of τ(c, x) with respect to c and then with respect to x, we have

∂τ

∂c
= 2c5x4 − 16c3x4 + 32cx4 − 8c5x +

64
3

c3x− 20
3

c4x4 +
20
3

c4x2

+ 32c2x4 − 32c2x2 − 64
3

x4 +
64
3

x2 − 224
3

c3x2 + 80c3

+
896

3
cx2 − 320c (41)

and

∂τ

∂x
=

4
3

c6x3 − 16c4x3 + 64c2x3 − 4
3

c6 +
16
3

c4 − 16
3

c5x3 +
8
3

c5x

+
128

3
c3x3 − 64

3
c3x− 256

3
cx3 +

128
3

cx− 112
3

c4x

+
896

3
c2x− 1792

3
x− 256

3
x3. (42)

A numerical calculation, using Maple Software, shows that the system of
Equations (41) and (42) has no solution in (0, 2)× (0, 1).

For x = 0, then τ(c, x) takes the form

τ(c, 0) = 20c4 − 160c2 + 320 = B1(c).

Then
B′1(c) = 80c3 − 320c.

Since B′1(c) < 0 in [0, 2], it follows that B1(c) is decreasing over [0, 2]. Thus B1(c) has
its maxima at c = 0. Therefore max B1(c) = B1(0) = 320. Thus

τ(c, x) ≤ max B1(c) = B1(0) = 320, (c, x) ∈ [0, 2]× [0, 1].

For x = 1, it is easy to calculate that

τ(c, 1) = −c6 +
8
3

c4 +
16
3

c2 = B2(c)

and
B′2(c) = −6c5 +

32
3

c3 +
32
3

c.
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Putting B′2(c) = 0, we obtain the critical point c0 ≈ 1.57840302 at which B2(c) obtains
its maximum. Therefore max B2(c) = B2(c0) = 14.37535984. Thus

τ(c, 1) ≤ max B2(c) = B2(c0) = 14.37535984 < 320, c ∈ [0, 2].

For c = 2, then τ(c, x) becomes

τ(2, x) ≡ 0 < 320, x ∈ [0, 1].

For c = 0, then τ(c, x) reduces to

τ(0, x) = −64
3

x4 − 896
3

x2 + 320 = B3(x).

Then
B′3(x) = −256

3
x3 − 1792

3
x.

Since B′3(x) < 0 in [0, 1], it is clear that B3(x) is decreasing over [0, 1]. Thus B3(x) has
its maxima at x = 0. Hence

τ(0, x) ≤ max B3(x) = B3(0) = 320, x ∈ [0, 1].

Thus from the above cases, we conclude that

F(c, x, y) ≤ 320 on [0, 2]× [0, 1]× [0, 1].

From (31), we know that

∣∣∣a3a5 − a2
4

∣∣∣ ≤ 1
8000

(F(c, x, y)) 5
1

25
.

The bound can be achieved with the extremal function given by

f3(z) =
∫ z

0

(
1 +

4
5

(
t3
)
+

1
5

(
t12
))

dt = z +
1
5

z4 +
1

65
z13.

6. Sharp Bounds on the Third Hankel Determinant for Functions f ∈ S∗3l

Next, we will improve the bound |∆3,1( f )| ≤ 242
1125 of third Hankel determinant for

f ∈ S∗3l which was obtained by Shi et al. in [43].

Theorem 8. If f ∈ S∗3l and has the series expansion (1), then

|∆3,1( f )| ≤ 16
225

.

This result is sharp.

Proof. Let f ∈ S∗3l . From the definition, there exists a Schwarz function ω such that

z f ′(z)
f (z)

= 1 +
4
5

ω(z) +
1
5
(ω(z))4, (z ∈ E).

Assuming that p ∈ P . Then it can be written in terms of the Schwarz function ω(z) as

p(z) =
1 + ω(z)
1−ω(z)

= 1 + c1z + c2z2 + c3z3 + · · · , (43)
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or equivalently,

ω(z) =
p(z)− 1
p(z) + 1

=
c1z + c2z2 + c3z3 + c4z4 + · · ·

2 + c1z + c2z2 + c3z3 + c4z4 + · · · . (44)

From (1), we obtain

z f ′(z)
f (z)

= 1 + a2z + (2a3 − a2
2)z

2 + (3a4 − 3a2a3 + a3
2)z

3

+(4a5 − 2a2
3 − 4a2a4 + 4a2

2a3 − a4
2)z

4 + · · · . (45)

By simplification and using the series expansion of (44), we obtain

1 +
4
5
(ω(z)) +

1
5
(ω(z))4 = 1 +

2
5

c1z +
(

2
5

c2 −
1
5

c2
1

)
z2 +

(
2
5

c3 +
1

10
c3

1 −
2
5

c1c2

)
z3

+

(
2
5

c4 −
1
5

c2
2 −

3
80

c4
1 +

3
10

c2
1c2 −

2
5

c1c3

)
z4 + · · · . (46)

Comparing like powers of z, z2, z3 and z4 in (45) and (46), we obtain

a2 =
2
5

c1, (47)

a3 =
1
5

c2 −
1

50
c2

1, (48)

a4 =
2

15
c3 +

1
250

c3
1 −

4
75

c1c2, (49)

a5 =
1

10
c4 +

81
40000

c4
1 +

53
3000

c2
1c2 −

7
150

c1c3 −
3

100
c2

2. (50)

The third Hankel determinant can be written as

∆3,1( f ) = 2a2a3a4 − a3
3 − a2

4 + a3a5 − a2
2a5.

Let c1 = c. It follows that

∆3,1( f ) =
1

18000000

(
−7857c6 − 19710c4c2 + 93600c3c3 − 800c2c2

2 − 324000c2c4

+472000cc2c3 − 252000c3
2 + 360000c2c4 − 320000c2

3

)
. (51)

Using t = 4− c2 in (10)–(12), for some ρ, x, σ ∈ E we obtain

19710c4c2 = 9855
(

c6 + c4tx
)

,

93600c3c3 = 23400c6 + 46800c4tx− 23400c4tx2 + 46800c3t
(

1− |x|2
)

σ,

800c2c2
2 = 200c6 + 400c4tx + 200c2t2x2,

324000c2c4 = 40500c4tx3 − 162000c3tx
(

1− |x|2
)

σ− 162000c2tx
(

1− |x|2
)

σ2

+ 162000c2t
(

1− |x|2
)(

1− |σ|2
)

ρ + 162000c3t
(

1− |x|2
)

σ

+ 40500c6 + 162000c2tx2 − 121500c4tx2 + 121500c4tx,

472000cc2c3 = −59000c2t2x3 − 59000c4tx2 + 118000ct2x
(

1− |x|2
)

σ + 59000c6

+ 118000c2t2x2 + 118000c3t
(

1− |x|2
)

σ + 177000c4tx,

252000c3
2 = 31500t3x3 + 94500c2t2x2 + 94500c4tx + 31500c6,



Fractal Fract. 2022, 6, 291 22 of 35

360000c2c4 = 90000c2tx2 + 90000t2x3 + 22500c6 + 90000c4tx + 90000c3t(
1− |x|2

)
σ + 90000c2t

(
1− |x|2

)(
1− |σ|2

)
ρ + 67500c2t2x2

+ 90000t2x
(

1− |x|2
)(

1− |σ|2
)

ρ− 67500c4tx2 − 90000c3tx(
1− |x|2

)
σ− 67500c2t2x3 − 90000t2xx

(
1− |x|2

)
σ2 + 22500c2

t2x4 − 90000ct2x2
(

1− |x|2
)

σ + 22500c4tx3 + 90000ct2x(
1− |x|2

)
σ− 90000c2tx

(
1− |x|2

)
σ2,

320000c2
3 = 20000c2t2x4 − 80000ct2x2

(
1− |x|2

)
σ− 80000c2t2x3

+80000t2
(

1− |x|2
)2

σ2 + 160000ct2x
(

1− |x|2
)

σ + 80000c2t2x2

+80000c3t
(

1− |x|2
)

σ + 80000c4tx + 20000c6 − 40000c4tx2.

Setting the above expressions in (51), we obtain

∆3,1( f ) =
1

18000000

{
−5012c6 + 90000t2x3 − 31500t3x3 − 72000c2tx2 − 18000c4tx3

+7545c4tx + 2500c2t2x4 − 46500c2t2x3 − 80000t2
(

1− |x|2
)2

σ2 + 12800c3t(
1− |x|2

)
σ + 72000c3tx

(
1− |x|2

)
σ + 72000c2tx

(
1− |x|2

)
σ2 − 72000c2t

(
1− |x|2

)
(

1− |σ|2
)

ρ− 10000ct2x2
(

1− |x|2
)

σ− 90000t2xx
(

1− |x|2
)

σ2 + 48000ct2x(
1− |x|2

)
σ + 90000t2x

(
1− |x|2

)(
1− |σ|2

)
ρ + 10800c2x2t2 + 11600c4tx2

}
.

Thus, we see

∆3,1( f ) =
1

18000000

(
k1(c, x) + k2(c, x)σ + k3(c, x)σ2 + ζ(c, x, σ)ρ

)
,

where

k1(c, x) = −5012c6 +
(

4− c2
)[(

4− c2
)(

10800c2x2 + 2500c2x4 − 15000c2x3

−36000x3
)
+ 11600c4x2 − 72000c2x2 + 7545c4x− 18000c4x3

]
,

k2(c, x) =
(

4− c2
)(

1− |x|2
)[(

4− c2
)(
−10000cx2 + 48000cx

)
+12800c3 + 72000c3x

]
,

k3(c, x) =
(

4− c2
)(

1− |x|2
)[(

4− c2
)(
−10000|x|2 − 80000

)
+ 72000c2x

]
,

ζ(c, x, σ) =
(

4− c2
)(

1− |x|2
)(

1− |σ|2
)[

90000x
(

4− c2
)
− 72000c2

]
.

Taking |x| = x, |σ| = y and utilizing the fact |ρ| ≤ 1, we obtain

|∆3,1( f )| ≤ 1
18000000

(
|k1(c, x)|+ |k2(c, x)|y + |k3(c, x)|y2 + |ζ(c, x, σ)|

)
.

≤ 1
18000000

(Q(c, x, y)), (52)

where
Q(c, x, y) = q1(c, x) + q2(c, x)y + q3(c, x)y2 + q4(c, x)

(
1− y2

)
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with

q1(c, x) = 5012c6 +
(

4− c2
)[(

4− c2
)(

10800c2x2 + 2500c2x4 + 15000c2x3

+36000x3
)
+ 11600c4x2 + 72000c2x2 + 7545c4x + 18000c4x3

]
,

q2(c, x) =
(

4− c2
)(

1− x2
)[(

4− c2
)(

10000cx2 + 48000cx
)
+ 12800c3 + 72000c3x

]
,

q3(c, x) =
(

4− c2
)(

1− x2
)[(

4− c2
)(

10000x2 + 80000
)
+ 72000c2x

]
,

q4(c, x) =
(

4− c2
)(

1− x2
)[

90000x
(

4− c2
)
+ 72000c2

]
.

Now, we have to maximize Q(c, x, y) in the closed cuboid Υ : (0, 2)× (0, 1)× (0, 1).
For this, we have to discuss the maximum values of Q(c, x, y) in the interior of Υ, of its
6 faces and on its 12 edges.

1. Interior points of cuboid Υ:
Let (c, x, y) ∈ (0, 2)× (0, 1)× (0, 1). Differentiating partially Q(c, x, y) with respect to

y, we obtain

∂Q
∂y

=
(

4− c2
)
(1− x2)

[
2y
(

2000
(

4− c2
)(

5x2 + 40
)
+ 36c2x− 72000c2 + 90000x

(
4− c2

))
+c
(

x
(

4− c2
)
(48000 + 10000x) + c2(72000x + 12800)

)]
.

Plugging ∂Q
∂y = 0, we find

y =
c
(
5x
(
4− c2)(24 + 5x) + 4c2(45x + 8)

)
10(x− 1)(5(4− c2)(8− x)− 36c2)

= y0.

If y0 is a critical point inside Υ, then y0 ∈ (0, 1), and this is only achievable if

4c3(45x + 8) + 5cx
(

4− c2
)
(24 + 5x) + 50(1− x)

(
4− c2

)
(8− x) < 360c2(1− x). (53)

and

c2 >
20(8− x)
76− 5x

. (54)

For the existence of critical points, we must now find solutions that meet both inequal-
ities (53) and (54).

Let g(x) = 20(8−x)
76−5x . As g′(x) < 0 in (0, 1), it can be seen that g(x) is decreasing over

(0, 1). Hence c2 > 40
19 . It is not hard to verify that the inequality (53) cannot hold true in

this situation for x ∈ [ 1
2 , 1). Thus, there is no such critical point of Q(c, x, y) existing in

(0, 2)×
(

1
2 , 1
)
× (0, 1).

Suppose that there is a critical point (c̃, x̃, ỹ) of Q existing in the interior of cuboid
Υ. Clearly it must satisfy that x̃ ≤ 1

2 . From the above discussion, it can also be known
that c̃2 ≥ 300

147 and ỹ ∈ (0, 1). Now we will prove that Q(c̃, x̃, ỹ) < 1,280,000. For (c, x, y) ∈(√
300
147 , 2

)
× (0, 1

2 )× (0, 1), by invoking x < 1
2 and 1− x2 < 1 it is not hard to observe that
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q1(c, x) ≤ 5012c6 +
(

4− c2
)[(

4− c2
)(

10800c2(1/2)2 + 2500c2(1/2)4 + 15000c2(1/2)3 + 36000(1/2)3
)

+ 11600c4(1/2)2 + 72000c2(1/2)2 + 7548c4(1/2) + 18000c4(1/2)3
]

= 5012c6 +
1
4

(
4− c2

)(
16765c4 + 129700c2 + 72000

)
:= φ1(c),

q2(c, x) ≤
(

4− c2
)[(

4− c2
)(

10000c(1/2)2 + 48000c(1/2)
)
+ 12800c3 + 72000c3(1/2)

]
,

= (4− c2)
(

22300c3 + 106000c
)

:= φ2(c),

q3(c, x) ≤ (4− c2)
[(

4− c2
)(

10000(1/2)2 + 80000
)
+ 72000c2(1/2)

]
,

= (4− c2)
(
−46500c2 + 330000

)
:= φ3(c),

q4(c, x) ≤ (4− c2)
[
72000c2 + 90000(1/2)

(
4− c2

)]
= (4− c2)(180000 + 27000c2) := φ4(c).

Therefore, we have

Q(c, x, y) ≤ φ1(c) + φ4(c) + φ2(c)y + [φ3(c)− φ4(c)]y2 := Ξ2(c, y).

Obviously, it can be seen that

∂Ξ2

∂y
= φ2(c) + 2[φ3(c)− φ4(c)]y

and
∂2Ξ2

∂y2 = 2[φ3(c)− φ4(c)] = 2(4− c2)(−73500c2 + 150000).

Since φ3(c)− φ4(c) ≤ 0 for c ∈ (
√

300
147 , 2), we obtain that ∂2Ξ2

∂y2 ≤ 0 for y ∈ (0, 1), and
thus it follows that

∂Ξ2

∂y
=

∂Ξ2

∂y
|y=1 = (4− c2)(22300c3− 147000c2 + 106000c+ 300000) ≥ 0, c ∈ (

√
300
147

, 2).

Therefore, we have

Ξ2(c, y) ≤ Ξ2(c, 1) = φ1(c) + φ2(c) + φ3(c) := ι2(c).

It is easy to calculate that ι2(c) attains its extremal value 1,126,373 at c ≈ 1.428571.
Thus, we have

Q(c, x, y) < 1280000, (c, x, y) ∈
(√

300
147

, 2

)
× (0,

1
2
)× (0, 1).

Hence Q(c̃, x̃, ỹ) < 1,280,000. This implies that Q is less than 1,280,000 at all the critical
points in the interior of Υ. Therefore, Q has no optimal solution in the interior of Υ.

2. Interior of all the six faces of cuboid Υ:
(i) On the face c = 0, Q(c, x, y) reduces to

h1(x, y) = Q(0, x, y) = 576000x3 + (1− x2)
[
y2
(

160000x2 + 1440000x + 1280000
)

+1440000x)], x, y ∈ (0, 1).
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Now h1(x, y) differentiating partially with respect to y, we obtain

∂h1

∂y
= 2y(1− x2)

(
160000x2 + 1440000x + 1280000

)
, x, y ∈ (0, 1).

Thus h1(x, y) has no critical point in the interval (0, 1)× (0, 1).
(ii) On the face c = 2, Q(c, x, y) yields

Q(2, x, y) ≡ 320768 < 1280000, x, y ∈ (0, 1).

(iii) On the face x = 0, Q(c, x, y) becomes

h2(c, y) = Q(c, 0, y) = 5012c6 + (4− c2)
(

12800c3y− 72000c2(1− y2)
)

+
(

80000c4 − 640000c2 + 1280000
)

y2.

Differentiating h2(c, y) partially with respect to y

∂h2

∂y
= (4− c2)

(
12800c3 − 144000c2y

)
+
(

160000c4 − 1280000c2 + 2560000
)

y.

Taking ∂h2
∂y = 0 and solving, we obtain

y =
4c3

5(19c2 − 40)
= y1.

For the provided range of y, y1 would be a member of (0, 1) if c > c0 with c0 ≈
1.49903072734. Also the derivative of h2(c, y) partially with respect to c is

∂h2

∂c
= 30072c5 − 25600c4y +

(
4− c2

)(
38400c2y + 144000c

(
1− y2

))
− 144000c3

(
1− y2

)
− c
(

1280000− 320000c2
)

y2. (55)

By substituting the value of y in (55), plugging ∂h2
∂c = 0 and simplifying, we obtain

∂h2

∂c
= 72c

(
142671c8 − 2034480c6 + 9568000c4 − 18560000c2

+12800000) = 0. (56)

A calculation gives the solution of (56) in the interval (0, 1) that is c ≈ 1.360226043.
Thus h2(c, y) has no optimal solution in the interval (0, 2)× (0, 1).

(iv) On the face x = 1, Q(c, x, y) takes the form

h3(c, y) = Q(c, 1, y) = 5012c6 +
(

4− c2
)((

4− c2
)(

28300c2 + 36000
)
+ 37145c4

+72000c2
)

.

Then
∂h3

∂c
= −22998c5 − 455280c3 + 905600c.

Taking ∂h3
∂c = 0 and solving, we obtain c ≈ 1.34963183573. Therefore max h3(c, y) =

999,971.4325. Thus we have

Q(c, 1, y) ≤ max h3(c, y) = 999971.4325 < 1280000, (c, y) ∈ (0, 2)× (0, 1).
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(v) On the face y = 0, Q(c, x, y) yields

h4(c, x) = Q(c, x, 0) = 2500c6x4 − 3000c6x3 − 800c6x2 − 20000c4x4 − 7545c6x

− 102000c4x3 + 5012c6 − 40000c4x2 + 40000c2x4 + 120180c4x

+ 672000c2x3 − 72000c4 + 172800c2x2 − 720000c2x− 864000x3

+ 288000c2 + 1440000x.

Now, differentiating partially with respect to c, then with respect to x and simplifying,
we have

∂h4

∂c
= 15000c5x4 − 18000c5x3 − 4800c5x2 − 80000c3x4 − 45270c5x

− 408000c3x3 + 30072c5 − 160000c3x2 + 80000cx4

+ 480720c3x + 1344000cx3 − 288000c3 + 345600cx2

− 1440000cx + 576000c. (57)

and

∂h4

∂x
= 10000c6x3 − 9000c6x2 − 1600c6x− 80000c4x3 − 7545c6

− 306000c4x2 − 80000c4x + 160000c2x3 + 120180c4

+ 2016000c2x2 + 345600c2x− 720000c2 − 2592000x2

+ 1440000. (58)

Applying Newton’s methods to the system of nonlinear Equations (57) and (58)
in Maple Software, we found that the given system of equations has no solution in
(0, 2)× (0, 1).

(vi) On the face y = 1, Q(c, x, y) reduces to

h5(c, x) = Q(c, x, 1) = 2500c6x4 − 3000c6x3 − 10000c5x4 − 800c6x2

+ 24000c5x3 − 30000c4x4 − 7545c6x + 22800c5x2

+ 60000c4x3 + 80000c3x4 + 5012c6 − 24000c5x

− 182000c4x2 + 96000c3x3 + 120000c2x4 − 12800c5

− 41820c4x− 131200c3x2 − 336000c2x3 − 160000cx4

+ 80000c4 − 96000c3x + 1020800c2x2 − 768000cx3

− 160000x4 + 51200c3 + 288000c2x + 160000cx2

+ 576000x3 − 640000c2 + 768000cx− 1120000x2

+ 1280000.

Partial derivative of h5(c, x) with respect to c and then with respect to x, we have

∂h5

∂c
= 15000c5x4 − 18000c5x3 − 50000c4x4 − 4800c5x2 + 120000c4x3

− 120000c3x4 − 45270c5x + 114000c4x2 + 240000c3x3

+ 240000c2x4 + 30072c5 − 120000c4x− 728000c3x2

+ 288000c2x3 + 240000cx4 − 64000c4 − 167280c3x

− 393600c2x2 − 672000cx3 − 160000x4 + 320000c3

− 288000c2x + 2041600cx2 − 768000x3 + 153600c2

+ 576000cx + 160000x2 − 1280000c + 768000x. (59)
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and

∂h5

∂x
= 10000c6x3 − 9000c6x2 − 40000c5x3 − 1600c6x + 72000c5x2

− 120000c4x3 − 7545c6 + 45600c5x + 180000c4x2

+ 320000c3x3 − 24000c5 − 364000c4x + 288000c3x2

+ 480000c2x3 − 41820c4 − 262400c3x− 1008000c2x2

− 640000cx3 − 96000c3 + 2041600c2x− 2304000cx2

− 640000x3 + 288000c2 + 320000cx + 1728000x2

+ 768000c− 2240000x. (60)

As mentioned in the above case, we conclude that for the face y = 0, the system of
Equations (59) and (60) has no solution in (0, 2)× (0, 1). Thus Q(c, x, 1) has no optimal
solution in (0, 2)× (0, 1).

3. On the Edges of Cuboid Υ:
(i) On the edge x = 0 and y = 0, then Q(c, x, y) becomes

Q(c, 0, 0) = 5012c6 − 72000
(

4− c2
)

c2 = m1(c).

It is clear that
m′1(c) = 30072c5 − 288000c3 + 57600c.

Putting m′1(c) = 0 gives the critical point c0 ≈ 1.686823152 at which Q(c, 0, 0) = m1(c)
obtains its maximum. Therefore max m1(c) = m1(c0) = 352,004.0398. Hence

Q(c, 0, 0) ≤ max m1(c) = m1(c0) = 352004.0398 < 1280000, c ∈ [0, 2].

(ii) On the edge x = 0 and y = 1, then Q(c, x, y) takes the form

Q(c, 0, 1) = 5012c6 − 12800c5 + 80000c4 + 51200c3 − 640000c2 + 1280000 = m2(c).

Then

m′2(c) = 30072c5 − 64000c4 + 320000c3 + 153600c2 − 1280000c.

As m′2(c) < 0 in [0, 2], it is noted that m2(c) is decreasing over [0, 2]. Thus m2(c) has
its maxima at c = 0. Therefore max m2(c) = m2(0) = 1,280,000. Hence

Q(c, 0, 1) ≤ max m2(c) = m2(0) = 1280000 c ∈ [0, 1].

(iii) On the edge c = 0 and x = 0, then Q(c, x, y) yields

Q(0, 0, y) = 1280000y2 ≤ 1280000, y ∈ [0, 1].

(iv) For Q(c, 1, 0) and Q(c, 1, 1), as Q(c, 1, y) is free of y, it follows that

Q(c, 1, 0) = Q(c, 1, 1) = −3833c6 − 113820c4 + 452800c2 + 576000 = m4(c).

Then
m′4(c) = −22998c5 − 455280c3 + 905600c.

Putting m′4(c) = 0, we obtain the critical point c0 ≈ 1.34963183 at which Q(c, 1, 0) =
Q(c, 1, 1) = m4(c) maximizes, therefore max m4(c) = m4(c0) = 999,971.435. Thus

Q(c, 1, 0) = Q(c, 1, 1) ≤ max m4(c) = m4(c0) = 999971.435 < 12080000, c ∈ [0, 2].
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(v) On the edge c = 0 and x = 1, then Q(c, x, y) reduces to

Q(0, 1, y) ≡ 576000 < 1280000, y ∈ [0, 1].

(vi) On the edge c = 2, then Q(c, x, y) becomes

Q(2, x, y) ≡ 320768 < 1280000, (x, y) ∈ [0, 1]× [0, 1].

(vii) On the edge c = 0 and y = 0, then Q(c, x, y) yields

Q(0, x, 0) = −864000x3 + 1440000x = m5(x).

Then
m′5(x) = −2592000x2 + 1440000.

The equation m′5(x) = 0 gives the critical point x0 ≈ 0.74535599 at which m5(x)
obtains its maximum. Therefore max m5(x) = m5(x0) = 715,541.7526. Hence

Q(0, x, 0) ≤ max m5(x) = m5(x0) = 715541.7526 < 1280000, x ∈ [0, 1].

(viii) On the edge c = 0 and y = 1, then Q(c, x, y) takes the form

Q(0, x, 1) = −160000x4 + 576000x3 − 1120000x2 + 1280000 = m6(x).

Then
m′6(x) = −640000x3 + 1728000x2 − 2240000x.

Noting that m′6(x) < 0 in [0, 1] , m6(x) is decreasing over [0, 1]. Thus m6(x) has its
maxima at x = 0. Therefore max m6(x) = m6(0) = 1,280,000. Hence

Q(0, x, 1) ≤ max m6(x) = m6(0) = 1280000, x ∈ [0, 1].

From the above cases, we conclude that

Q(c, x, y) ≤ 1280000 on [0, 2]× [0, 1]× [0.1].

Using (52) we see that

|∆3,1( f )| ≤ 1
18000000

(Q(c, x, y)) ≤ 16
225

.

Equality is determined by the extremal function given by

z exp
(∫ z

0

(
4
5

(
t2
)
+

1
5

(
t11
))

dt
)
= z +

4
15

z4 + · · · .

Theorem 9. Let f belong to S∗3l with the form (1). Then∣∣∣a5 − a2
3

∣∣∣ ≤ 1
5

.

This inequality is the best one.

Proof. From (48) and (50), we obtain∣∣∣a5 − a2
3

∣∣∣ = ∣∣∣∣ 13
8000

c4
1 −

7
100

c2
2 −

7
150

c1c3 +
77

3000
c2

1c2 +
1
10

c4

∣∣∣∣.
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After simplification, we have∣∣∣a5 − a2
3

∣∣∣ = 1
10

∣∣∣∣− 13
800

c4
1 +

7
10

c2
2 + 2

(
7

30

)
c1c3 −

3
2

(
77

450

)
c2

1c2 − c4

∣∣∣∣. (61)

Let γ = − 13
800 , a = 7

10 , α = 7
30 and β = 77

450 . It can be easily verified that 0 < α < 1,
0 < a < 1 and

8a(1− a)
(
(αβ− 2γ)2 + (α(a + α)− β)2

)
+ α(1− α)(β− 2aα)2 5 4aα2(1− α)2(1− a).

An application of Lemma 3 leads to∣∣∣a5 − a2
3

∣∣∣ ≤ 1
5

.

The equality is obtained by

z exp
(∫ z

0

(
4
5

(
t3
)
+

1
5

(
t15
))

dt
)
= z +

1
5

z5 + · · · .

Theorem 10. If f belongs to S∗3l and has the expansion (1), then∣∣∣a3a5 − a2
4

∣∣∣ ≤ 16
225

.

This result is sharp.

Proof. Putting (48)–(50) with c1 = c, we obtain

a3a5 − a2
4 =

1
18000000

(
−1017c6 − 2400c3c3 + 23200c2c2

2 − 36000c2c4 + 8610c4c2

+88000cc2c3 − 108000c3
2 + 360000c2c4 − 320000c2

3

)
. (62)

Let t = 4− c2 in (10), (11) and (12). Now using Lemma 1, we obtain

2400c3c3 = 600c6 + 1200c4tx− 600c4tx2 + 1200c3t
(

1− |x|2
)

σ,

23200c2c2
2 = 5800c6 + 11600c4tx + 5800c2t2x2,

36000c2c4 = 4500c6 + 4500c4tx3 − 13500c4tx2 + 13500c4tx + 18000tc2x2

− 18000c3tx
(

1− |x|2
)

σ− 18000c2tx
(

1− |x|2
)

σ2

+ 18000c2t
(

1− |x|2
)(

1− |σ|2
)

ρ + 18000c3t
(

1− |x|2
)

σ,

88000cc2c3 = 11000c6 + 33000c4tx− 11000c4tx2 + 22000c3t
(

1− |x|2
)

σ

+22000c2t2x2 − 11000c2t2x3 + 22000cxt2
(

1− |x|2
)

σ,

8610c4c2 = 4305c6 + 4305c4xt,

108000c3
2 = 90000c6 + 40500c4xt + 40500c2x2t2 + 13500x3t3,
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360000c2c4 = 22500c6 + 22500c4x3t− 67500c4x2t + 90000c4xt + 90000c2x2t

− 90000c3xt
(

1− |x|2
)

σ− 90000c2tx
(

1− |x|2
)

σ2

+ 90000c2t
(

1− |x|2
)(

1− |σ|2
)

ρ + 90000c3t
(

1− |x|2
)

σ

+ 22500c2x4t2 − 67500c2x3t2 + 67500c2x2t2 + 90000x3t2

− 10000cx2t2
(

1− |x|2
)

σ− 90000xt2x
(

1− |x|2
)

σ2

+ 90000xt2
(

1− |x|2
)(

1− |σ|2
)

ρ + 90000cxt2
(

1− |x|2
)

σ,

320000c2
3 = 20000c6 + 80000c4xt− 40000c4x2t + 80000c3t

(
1− |x|2

)
σ

+80000c2x2t2 − 80000c2x3t2 + 160000cxt2
(

1− |x|2
)

σ

+20000c2x4t2 − 80000cx2t2
(

1− |x|2
)

σ + 80000t2
(

1− |x|2
)2

σ2.

Putting the above expressions in (62), we obtain

a3a5 − a2
4 =

1
18000000

{
−80000t2

(
1− |x|2

)2
σ2 − 24400c4x2t + 2500c2x4t2

+1500c2x3t2 − 25200c2x2t2 + 3705c4xt + 72000c2x2t + 18000c4x3t

+90000x3t2 − 13500x3t3 − 72000c3xt
(

1− |x|2
)

σ− 72000c2tx
(

1− |x|2
)

σ2

+72000c2t
(

1− |x|2
)(

1− |σ|2
)

ρ− 10000cx2t2
(

1− |x|2
)

σ− 90000xt2x(
1− |x|2

)
σ2 + 90000xt2

(
1− |x|2

)(
1− |σ|2

)
ρ− 48000cxt2

(
1− |x|2

)
σ

+12800c3t
(

1− |x|2
)

σ + 3988c6
}

.

In view of t = 4− c2, we obtain that

a3a5 − a2
4 =

1
18000000

(
l1(c, x) + l2(c, x)σ + l3(c, x)σ2 + ς(c, x, σ)ρ

)
,

where

l1(c, x) = 3988c6 +
(

4− c2
)[(

4− c2
)(

2500c2x4 + 15000c2x3 + 36000x3

−25200c2x2
)
− 24400c4x2 + 3705c4x + 72000c2x2 + 18000c4x3

]
,

l2(c, x) =
(

4− c2
)(

1− |x|2
)[(

4− c2
)(
−48000cx− 10000cx2

)
−72000c3x + 12800c3

]
,

l3(c, x) =
(

4− c2
)(

1− |x|2
)[(

4− c2
)(
−80000− 10000|x|2

)
− 72000c2x

]
,

ς(c, x, σ) =
(

4− c2
)(

1− |x|2
)(

1− |σ|2
)[

90000x
(

4− c2
)
+ 72000c2

]
.

Utilizing |x| = x, |σ| = y and also observing the fact |ρ| ≤ 1, we obtain∣∣∣a3a5 − a2
4

∣∣∣ ≤ 1
18000000

(
|l1(c, x)|+ |l2(c, x)|y + |l3(c, x)|y2 + |ς(c, x, σ)|

)
.

≤ 1
18000000

(S(c, x, y)), (63)

where
S(c, x, y) = s1(c, x) + s2(c, x)y + s3(c, x)y2 + s4(c, x)

(
1− y2

)
,
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with

s1(c, x) = 3988c6 +
(

4− c2
)[(

4− c2
)(

2500c2x4 + 15000c2x3 + 36000x3

+25200c2x2
)
+ 24400c4x2 + 3705c4x + 72000c2x2 + 18000c4x3

]
,

s2(c, x) =
(

4− c2
)(

1− x2
)[(

4− c2
)(

48000cx + 10000cx2
)

+72000c3x + 12800c3
]
,

s3(c, x) =
(

4− c2
)(

1− x2
)[(

4− c2
)(

80000 + 10000x2
)
+ 72000c2x

]
,

s4(c, x) =
(

4− c2
)(

1− x2
)[

90000x
(

4− c2
)
+ 72000c2

]
.

Now we have to maximize S(c, x, y) in the closed cuboid Υ : [0, 2]× [0, 1]× [0, 1]. For
this, we have to discuss the maximum values of S(c, x, y) in the interior of Υ, in the interior
of its 6 faces and on its 12 edges.

In the following, we will prove that the maximum value of S(c, x, y) is 1,280,000 in
the closed cuboid Υ. To prove this, we first discuss the maximum values of S(c, x, y) in the
interior of 6 faces and 12 edges of Υ.

It is not hard to note that s2(c, x) = q2(c, x), s3(c, x) = q3(c, x) and s4(c, x) = q4(c, x)
for all (c, x) ∈ [0, 2]× [0, 1]. A simple calculation shows that

s1(c, x)− q1(c, x) = −1024c6 + (4− c2)
[
14400(4− c2)c2x2 + 12800c4x2 − 3840c4x

]
.

It is clear that
v(c, 0) = −1024c6 ≤ 0, c ∈ [0, 2]

and thus
s1(c, 0) ≤ q1(c, 0).

For (c, y) ∈ [0, 2]× [0, 1], it follows that

S(c, 0, y) = s1(c, 0) + s2(c, 0)y + s3(c, 0)y2 + s4(c, 0)(1− y2) ≤ Q(c, 0, y) ≤ 1280000.

For x = 1, it is noted that

s2(c, 1) = s3(c, 1) = s4(c, 1) ≡ 0, c ∈ [0, 2].

Therefore, we have

S(c, 1, y) = s1(c, 1) = L1(c) = 3988c6 +
(

4− c2
)[(

4− c2
)(

42700c2 + 36000
)

+46105c4 + 72000c2
]
.

Then
∂L1

∂c
= 3498c5 − 772720c3 + 1366400c.

Putting ∂L1
∂c = 0 and solving, we obtain c ≈ 1.335172357. Hence, we obtain that

S(c, 1, y) ≤ max L1(c) = 1183313.834 < 1280000, (c, y) ∈ [0, 2]× [0, 1].

Now we only need to prove that S(c, x, y) does not exceed 1,280,000 in the inside of Υ.
By observing that

∂S(c, x, y)
∂y

= s2(c, x) + 2[s3(c, x)− s4(c, x)]y =
∂Q(c, x, y)

∂y
,
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we easily find that there are no critical points of S in (0, 2)× [ 1
2 , 1)× (0, 1) from the proof

of Theorem 8.
Suppose that there is a critical point (c̃, x̃, ỹ) of S existing in the interior of cuboid

Υ. It is clear that x̃ ≤ 1
2 . Moreover, it can be seen that c̃2 ≥ 300

147 and ỹ ∈ (0, 1). For

(c, x, y) ∈
(√

300
147 , 2

)
× (0, 1

2 )× (0, 1), by invoking x < 1
2 and 1− x2 < 1 it is not hard to

observe that

s1(c, x) ≤ 3988c6 +
(

4− c2
)[(

4− c2
)(

2500c2(1/2)4 + 15000c2(1/2)3 + 36000(1/2)3

+25200c2(1/2)2
)
+ 24400c4(1/2)2 + 3705c4(1/2) + 72000c2(1/2)2 + 18000c4(1/2)3

]
,

= 3988c6 +
1
4

(
4− c2

)(
7485c4 + 187300c2 + 72000

)
:= φ̂1(c),

and
s2(c, x) ≤ φ2(c), s3(c, x) ≤ φ3(c), s4(c, x) ≤ φ4(c).

Therefore, we have

S(c, x, y) ≤ φ̂1(c) + φ4(c) + φ2(c)y + [φ3(c)− φ4(c)]y2 := Ξ3(c, y).

It is easily to be seen that

∂Ξ3

∂y
= φ2(c) + 2[φ3(c)− φ4(c)]y =

∂Ξ2

∂y
≤ 0, y ∈ (0, 1).

Thus, we obtain

Ξ3(c, y) ≤ Ξ3(c, 1) = φ̂1(c) + φ2(c) + φ3(c) := ι3(c), c ∈ (

√
300
147

, 2).

It is easy to calculate that ι3(c) attains its extremal value 1,156,314 at c ≈ 1.428571.
Thus, we have

S(c, x, y) < 1280000, (c, x, y) ∈
(√

300
147

, 2

)
× (0,

1
2
)× (0, 1).

Hence S(c̃, x̃, ỹ) < 1,280,000. This implies that S is less than 1,280,000 at all the critical
points in the interior of Υ. Therefore, S has no optimal solution in the interior of Υ.

From the above discussion, we conclude that

S(c, x, y) ≤ 1280000 on [0, 2]× [0, 1]× [0, 1].

In virtue of (63), we can write∣∣∣a3a5 − a2
4

∣∣∣ ≤ 1
18000000

(S(c, x, y)) ≤ 16
225

.

Equality is achieved by an extremal function

z exp
(∫ z

0

(
4
5

(
t2
)
+

1
5

(
t11
))

dt
)
= z +

4
15

z4 + · · · .
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Example 1. From (6), one can easily deduce the following functions

f0(z) = z exp
(

16z3 + z12

60

)
= z +

4
15

z4 +
8

225
z7 + · · · (64)

and

f1(z) = z exp
(

16z4 + z16

80

)
= z +

1
5

z5 +
1

50
z9 + · · · . (65)

Both these functions belong to the class S∗3l . Comparing coefficients of like powers of (64) and
(1), we have

a2 = a3 = a5 = 0, a4 =
4
15

.

Then, it follows that ∣∣∣a3a5 − a2
4

∣∣∣ = 16
225

and
|∆3,1( f )| = 16

225
.

Similarly, using (65), we easily obtain that∣∣∣a2
3 − a5

∣∣∣ = 1
5

.

7. Concluding Remarks and Observations

Due to the great importance of coefficients in the field of function theory, Pom-
merenke [16,17] proposed the topic of studying the Hankel determinant with entry of
coefficients. In the current article, we considered two subfamilies of starlike and bounded
turning functions, denoted by S∗3l and BT 3l , respectively. These families of univalent
functions were connected by a three-leaf-shaped domain with the quantities z f ′(z)/ f (z)
and f ′(z) being subordinated to 1 + 4

5 z + 1
5 z4. For functions belonging to these classes,

we investigated various intriguing problems containing initial coefficients. Among these
problems, the sharp bounds of the Hankel determinant are extremely difficult to investi-
gate, and we determined the sharp estimate of this determinant for functions belonging to
both classes.

In proving our main results, finding the upper bounds of the Hankel determinant
for functions belonging to S∗3l or BT 3l was transformed into a maximum value problem
of a function with three variables in the domain of a cuboid. Based on an analysis of all
the possibilities that the maxima might occur, we were able to determine the sharp upper
bounds for these families. Numerical analysis was applied since some of the computations
are quite complicated. Clearly, this approach may be used to calculate bounds for functions
belonging to various subfamilies of univalent functions. However, in most cases, it is not
so lucky to obtain such sharp results.

Furthermore, the application of the familiar quantum or fundamental (or q-) calculus,
as (for example) in similar recent publications [51–54], might be a promising route for
additional research based on our current findings.
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