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Abstract: The Caputo-Fabrizio fractional integral operator is one of the important notions of frac-
tional calculus. It is involved in numerous illustrative and practical issues. The main goal of this
paper is to investigate weighted fractional integral inequalities using the Caputo-Fabrizio fractional

)
integral operator with non-singular e (5= =), 0 < § < 1. Furthermore, based on a family of
n positive functions defined on [0, o0), we investigate some new extensions of weighted fractional

integral inequalities.
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1. Introduction

Fractional calculus is the extension of conventional calculus into the non-integer
differential and integral orders. It has found significant importance due to its application
in various fields of science and engineering, such as life sciences, chemical science, and
physical sciences. It naturally appears in numerous branches of science and engineering,
including the physical, chemical, and life sciences. Numerous mathematicians have spent
the last two decades studying fractional integral inequalities and applications using the
Riemann-Liouville, Saigo, Hadamard, Marichev-Saigo-Maeda, generalized Katugampola,
and generalized k-fractional integral operators, see Refs. [1-10].

Some recent developments in this field will now be presented. Houas M. looked at
certain weighted integral inequalities involving fractional hypergeometric operators in
Ref. [11]. Marichev [12] (see also Ref. [10]) introduced the generalization of the hypergeo-
metric fractional integral, including the Saigo operator. Caputo and Fabrizio proposed a
novel fractional derivative and application of a new time and spatial fractional derivative
with exponential kernels (see Refs. [13,14]). Recently, certain fractional integral inequalities
utilizing the Caputo-Fabrizio fractional integral were proposed by Gustava Nchama and
et al. in Ref. [15]. In Refs. [16,17], the authors proposed some fractional inequalities for
h-convex functions and preinvex functions involving the Caputo—Fabrizio operator. Giir-
biiz and et al. [18] obtained the Hermite—-Hadamard inequality and related inequalities for
fractional integrals of Caputo-Fabrizio type. The main motivation is the Caputo—Fabrizio
integral and its derivative operator, which are general fractional integral and derivative,
respectively (see Refs. [19,20]). Additionally, it has a non-singular kernel, which is a real
power that has been transformed into an integral using the Laplace transform. As a result,
many problems have an easy time finding an exact solution.

These days, fractional integrals and derivatives play a significant role in modeling a
variety of physical phenomena. Due to the singular kernel, the Riemann-Liouville and
Caputo fractional derivatives cannot adequately represent several phenomena relating to
material heterogeneities. It is the result of Caputo and Fabrizio’s suggestion of a novel

fractional integral involving the nonsingular kernel e~ (55%) (= %), where the parameter &
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satisfies 0 < J < 1. Furthermore, the Caputo-Fabrizio fractional integral operator has
been increasingly popular among applied scientists’ mathematicians as a modeling tool
(see Refs. [21-23]). In Refs. [15,24], the authors developed fractional integral inequalities
using the Caputo-Fabrizio operator. For further information, see Refs. [10,12]. As a concrete
physical example, a heat conduction equation with the Caputo-Fabrizio derivative and an
investigation of a line segment were utilized to provide the fundamental solutions to the
Cauchy and Dirichlet problems in Ref. [25]. The major advantages of the Caputo-Fabrizio
integral operator is that it allows the boundary condition of fractional differential equations
with Caputo—Fabrizio derivatives to admit the same form as for the differential equations
of integer order. A few studies using the Caputo and Caputo-Fabrizio integral operators to
solve fractional integral inequalities have been published (see Refs. [15,26,27]). Our goal is
to create some novel weighted fractional integral inequalities involving Caputo—Fabrizio
fractional integral operators, which are inspired by Refs. [20,22,23,28,29].

The following paragraph describes how the paper has organized. In Section 2, basic
definitions for the Caputo-Fabrizio fractional derivatives and integrals are provided.
In Section 3, by utilizing the Caputo-Fabrizio fractional integral operator, we provide
weighted fractional integral inequalities. A conclusion is given in Section 4.

2. Preliminaries

Here, the Caputo-Fabrizio fractional integral operator is discussed along with some
fundamental definitions of fractional calculus.

Definition 1 ([3,15,26]). Let 6,a € R such that 0 < § < 1. The Caputo—Fabrizio fractional
derivative of order 6 of a function ¢ is defined by

~(%5)
Tlo)) = 1 [ () (s (1
Definition 2 ([3,15,26]). Let § € R such that 0 < 6 < 1. The Caputo-Fabrizio fractional integral
of order 6 of a function ¢ is defined by

1

T o) = 5 [ U g(s)as. @)

For the special case 6 = 1, it is reduced to the following integral:

73 1p(5)] = /0 “ ¢ (s)ds.

The above definition may be extended to any é > 0.
With the help of the Caputo-Fabrizio fractional integral operator, various novel in-
equalities will be demonstrated in this study.

3. Weighted Fractional Integral Inequalities

Using the Caputo-Fabrizio fractional integral operator, we establish a few weighted
fractional integral inequalities in this section.

Theorem 1. Let f be a positive continuous function on [0,00), and ¢ > 0, @ > A > 0, such that,

forany u,C >0,
(26 () — pPf (D)) (F2 4 () = £271(0)) > 0. ®)

In addition, let w be a positive continuous function on [0, c0). Then, for all 32,6 > 0, we have

I8 [ () (50)) g L [w(50) 5% (50)] < I3 [w(50)£7 (50)] I [w(30) 38 (30)). - (4)
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Proof. From (3), we have
UM () + ptO M ()F() < QOO () + uePTON (). ®)

Then, multiplying both sides of the inequality (5) by %e_<10;'5)(”“_”)w(y)f’\(y), U e
(0, »), 5 > 0, and integrating the resultant identity with respect to y from 0 to s, we get

S
S—

" e ()01 g0 A (o () A ()t + ~ / (5 Cm g () 2 (ZYeo ()

1-0

5 S (6)
[ G mge e+ 5 [ (50 e e A o) o),

IN
| =

consequently,

g8 2ME) T [w ()£ (50)] + £2(8) T [0 (50) 304 ()]
< 00 ZY L [w() 9 (50)] + 19N T [w(50) 308 (52) .

0,2

@)

Multiplying both sides of (7) by %ef(l%'&) C=0w()F1(2), € (0,5), ¢ > 0, then integrating
the resulting identity with respect to  from 0 to sz, we obtain

5 [w(0) 4 (50)] T3 [0 (50) 526 (30)] + T [1w(5¢) 582 (50)] T3 [0 (5) £+ (50)]

. 8
< T3 [w(Af (50)] ZL, ()6 (50)] + T [10(o6) 26 (52)] L, [ ) (5], ®

which brings the proof to a close. U
The condition (3) is not severe; it can be demonstrated that it is satisfied for any
decreasing function f, or any function f such that f and f(¢) / ¢ are increasing. We can notice
that the inequality (4) becomes an equality for the basic function f(s) = s.
We will now present our major finding.

Theorem 2. Let f be a positive continuous function on [0,00) and ¢ > 0, @ > A > 0, which
satisfy (3). In addition, let w be a positive continuous function on [0,00). Then, for all 5,6 > 0,
we have

() 562 (50)] T [w(30) 7 ()] + TG, [w(50) 52 (50) G, [w (50) £ ()]

73 [w
9
< T3 f(2) P o) T [0 ()] + T [o(52) 2 66) T [ 0 (). )

Proof. Let us multiply both sides of (5) by le~ (")~ 0w(2)f\(7), (¢ € (0,5), » > 0),
under the circumstances specified in the theorem (this function remaining positive). Then,
by integrating the result with respect to { from 0 to s, we obtain

()5 [ e P @ag + e o [T () u)e g

< rea (L / "o (5 M) gof (g)dg + Ql/ ’ h
< " 5 ) H 6 Jo

e (55 =m0y 69+ (2)de,

therefore

£0() T3 [0(50) 5242 (50)] + 272 () Zg [ (50) £ ()]

11
< RHON ) T [w0(0) 08 ()] + 18 T3 [0 (5)f0H (). "

Again, multiplying both sides of (11) by %e_<¥)(”_”)w(y)f’\(y), u € (0,5),5 >0, then
integrating the obtained result with respect to { from 0 to s, we get
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x

e~ (F) e Map(u) et (g + I3 [ () A )5 [ e (701 106 (o o) dp

[ e i + 7w (o] [ e U oy

1'(5

0,2¢

[w(5¢) %67 ()]

Sl
S

| =
c%

(12)
< T3 [w(52) 52 (32)]

Sl

This completes the proof of the theorem. [

Theorem 3. Let f and g be positive continuous functions on [0, 00), and ¢ > 0, @ > A > 0, such
that, for any u, ¢ > 0, we have

(82(0)f(p) — g2 ()F(2)) (F° M () — £27(2)) > 0. (13)

In addition, let w be a positive continuous function on [0,00). Then, for all 5,8 > 0, we get

T, [w()f ()] T3 [w()82 A ()] < T, [w()40 (2)]Z3,, [w(3)g° () ()] (14)
Proof. From (13), we have

g2 (O MO () + g2 (D) () < DT () + g2 (WEPTNE). (1)

Multiplying both sides of (15) by %e_(¥)(%_”)w(y)fA(y), i€ (0,5), 2 > 0, then
integrating the resulting identity with respect to u from 0 to sz, we obtain

QP @5 [ (TR ) w0 (o)

(16)

Thus, we establish that

g2 (O ML s [ ()£ (50)] + £2(0) TG L [w(52)g° () (2)]

. 17
< 80T [w() 20 (50)] + £F O NO)T L [w(50)8° () (30)]. o7

Multiplying both sides of (17) by e~ (55%) (= ~Sw(Z)f(7), then integrating the result-
ing inequality with respect to { over (0, ), we obtain

B A G5 [7e (5 u)ge o) )
I f0(ag R ) [ U 0R A Q)

1 % e (18)
< B Iw(AE Gl [ e (DR Qw()gt ()
£33 () () ()] 5 | " (T Dy (g)ere g,
which implies that
T8 0 () (52) T8 w0 56) 82 52) 7 (20) + T4 0 ()82 () ° (52) T3, [ ()0 ()] )

< I8 [w () (o) TG [f () (50) 8% (50)] + T3 [w(5)g° () (50)| T3 [w ()44 (),
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that concludes the proof. [J

It is worth noting that the condition (13) is satisfied for a wide range of function classes.
It is satisfied in particular by any functions f and g such that either f(3r) /g(5¢) and f(5¢) are
increasing (simultaneously), or f(3¢) /g(5¢) and f(¢) are decreasing (simultaneously).

Theorem 4. Let f and g be two positive continuous functions on [0,00) and ¢ > 0, @ > A > 0,
which satisfy (13). In addition, let w be a positive continuous function on [0,00). Then, for all
#,6, B > 0, we have

I} ()82 ()7 ()| T3, [w(32) £ (36)] + T [w(0) £ (36) T [ (30) g ()6 ()]

(20)
< I [w(z)gf ()] T3 . [w(32) £ (36)] + T [ ()24 (30)]| T3 [w(2) g2 () (32)].

(LB (-
Proof. Multiplying the inequality (17) by %e ( B >(% g)w(g)f)‘(é), ¢ €(0,5),5 > 0 (this
function remains positive under the conditions stated with the theorem), then integrating
the obtained result with respect to ¢ from 0 to >, we get

IS,Aw(z)f@“(%ﬂ; J " gg e @

0

43w el [T (P Dr @i »
< B fuae el [T (0P Qg
+ T e Gl [ U D,
which implies that
78 w()g! (o) GV ) (o) + 38, o603, o) () () o

< I [w()g ()13 [w(3) 170 (56)] + T [w ()62 (30)] T8 [ () () (32)].
Thus, the proof is completed. [

In the sequel of the study, we will provide a new extension of weighted fractional
integral inequalities based on a family of n positive functions defined on [0, ).

Theorem 5. Let f;,i = 1,...,n be n positive continuous functions on [0,00) and ¢ > 0,@ >
Ay >0,vr=1,...,n, such that, forany u, ¢ > 0,

(47 () = pOEF (2)) (67 () = £7777(2)) > 0. (23)

In addition, let w be a positive continuous function on [0,00). Then, for all 2,6 > 0, the
following inequality is valid:

T8 [0 (50) £ () TI_ £ (50)] T3 [w(5¢) 342 (o) TIL, £ (52)]

. , (24)
< I8 [w(5) 0T £ (30)| T [w ()€ ()T, £ (39)).

Proof. From (23), we have

PN QB () + pB(OE N (1) < T T ) TN Q). (@)
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Multiplying both sides of (25) by %e_(lTé) Jw(u T 1f1)L (u), then integrating the
resulting inequality with respect to u over (0, ), we obtain

L e T R AT

+8@); [ (TR, £ oldy

L ) i N (26)
< g5 [ e U (o oI, £ () ap
Q)5 [ (T o) e £ o

Consequently,

C87 () T8 w0 () (T ()] 61(0) T w0(52) T, 81 50 o

< 00 T8 [w() TGI8 ()] + 6707 (D) T L0 (56) 3T £ (50)).
Again, multiplying the inequality (27) by %67(10;'5)(”75)w(§)1_1?:1f?1(@),é € (0,5), >

0, this function remaining positive under the conditions stated with the theorem, then
integrating the obtained result with respect to ¢ from 0 to s, we have

T3 [ (5e) 8 (o) T, £ 5 ANz [ @@, 0

+ TGt £ Gl [T (e Du@ g 0

+ A 1 /% (12 (28)
< B lw(f (oI £ ()] 5 [~ e () Du@)germy iy (0)ag
+ Tl Gl [ () D@ @i £ @),
therefore,
WG ()T ()] T3 [5267 ()T #rf?f(z)]
+13 [@(oe) 2T £ (52) T8 [0 () G £ ()]
5 +e @9)
< Rl (M 6 F AT (o wn? 1£()]
I,

+ I [w(50) T £ ()] TG [ (3¢ )fw“)( JIL £ (52)].

This completes the inequality (24). O

The flexibility of the condition (23) can be commented as the condition (3), but for
f;,,i=1,...,ninstead of f.

Theorem 6. Let f;,i = 1,...,n be n positive continuous functions on [0,0) and ¢ > 0, @ >
Ay > 0,v =1,...,n, which satisfy (23). In addition, let w be a positive continuous function on
[0, 00). Then, for all 5,6, B > 0, the following inequality holds:

I [w(50) 5282 ()T, £ (30)] T3 [0 ()85 (50 T £ ()]
+ I [10(30) 562 ()T, £ (50) T, [w(x)f% > 1fﬁ’(%)}
< T3 w7 TG T, £ ()] T [10(50) 3T T £ ()]
+ I§ w7 ()T £ (50)] T3 [w(5¢) s TT £ (52)].

(30)
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(B (5=
Proof. Multiplying the inequality (27) by %e ( B )(% g)w(C)Hf 1fl (0),0€(0,5),x>0
(under the circumstances outlined in the theorem, this function remains positive), then
integrating the result with respect to ¢ from 0 to s, we get

1-

B oA it (g [ ) D@y i

1-p

+ T8 o) AT £ >J; /O "5 ><”*“w<§>f$<g>n?:1f?f<g>dg
(31)

_ J _ .
< B Gt Gt Gl [ U Pz, o
+ B GGl [T () Dug oy, o,
which reflects the inequality (30). O

Theorem 7. Let f;,i = 1,...,n and g be positive continuous functions on [0,00), and ¢ > 0,
@ > A >0,vr=1,...,n,such that, forany u,¢ > 0,

(8°(2)EF (1) — g° (W @) (P~ () — 77 (0)) > 0, (32)

In addition, let w be a positive continuous function on [0, c0). Then, for all 32,6 > 0, we have

T3 [w(0) 8 ()T £ (30)] T3, [0 (56) g2 (50) 67 ()T, 7 ()]
< I3 [w(30) g2 ()T (32)| T3 [ (3e) 7 (52)TTY ., £ ()

Proof. From (32), it is clear that

(33)

g2 (OO (1) + £ (WM (1) < g2 (QF T () + £ (g (). (BY)

Multiplying both sides of (34) by %e*(To) Jw( w(p) T 1fl '(u), then integrating the

resulting inequality with respect to u over (0, ), we obtain

g (@) (g) g (30 M () (T, £ ()

Q) 5e U D () g (0 ()T, £ ()]

L (35)
< g2(0) ze U D w(uIn £ ()]
MO T ()0 () g0 (0TI £ (1) -

So, we can write
(D)0 ()T [w(50) £ ()T £ (50)] + £(2) T [ (30) g2 (50) £ (30) 1L, £ (52)] 56

< 80T Jw () o) T £ (50)] + BT ()T [0 (50) 82 ()T, £ (52) .

When we multiply both sides of (36) by %37(]%5)(” Dw(g )H?:lff” (0), and then inte-
grate the resulting inequality with respect to { over (0, »c), we get the following result:

215 [w() ] ()T (50)] T3 [w(32) 80 (30) 7 (56)ITL, £ (50)]

o o (37)
< 273 [w() T (o)1, £ (50)) T3 [w0(5¢) g2 (o) Ty £ (50).

This completes the proof of Theorem 7. [
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Theorem 8. Let f;,i = 1,...,n and g be positive continuous functions on [0,00) and ¢ > 0,
@ > A >0,vr=1,...,n,such that, forany u,¢ > 0,

(82 (1) = g (WE @) EF Y () —£77(2)) 2 0. (38)

In addition, let w be a positive continuous function on [0, 00). Then, for all »,5,p > 0, the
following inequality is valid:

T8 _[w(50)g° (502 (301 l#,, Y (50)] T3 [w (>
T3 [w(52)g2 (5)2 (30)TT: 17&,1 Yi(50)] T [w(>0)f
< T [w()E 0 (o)1, £ (50)| 5w <x>g@<x>ni:1f/<x>1

+ TP [w()E7 () ;-;rf?'<x>118,%[w<%>gg<%>H;-Llf?fw.

(39)

(1B, ,
Proof. Multiplying both sides of (34) by %e ( P )( 2 w({ )H?:lf?’(g ), then integrating
the resulting inequality with respect to { over (0, »), we obtain
£ ()T [ () g0 R ()T £ ()] + g@<z>ff*Af<u>I‘* [w(50) ()T ()]

(40)
< BTN TE [w(5) g0 ()T £ (30)] + 82 ()T [w(5e) £ (o) T, £ (52) .

Multiplying both sides of (40) by %e’(lT) M T 1fl (n), then integrating the
resulting inequality with respect to u over (0, »), we arrive at the following result:

I§ [w(5¢)g% ()£ ()11} 1#1 V(50)] T (o) () T £ (50)]+
T4, [w(52)g° ()£ (30)IT 1#, V()] T [w0(0) B8 (o) TTE £ (2)]

; + iy 41
< I w7 oI, £ ()| T) [w(32) g ()T £ () +

() i#rfif(xnzg,%[w<%>g@(z)H:;lf?f<%>1.

Thus, the proof is completed. [

)
X
:'é

4. Conclusions

Numerous mathematicians continue to be interested in the use of various fractional
operators in the study of integral inequalities. Refs. [6,7,30] investigated weighed fractional
integral inequalities employing, respectively, the Hadamard, Marichev-Saigo-Maeda, and
generalized Katugampola fractional integral operators. While using the Caputo-Fabrizio
fractional integral operators, we looked at several new fractional integral inequalities in this

research. Due to its nonsingular kernel, i.e., ef(lb;'(s) (=) with 0 < 6 < 1, it reveals to be a
more powerful fractional operator. By taking into account the Caputo-Fabrizio fractional
integral operator, we investigated the newly weighted fractional integral inequalities in
this study. Using the inequalities discussed in this paper, future research should be able to
prove the existence and uniqueness of a number of ordinary differential equations as well
as initial and boundary value problems using Caputo—Fabrizio fractional operators. It is
also possible that the inequalities found in this study provide access to various relationships
between fractals and Caputo-Fabrizio fractionals.
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