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Abstract: In this study, new midpoint-type inequalities are given through recently generalized
Riemann–Liouville fractional integrals. Foremost, we present an identity for a class of differentiable
functions including the proposed fractional integrals. Then, several midpoint-type inequalities
containing generalized Riemann–Liouville fractional integrals are proved by employing the features
of convex and concave functions. Furthermore, all obtained results in this study can be compared to
previously published results.
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1. Introduction

Fractional calculus is an area of mathematics that expands the traditional derivative
and integral ideas to noninteger orders. In recent decades, it has piqued the curiosity of
mathematicians, physicists, and engineers [1–3]. In a fluid-dynamic traffic model, fractional
derivatives can be utilized to simulate the irregular oscillation of earthquakes and to
compensate for the inadequacies induced by the assumption of a continuous traffic flow.
Fractional derivatives are also used to model a wide range of chemical processes, as well as
mathematical biology and other physics and engineering problems [4–8]. Further, it has
been demonstrated that several fractional systems produce results that are more appropriate
than those produced by corresponding systems having integer derivatives [9,10].

New studies have concentrated on developing a class of fractional integral operators
and their applicability in a variety of scientific disciplines. Using only the derivative’s
fundamental limit formulation, a newly well-behaved straightforward fractional derivative
known as the conformable derivative was developed in [11]. Some significant requirements
that cannot be fulfilled by the Riemann–Liouville and Caputo definitions are fulfilled
by the conformable derivative. Nevertheless, in [12], the author demonstrated that the
conformable approach in [11] could not yield good results when compared to the Caputo
definition for specific functions. This flaw in the conformable definition was avoided by
some extensions of the conformable approach [13,14]. In addition, employing exponen-
tial and Mittag–Leffler functions in the kernels, several scholars created novel expanded
fractional operators [15–19].

The Hermite–Hadamard inequality, which is the initial conclusion of convex functions
with a straightforward geometric explanation and different applications, has recently
attracted considerable interest in both elementary and advanced mathematics. The Hermite–
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Hadamard inequality declares that if φ : Z ⊂ R→ R is a convex mapping and ε1, ε2 ∈ Z
with ε1 < ε2, then

φ

(
ε1 + ε2

2

)
≤ 1

ε2 − ε1

∫ ε2

ε1

φ(ς)dς ≤ φ(ε1) + φ(ε2)

2
. (1)

If φ is concave, the two inequalities are valid in the reverse orientation.
Since the discovery of inequality (1), it has been the focus of substantial research,

and a number of articles have been published that offer notable expansions, generaliza-
tions, and improvements for a new category of convex functions. Please see for some
instances [20–26].

Several scientists investigated the Hermite–Hadamard inequality utilizing fractional
operators and produced a variety of extensions and enhancements. Sarikaya and Alp [27]
used local fractional integrals to investigate the Hermite–Hadamard–Fejér integral in-
equalities for generic convex mappings. Kwun et al. [28] explored generalized Riemann–
Liouville fractional integrals connected with Ostrowski type inequalities and Hadamard
error constraints. Budak et al. [29] defined new Riemann–Liouville fractional integrals for
interval-valued functions on coordinates. Using these specified fractional integrals, they
also established Hermite–Hadamard and other related inequalities for coordinated convex
interval-valued functions. Hyder et al. [30] recently used more general fractional operators
to demonstrate further fractional inequalities in the Hermite–Hadamard and Minkowski
contexts. For some more results, one can refer to [31–33].

Following are some concepts and foundations of fractional calculus that are utilized
later in this research.

Definition 1 ([17]). Let φ ∈ L1[v, $], v, $ ∈ R with v < $. The Riemann–Liouville integrals
Jη
v+φ and Jη

$−φ of order η > 0 are defined by

Jη
v+φ(ξ) =

1
Γ(η)

∫ ξ

v
(ξ − ς)η−1φ(ς)dς, ξ > v, (2)

and
Jη
$−φ(ξ) =

1
Γ(η)

∫ $

ξ
(ς− ξ)η−1φ(ς)dς, ξ < $, (3)

respectively. Here, Γ denotes the gamma function and J0
v+φ(ξ) = J0

$−φ(ξ) = φ(ξ).

Jarad et al. [18] introduced the following generalized fractional integral operators.
They also provided certain characteristics and relationships between these operators and
several other fractional operators in the literature

Definition 2 ([18]). Let η ∈ C, Re(η) > 0, and θ ∈ (0, 1]. For φ ∈ L1[v, $], the generalized
fractional Riemann–Liouville integrals η

vΥθφ and ηΥθ
$φ, of order (η, θ), are defined by

η
vΥθφ(ξ) =

1
Γ(η)

∫ ξ

v

(
(ξ −v)θ − (ς−v)θ

θ

)η−1
φ(ς)

(ς−v)1−θ
dς, ξ > v, (4)

and
ηΥθ

$φ(ξ) =
1

Γ(η)

∫ $

ξ

(
($− ξ)θ − ($− ς)θ

θ

)η−1
φ(ς)

($− ς)1−θ
dς, ξ < $, (5)

respectively.

Remark 1 ([18]). When θ = 1, v = 0, the fractional operator in (4) and the Riemann–Liouville
integral in (2) are the same. Furthermore, if θ = 1, $ = 0, the fractional operator in (5) reduces to
the Riemann–Liouville integral in (3).
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Using the fractional integrals in (4) and (5), Set et al. [34] presented a notable Hermite–
Hadamard integral inequality as below:

Theorem 1 ([34]). Assume φ is a positive convex function from [v, $] into R. If 0 ≤ v < $ and
φ ∈ L1[v, $], then the next inequality holds for the generalized fractional integrals η

vΥθ and ηΥθ
$:

φ

(
v + $

2

)
≤ Γ(η + 1)θη

2($−v)θη

[
η
vΥθφ($) +η Υθ

$φ(v)
]
≤ φ(v) + φ($)

2
, (6)

where Re(η) > 0 and θ ∈ (0, 1].

Furthermore, the Hermite–Hadamard inequality of a positive convex function that
involves the fractional operators (4) and (5) was represented by Gözpınar as follows:

Theorem 2 ([35]). Suppose φ : [v, $] → R is a positive convex function with 0 ≤ v < $ and
φ ∈ L1[v, $]. If Re(η) > 0 and θ ∈ (0, 1], then we get the inequality:

φ

(
v + $

2

)
≤ 2θη−1Γ(η + 1)θη

($−v)θη

[
η
v+$

2
Υθφ($) +η Υθ

v+$
2

φ(v)

]
≤ φ(v) + φ($)

2
. (7)

In the current study, we present new midpoint inequalities through the generalized
Riemann–Liouville fractional integrals (4) and (5). For a class of differentiable functions,
we create a new identity including the proposed fractional integrals. Hence, by employing
convex and concave mappings, several generalized midpoint inequalities are obtained.
Furthermore, our results can be compared to previously known results.

This paper is constructed as follows: In Section 2, we present the main results. Pre-
cisely, we create a new identity concerning a class of differentiable functions and involving
the suggested fractional integrals. Consequently, by utilizing convex and concave map-
pings, diverse generalized midpoint inequalities are obtained. Section 3 involves some
conclusions.

2. Main Results

We start with proving the next Lemma which is utilized frequently throughout this
section.

Lemma 1. Let φ be a function from [v, $] into R with v < $. If φ ∈ L1[v, $] and differentiable
on (v, $), then the next identity holds for each ξ ∈ [v, $]:

θηΓ(η + 1)
$−v

[
(ξ −v)1−θη ηΥθ

$φ(v + $− ξ) + (v− ξ)1−ηθ η
vΥθφ(v + $− ξ)

]
− φ(v + $− ξ)

=
θη(ξ −v)2

$−v

1∫
0

[
1
θη −

(
1− (1− ς)θ

θ

)η]
φ′(ς$ + (1− ς)(v + $− ξ))dς (8)

+
θη(v− ξ)2

$−v

1∫
0

[(
1− (1− ς)θ

θ

)η

− 1
θη

]
φ′(ςv + (1− ς)(v + $− ξ))dς.

Proof. Applying the integration by parts, we get
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1∫
0

[
1
θη −

(
1− (1− ς)θ

θ

)η]
φ′(ς$ + (1− ς)(v + $− ξ))dς

=

[
1
θη −

(
1− (1− ς)θ

θ

)η]
φ(ς$ + (1− ς)(v + $− ξ))

ξ −v

∣∣∣∣∣
1

0

+
η

ξ −v

1∫
0

(
1− (1− ς)θ

θ

)η−1

(1− ς)θ−1φ(ς$ + (1− ς)(v + $− ξ))dς (9)

= −φ(v + $− ξ)

θη(ξ −v)
+

η

(ξ −v)θη+1

$∫
v+$−ξ

(
($− ξ)θ − ($− ς)θ

θ

)η−1

φ(ς)
dς

(v− ς)1−θ

= −φ(v + $− ξ)

θη(ξ −v)
+

Γ(η + 1)

(ξ −v)θη+1
ηΥθ

$φ(v + $− ξ).

Likewise, we have

1∫
0

[(
1− (1− ς)θ

θ

)η

− 1
θη

]
φ′(ςv + (1− ς)(v + $− ξ))dς (10)

= −φ(v + $− ξ)

θη(v− ξ)
+

Γ(1 + θ)

(v− ξ)ηθ+1
η
a Υθφ(v + $− ξ).

By Equalities (9) and (10), the required identity (8) is obtained.

Theorem 3. Let φ be a function from [v, $] into R. If φ is differentiable on (v, $) and |φ′| is convex
on [v, $], then the next inequality holds for the fractional integrals η

vΥθ , ηΥθ
$, and ξ ∈ [v, $]:∣∣∣∣ θηΓ(η + 1)

$−v

[
(ξ −v)1−θη ηΥθ

$φ(v + $− ξ) + (v− ξ)1−ηθ η
vΥθφ(v + $− ξ)

]
− φ(v + $− ξ)

∣∣∣∣
≤ (ξ −v)2

$−v

{[
1
2
− 1

θ

(
B
(

η + 1,
1
θ

)
− B

(
η + 1,

2
θ

))]∣∣φ′($)∣∣
+

[
1
2
− 1

θ
B
(

η + 1,
2
θ

)]∣∣φ′(v + $− ξ)
∣∣} (11)

+
θη(v− ξ)2

$−v

{[
1
2
− 1

θ

(
B
(

η + 1,
1
θ

)
− B

(
η + 1,

2
θ

))]∣∣φ′(v)
∣∣

+

[
1
2
− 1

θ
B
(

η + 1,
2
θ

)]∣∣φ′(v + $− ξ)
∣∣},

where B(z1, z2) =
∫ 1

0 ςz1−1(1− ς)z2−1dς is the Euler Beta function.
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Proof. According to Lemma 1, we get∣∣∣∣ θηΓ(η + 1)
$−v

[
(ξ −v)1−θη ηΥθ

$φ(v + $− ξ) + (v− ξ)1−ηθ η
vΥθφ(v + $− ξ)

]
− φ(v + $− ξ)

∣∣∣∣ (12)

≤ θη(ξ −v)2

$−v

1∫
0

∣∣∣∣∣ 1
θη −

(
1− (1− ς)θ

θ

)η∣∣∣∣∣∣∣φ′(ς$ + (1− ς)(v + $− ξ))
∣∣dς

+
θη(v− ξ)2

$−v

1∫
0

∣∣∣∣∣
(

1− (1− ς)θ

θ

)η

− 1
θη

∣∣∣∣∣∣∣φ′(ςv + (1− ς)(v + $− ξ))
∣∣dς.

From the convexity of |φ′|, we obtain

1∫
0

∣∣∣∣∣ 1
θη −

(
1− (1− ς)θ

θ

)η∣∣∣∣∣∣∣φ′(ς$ + (1− ς)(v + $− ξ))
∣∣dς

≤ 1
θη

1∫
0

[
1−

(
1− (1− ς)θ

)η][
ς
∣∣φ′($)∣∣+ (1− ς)

∣∣φ′(v + $− ξ)
∣∣]dς (13)

=
1
θη

{[
1
2
− 1

θ

(
B
(

η + 1,
1
θ

)
− B

(
η + 1,

2
θ

))]∣∣φ′($)∣∣
+

[
1
2
− 1

θ
B
(

η + 1,
2
θ

)]∣∣φ′(v + $− ξ)
∣∣}.

Similarly, we have

1∫
0

∣∣∣∣∣
(

1− (1− ς)θ

θ

)η

− 1
θη

∣∣∣∣∣∣∣φ′(ςv + (1− ς)(v + $− ξ))
∣∣dς

≤ 1
θη

{[
1
2
− 1

θ

(
B
(

η + 1,
1
θ

)
− B

(
η + 1,

2
θ

))]∣∣φ′(v)
∣∣ (14)

+

[
1
2
− 1

θ
B
(

η + 1,
2
θ

)]∣∣φ′(v + $− ξ)
∣∣}.

By inserting inequalities (13) and (14) in (12), the desired inequality (11) is obtained.

Corollary 1. If we choose θ = 1 in Theorem 3, then we have the following inequality for Riemann–
Liouville fractional integrals∣∣∣∣Γ(η + 1)

$−v

[
(ξ −v)1−η Jη

$−φ(v + $− ξ) + (v− ξ)1−η Jη
v+φ(v + $− ξ)

]
− φ(v + $− ξ)

∣∣∣∣
≤ η

2($−v)(η + 2)

(
(ξ −v)2∣∣φ′($)∣∣+ (v− ξ)2∣∣φ′(v)

∣∣) (15)

+

(
1
2
− 1

(η + 1)(η + 2)

)(
(ξ −v)2 + (v− ξ)2

$−v

)∣∣φ′(v + $− ξ)
∣∣.

Remark 2. If we assign η = 1 in Corollary 1, then Corollary 1 reduces to [36] (Theorem 5, for q = 1).
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Corollary 2. Consider the assumptions of Theorem 3. If ξ = v+$
2 , we get the next inequality:∣∣∣∣∣2θη−1Γ(η + 1)

($−v)θη

[
ηΥθ

$φ

(
v + $

2

)
+

η
vΥθφ

(
v + $

2

)]
− φ

(
v + $

2

)∣∣∣∣∣ (16)

≤ $−v

4

(
1− 1

θ
B
(

η + 1,
1
θ

))[∣∣φ′($)∣∣+ ∣∣φ′(v)
∣∣].

Remark 3. If we take θ = η = 1 in Corollary 2, then Corollary 2 reduces to [37] (Theorem 2.2).

Example 1. Let [v, $] = [1, 2] and let ξ = 3
2 . Consider the function φ : [0, 1] → R defined by

φ(ς) = ς3

3 . Then, φ′(ς) = ς2 and |φ′| is convex on [1, 2]. Under these assumptions,

Jη
$−φ(v + $− ξ) =

1
Γ(η)

2∫
3
2

(
ς− 3

2

)η−1 ς3

3
dς =

32η3 + 168η2 + 244η + 81
3 · 2η+2Γ(η + 4)

, (17)

and

Jη
v+φ(v + $− ξ) =

1
Γ(η)

3
2∫

1

(
3
2
− ς

)η−1 ς3

3
dς =

4η3 + 30η2 + 80η + 81
3 · 2η+2Γ(η + 4)

. (18)

The left-hand side of (15) reduces to∣∣∣∣Γ(η + 1)
$−v

[
(ξ −v)1−η Jθ

b−φ(v + $− ξ) + (v− ξ)1−η Jθ
a+φ(v + $− ξ)

]
− φ(v + $− ξ)

∣∣∣∣
=

∣∣∣∣∣Γ(η + 1)

[(
1
2

)1−η 32η3 + 168η2 + 244η + 81
3 · 2η+2Γ(η + 4)

+

(
1
2

)1−η 4η3 + 30η2 + 80η + 81
3 · 2η+2Γ(η + 4)

]
− 9

8

∣∣∣∣∣ (19)

=

∣∣∣∣18η3 + 99η2 + 162η + 81
24(η + 1)(η + 2)(η + 3)

− 9
8

∣∣∣∣.
Similarly, the right-hand side of (15) reduces to(

η

2($−v)(η + 2)

)(
(ξ −v)2∣∣φ′($)∣∣+ (v− ξ)2∣∣φ′(v)

∣∣)
+

(
1
2
− 1

(η + 1)(η + 2)

)(
(ξ −v)2 + (v− ξ)2

$−v

)∣∣φ′(v + $− ξ)
∣∣ (20)

=
5η2 + 5η − 9

8(η + 2)
+

9
16

.

By inequality (15), we have the inequality∣∣∣∣18η3 + 99η2 + 162η + 81
24(η + 1)(η + 2)(η + 3)

− 9
8

∣∣∣∣ ≤ 5η2 + 5η − 9
8(η + 2)

+
9
16

. (21)

One can see the validity of inequality (21) in Figure 1.
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Figure 1. An example of inequality (15) depending on η , computed and plotted with MATLAB.

Theorem 4. Let φ be a function from [v, $] into R. If φ is differentiable on (v, $) and |φ′|q
is convex for ξ ∈ [v, $] and q > 1, then the next inequality holds for the fractional integrals
η
vΥθ , ηΥθ

$, and ξ ∈ [v, $]:∣∣∣∣ θηΓ(η + 1)
$−v

[
(ξ −v)1−θη ηΥθ

$φ(v + $− ξ) + (v− ξ)1−ηθ η
vΥθφ(v + $− ξ)

]
− φ(v + $− ξ)

∣∣∣∣
≤ (ξ −v)2

$−v

(
1− 1

θ
B
(

pη + 1,
1
θ

)) 1
p
(
|φ′($)|q + |φ′(v + $− ξ)|q

2

) 1
q

(22)

+
(v− ξ)2

$−v

(
1− 1

θ
B
(

pη + 1,
1
θ

)) 1
p
(
|φ′(v)|q + |φ′(v + $− ξ)|q

2

) 1
q

,

where B(·, ·) is Euler’s beta function and 1
q +

1
p = 1.

Proof. According to Hölder’s inequality and the convexity of |φ′|q, we get

1∫
0

∣∣∣∣∣ 1
θη −

(
1− (1− ς)θ

θ

)η∣∣∣∣∣∣∣φ′(ς$ + (1− ς)(v + $− ξ))
∣∣dς

≤

 1∫
0

∣∣∣∣∣ 1
θη −

(
1− (1− ς)θ

θ

)η∣∣∣∣∣
p

dς


1
p
 1∫

0

∣∣φ′(ς$ + (1− ς)(v + $− ξ))
∣∣qdς


1
q

(23)

≤ 1
θη

 1∫
0

(
1−

(
1− (1− ς)θ

)pη)
dς


1
p
 1∫

0

[
ς
∣∣φ′($)∣∣q + (1− ς)

∣∣φ′(v + $− ξ)
∣∣q]dς


1
q

=
1
θη

(
1− 1

θ
B
(

pη + 1,
1
θ

)) 1
q
(
|φ′($)|q + |φ′(v + $− ξ)|q

2

) 1
q

.

Here, we utilize the fact that
(m− n)k ≤ mk − nk, (24)

for any m > n ≥ 0 and k ≥ 1.
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Likewise, we have

1∫
0

∣∣∣∣∣
(

1− (1− ς)θ

θ

)η

− 1
θη

∣∣∣∣∣∣∣φ′(ςv + (1− ς)(v + $− ξ))
∣∣dς (25)

≤ 1
θη

(
1− 1

θ
B
(

pη + 1,
1
θ

)) 1
p
(
|φ′(v)|q + |φ′(v + $− ξ)|q

2

) 1
q

.

Substituting inequalities (23) and (25) in (12), we get the required inequality (22).

Remark 4. If we choose θ = 1 in Theorem 4, then Theorem 4 reduces to [38] (Theorem 3).

Corollary 3. In view of the assumptions of Theorem 4. If ξ = v+$
2 , we gain the inequality below

∣∣∣∣∣2θη−1Γ(θ + 1)

($−v)θη

[
ηΥθ

$φ

(
v + $

2

)
+

η
vΥθφ

(
v + $

2

)]
− φ

(
v + $

2

)∣∣∣∣∣
≤ $−v

4

(
1− 1

θ
B
(

pη + 1,
1
θ

)) 1
p

(3|φ′(v)|q + |φ′($)|q

4

) 1
q

+

(
3|φ′($)|q + |φ′(v)|q

4

) 1
q

 (26)

≤ $−v

4

(
4− 4

θ
B
(

pη + 1,
1
θ

)) 1
p [∣∣φ′(v)

∣∣+ ∣∣φ′($)∣∣].
Proof. It is obvious that the first inequality in (26) can be acquired from the convex-
ity of |φ′|q. The second inequality can be obtained directly by letting v1 = 3|φ′(v)|q,
$1 = |φ′($)|q, v2 = |φ′(v)|q, and $2 = 3|φ′($)|q and applying the inequality:

n

∑
k=1

(vk + $k)
s ≤

n

∑
k=1

vs
k +

n

∑
k=1

$s
k, 0 ≤ s < 1. (27)

Remark 5. If we choose θ = 1 in Corollary 3, then Corollary 3 reduces to [38] (Corollary 1).

Theorem 5. Assume φ is a function from [v, $] into R. If φ is differentiable on (v, $) and |φ′|q is
convex for ξ ∈ [v, $] and for some q > 1, then the next inequality holds for the fractional integrals
η
vΥθ , ηΥθ

$, and ξ ∈ [v, $]:∣∣∣∣ θηΓ(η + 1)
$−v

[
(ξ −v)1−θη ηΥθ

$φ(v + $− ξ) + (v− ξ)1−ηθ η
vΥθφ(v + $− ξ)

]
− φ(v + $− ξ)

∣∣∣∣
≤ 1

$−v

(
1− 1

θ
B
(

η + 1,
1
θ

))1− 1
q

×
[
(ξ −v)2

{[
1
2
− 1

θ

(
B
(

η + 1,
1
θ

)
− B

(
η + 1,

2
θ

))]∣∣φ′($)∣∣q (28)

+

[
1
2
− 1

θ
B
(

η + 1,
2
θ

)]∣∣φ′(v + $− ξ)
∣∣q} 1

q

+(v− ξ)2
{[

1
2
− 1

θ

(
B
(

η + 1,
1
θ

)
− B

(
η + 1,

2
θ

))]∣∣φ′(v)
∣∣q

+

[
1
2
− 1

θ
B
(

η + 1,
2
θ

)]∣∣φ′(v + $− ξ)
∣∣q} 1

q
]

.
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Proof. Using the power mean inequality in inequality (12), we get∣∣∣∣ θηΓ(η + 1)
$−v

[
(ξ −v)1−θη ηΥθ

$φ(v + $− ξ) + (v− ξ)1−ηθ η
vΥθφ(v + $− ξ)

]
− φ(v + $− ξ)

∣∣∣∣
≤ θη(ξ −v)2

$−v

 1∫
0

∣∣∣∣∣ 1
θη −

(
1− (1− ς)θ

θ

)η∣∣∣∣∣dς

1− 1
q

×

 1∫
0

∣∣∣∣∣ 1
θη −

(
1− (1− ς)θ

θ

)η∣∣∣∣∣∣∣φ′(ς$ + (1− ς)(v + $− ξ))
∣∣qdς


1
q

(29)

+
θη(v− ξ)2

$−v

 1∫
0

∣∣∣∣∣ 1
θη −

(
1− (1− ς)θ

θ

)η∣∣∣∣∣dς

1− 1
q

×

 1∫
0

∣∣∣∣∣ 1
θη −

(
1− (1− ς)θ

θ

)η∣∣∣∣∣∣∣φ′(ςv + (1− ς)(v + $− ξ))
∣∣qdς


1
q

.

By the convexity of |φ′|q, we have

1∫
0

∣∣∣∣∣ 1
θη −

(
1− (1− ς)θ

θ

)η∣∣∣∣∣∣∣φ′(ς$ + (1− ς)(v + $− ξ))
∣∣qdς

≤
1∫

0

(
1
θη −

(
1− (1− ς)θ

θ

)η)[
ς
∣∣φ′($)∣∣q + (1− ς)

∣∣φ′(v + $− ξ)
∣∣q]dς

=
1
θη

{[
1
2
− 1

θ

(
B
(

η + 1,
1
θ

)
− B

(
η + 1,

2
θ

))]∣∣φ′($)∣∣q (30)

+

[
1
2
− 1

θ
B
(

η + 1,
2
θ

)]∣∣φ′(v + $− ξ)
∣∣q}.

Similarly, we obtain

1∫
0

∣∣∣∣∣ 1
θη −

(
1− (1− ς)θ

θ

)η∣∣∣∣∣∣∣φ′(ςv + (1− ς)(v + $− ξ))
∣∣qdς

≤ 1
θη

{[
1
2
− 1

θ

(
B
(

η + 1,
1
θ

)
− B

(
η + 1,

2
θ

))]∣∣φ′(v)
∣∣q (31)

+

[
1
2
− 1

θ
B
(

η + 1,
2
θ

)]∣∣φ′(v + $− ξ)
∣∣q}.

Furthermore, we can get

1∫
0

∣∣∣∣∣ 1
θη −

(
1− (1− ς)θ

θ

)η∣∣∣∣∣dς =
1
θη

[
1− 1

θ
B
(

η + 1,
1
θ

)]
. (32)

By inserting (30)–(32) in (29), we gain the required inequality (28).

Remark 6. If we choose θ = 1 in Theorem 5, then Theorem 5 reduces to [38] (Theorem 4).



Fractal Fract. 2022, 6, 496 10 of 13

Corollary 4. By the assumptions of Theorem 5 and assuming ξ = v+$
2 , we get the next inequality∣∣∣∣∣2θη−1Γ(η + 1)

($−v)θη

[
ηΥθ

$φ

(
v + $

2

)
+

η
vΥθφ

(
v + $

2

)]
− φ

(
v + $

2

)∣∣∣∣∣
≤ $−v

4

(
1− 1

θ
B
(

η + 1,
1
θ

))1− 1
q

×
[[(

1
4
− 1

θ
B
(

η + 1,
1
θ

)
+

1
2θ

B
(

η + 1,
2
θ

))∣∣φ′($)∣∣q
+

(
1
4
− 1

2θ
B
(

η + 1,
2
θ

))∣∣φ′(v)
∣∣q] 1

q
(33)

+

[(
1
4
− 1

θ
B
(

η + 1,
1
θ

)
+

1
2θ

B
(

η + 1,
2
θ

))∣∣φ′(v)
∣∣q

+

(
1
4
− 1

2θ
B
(

η + 1,
2
θ

))∣∣φ′($)∣∣q] 1
q
]

.

Remark 7. If we choose θ = 1 in Corollary 4, then Corollary 4 reduces to [38] (Corollary 2).

Theorem 6. Suppose φ is a function from [v, $] into R. If φ is differentiable on (v, $) and |φ′|q is
concave for ξ ∈ [v, $] and for some q > 1, then the next inequality holds for the fractional integrals
η
vΥθ , ηΥθ

$, and ξ ∈ [v, $]:∣∣∣∣ θηΓ(η + 1)
$−v

[
(ξ −v)1−θη ηΥθ

$φ(v + $− ξ) + (v− ξ)1−ηθ η
vΥθφ(v + $− ξ)

]
− φ(v + $− ξ)

∣∣∣∣
≤ θη

$−v

(
1
θη −

1
θη+1 B

(
pη + 1,

1
θ

)) 1
p

(34)

×
(
(ξ −v)2

∣∣∣∣φ′( a + 2v− ξ

2

)∣∣∣∣+ (v− ξ)2
∣∣∣∣φ′( a + 2v− ξ

2

)∣∣∣∣),

where 1
q +

1
p = 1.

Proof. According to Hölder’s inequality and Lemma 1, we have∣∣∣∣ θηΓ(η + 1)
$−v

[
(ξ −v)1−θη ηΥθ

$φ(v + $− ξ) + (v− ξ)1−ηθ η
vΥθφ(v + $− ξ)

]
− φ(v + $− ξ)

∣∣∣∣
≤ θη(ξ −v)2

$−v

 1∫
0

∣∣∣∣∣ 1
θη −

(
1− (1− ς)θ

θ

)η∣∣∣∣∣
p

dς


1
p
 1∫

0

∣∣φ′(ς$ + (1− ς)(v + $− ξ))
∣∣qdς


1
q

(35)

+
θη(v− ξ)2

$−v

 1∫
0

∣∣∣∣∣ 1
θη −

(
1− (1− ς)θ

θ

)η∣∣∣∣∣
p

dς


1
p
 1∫

0

∣∣φ′(ςv + (1− ς)(v + $− ξ))
∣∣qdς


1
q

.

From the concavity of |φ′|q and Jensen’s integral inequality, we get
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1∫
0

∣∣φ′(ς$ + (1− ς)(v + $− ξ))
∣∣qdς

=

1∫
0

ς0∣∣φ′(ς$ + (1− ς)(v + $− ξ))
∣∣qdς (36)

≤

 1∫
0

ς0dς


∣∣∣∣∣∣∣∣∣φ
′

 1
1∫

0
ς0dς

1∫
0

ς0(ς$ + (1− ς)(v + $− ξ))dς


∣∣∣∣∣∣∣∣∣
q

=

∣∣∣∣φ′( a + 2v− ξ

2

)∣∣∣∣q.

Similarly,
1∫

0

∣∣φ′(ςv + (1− ς)(v + $− ξ))
∣∣qdς ≤

∣∣∣∣φ′(2v + $− ξ

2

)∣∣∣∣q. (37)

Applying inequality (24) yields

1∫
0

∣∣∣∣∣ 1
θη −

(
1− (1− ς)θ

θ

)η∣∣∣∣∣
p

dς ≤ 1
θη

1∫
0

(
1−

(
1− (1− ς)θ

)pη)
dς (38)

=
1
θη

(
1− 1

θ
B
(

pη + 1,
1
θ

))
.

Hence, by considering inequalities (36)–(38) in (35), the desired inequality is obtained.

Remark 8. If we choose θ = 1 in Theorem 6, then Theorem 6 reduces to [38] (Theorem 5).

Corollary 5. Consider the assumptions of Theorem 6. if we take ξ = v+$
2 , then we get the

inequality

∣∣∣∣∣2θη−1Γ(η + 1)

($−v)θη

[
ηΥθ

$φ

(
v + $

2

)
+

η
vΥθφ

(
v + $

2

)]
− φ

(
v + $

2

)∣∣∣∣∣ (39)

≤ θη($−v)

4

(
1
θη −

1
θη+1 B

(
pη + 1,

1
θ

)) 1
p
[∣∣∣∣φ′(v + 3$

4

)∣∣∣∣+ ∣∣∣∣φ′(3v + $

4

)∣∣∣∣].

Remark 9. If we choose θ = 1 in Corollary 5, then Corollary 5 reduces to [38] (Corollary 3).

3. Conclusions

In this paper, new midpoint type inequalities were investigated via the recently
generalized Riemann–Liouville fractional integrals. An identity for a certain family of
differentiable functions was proved in the framework of the suggested fractional integrals.
Using this identity and the characteristics of convex and concave functions, several gener-
alized midpoint type inequalities were proved. It was obvious that the results acquired
in this paper could be reduced to the results of Budak and Agarwal in [38] when θ = 1,
and the results of Kirmaci [37] when θ = η = 1.
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