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Abstract: In this paper, we introduce a Cournot duopoly game that can characterize fierce competi-
tion in digital economies and employ it to examine the effects of research and development (R&D)
spillovers while considering various competition intensities. We obtain the analytical solution of
the Nash equilibrium and the expression of commodity price, firm production, and variable profit
under some key competition intensities. Furthermore, we analyze the local stability of the Nash
equilibrium and derive that the equilibrium may lose its stability only through a 1:4 resonance
bifurcation. Numerical simulations are conducted, through which we find that the Nash equilibrium
transitions to complex dynamics through a cascade of period-doubling bifurcations. Phase portraits
are also provided to illustrate more details of the dynamics, which confirm the previous theoretical
finding that the Nash equilibrium loses its stability through a 1:4 resonance bifurcation.

Keywords: cournot duopoly game; digital economy; isoelastic demand; competition intensity;
R&D spillover

1. Introduction

In this paper, we introduce a game that can be applied to characterizing competition in
digital economies, especially in industries of digital products. In general, digital economies
refer to economies where digital technologies are intensively used. Digital technologies
are the representation of information in bits. In other words, in digital economies, infor-
mation in all its forms becomes digital, is reduced to bits, and can be stored in devices. In
comparison, in traditional economies, information is in physical forms such as cash, checks,
invoices, reports, face-to-face meetings, maps, and photographs.

Digital products, also known as information goods, electronic information products,
or virtual products, are conceptualized as bit-based objects distributed through electronic
channels [1]. As pointed out by Goldfarb and Tucker [2], the main feature of digital goods
is that certain costs fall substantially and perhaps approach zero. Compared to traditional
products, digital goods possess much lower variable costs including, e.g., lower search
costs, lower replication costs, lower transportation costs, lower tracking costs, and lower
verification costs. Furthermore, Bertani et al. [3] pointed out that digital firms possess
high R&D fixed costs compared to their variable costs since their products require deep
know-how and a scarce quantity of resources. Accordingly, for digital economies, it is more
appropriate to consider R&D costs as part of fixed costs rather than variable costs.

A duopoly refers to a market structure characterized by the presence of two firms
that coexist and compete with each other. In contrast, within a market characterized
by perfect competition, several small firms engage in competition with each other. The
dynamics of duopolistic competition exhibit a higher level of complexity than those of
perfect competition because participants in duopolistic markets are influenced by strategic
decisions made by their rivals. It is widely acknowledged that Cournot [4] was the pioneer
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in developing the original theoretical framework for duopoly. The formulation of Cournot’s
model is usually based on the assumptions of linear demand and costs. These assumptions
allow us to represent the model using a linear map. In the context of duopolistic com-
petition, the unique equilibrium of the linear model is globally stable. The utilization of
Cournot games has been extensive across several domains, including international trade [5],
e-commerce [6], and even biological processes [7].

In particular, the framework of Cournot games has also been applied to explore the
effects of R&D spillovers on firms’ production and investment strategies. For example,
d’Aspremont and Jacquemin [8] first introduced a simple yet elegant two-stage duopoly
model to compare the cooperation and noncooperation behaviors in the R&D stage when
spillovers are involved. They found that if the spillover effects are large enough, then
cooperation in R&D increases both R&D expenditures and production quantities compared
to noncooperative R&D. However, Henriques [9] pointed out that it is only meaningful to
compare the cooperative and noncooperative solutions in the models of d’Aspremont and
Jacquemin if these solutions are stable. Thus, Henriques [9] analyzed the local stability of
the equilibrium and found that the result of d’Aspremont and Jacquemin [8] holds and
introducing spillovers in the noncooperative model may increase the stability of the equilib-
rium. The literature related to R&D spillovers also includes, e.g., [10–14]. Symeonidis [12]
compared the Cournot and Bertrand equilibria in R&D competition games and investigated
the amounts of firms’ R&D investment, the quality and quantity of products, as well as
the social welfare. Vives [13] explored the effects of competition on process and product
innovation, where results are acquired for various market structures. The study of net-
works in economics has become popular recently. Accordingly, Bischi and Lamantia [10,11]
introduced a two-stage oligopoly game where firms are arranged within networks. In their
models, firms can cooperate with bilateral agreements to share knowledge and compete in
the market.

For simplicity, researchers such as d’Aspremont and Jacquemin [8] tend to take the
assumptions of linear demand and linear cost functions. However, various empirical
studies in the existing literature do not support linear settings because nonlinearities were
widely observed. For example, Ng [15] used threshold autoregressive models to study the
price data of commodities and discovered evidence of nonlinearities in price. Adrangi and
Chatrath [16] found strong evidence of nonlinear dependence and pointed out that the
well-known ARCH-type processes may generally explain the nonlinearities in the data if
the effects of seasonal and contract maturity are controlled. Accordingly, in this paper, we
employ the isoelastic demand function, which is nonlinear and was first introduced by
Puu [17] into the study of duopolistic competition. In addition, the assumption of nonlinear
demand in oligopoly models may give rise to complex dynamics such as chaotic attractors.
Many contributions have been made in the strand of nonlinear Cournot and Bertrand
games. Readers may refer to, e.g., [18–28]. Notably, among them, Andaluz et al. [19]
investigated a nonlinear Cournot oligopoly with N firms under the assumption of a more
general isoelastic demand function and revealed that the effect of demand elasticity on the
local stability depends on players’ adjustment mechanisms.

In this paper, we introduce a dynamic Cournot duopoly game of digital economies,
where the market is supposed to be endowed with the isoelastic demand function. After
that, we use this game to explore the effects of R&D spillovers by taking into account
the competition intensity of the market. Compared to traditional economies, in specific
development stages of digital economies, we may have an extremely high degree of market
competition, which is due to the features of digital industries such as network effects,
winner-take-all, and market lock-in (refer to [3] for additional information). Various empiri-
cal studies, e.g., [29–31], verify the existence of the business model of digital companies to
suppress competitors at the expense of profits. This empirical finding can be explained with
the different valuation methods of high-tech companies. For example, Demers and Lev [32]
developed an empirical valuation model and found that some measures of Web traffic are
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value-relevant to the share prices of Internet companies, particularly those indicating reach
(the percentage of a Web site’s visitors relative to the total Web-surfing population).

Our study is different from the current literature in the following three aspects. First,
we suppose that players in our model are boundedly rational in the sense that each firm
does not possess complete information regarding its rival’s competing strategies but naively
conjectures its rival will produce the same output as the last period. This assumption of
adjustment mechanisms is different from that of Bischi and Lamantia [33], where it is
assumed that firms adjust their output according to gradient dynamics. Second, in addition
to the effects of R&D spillovers, our study considers the effects of competition intensities
on the dynamics of our model and the variation in several important economic variables.
It is important to introduce the parameter controlling competition intensities into our
game since a high degree of market competition is one of the typical characteristics of
digital economies. The market structure with distinct competition intensities has been
intensively studied by economists such as Matsumura et al. [34], Shibata [35], and Ishikawa
and Shibata [36,37]. Third, unlike the model of d’Aspremont and Jacquemin [8], our model
does not introduce the R&D investment variable but only focuses on the output variable of
the involved firms. This setup of not introducing the R&D investment variable is borrowed
from Bischi and Lamantia [33], Li et al. [38], and Zhou and Cui [39].

We solve the Nash equilibrium of our model analytically and examine the expression
of commodity price, firm production, and variable profit under some key competition
intensities. Furthermore, we analyze the local stability of the model and derive that the
Nash equilibrium can lose its stability only through a 1:4 resonance bifurcation. Numerical
simulations are conducted to investigate the effects of competition intensities and R&D
spillovers on the dynamics of the game. Using one-dimensional and two-dimensional
bifurcation diagrams, we observe that the Nash equilibrium bifurcates to a periodic solution,
after which chaotic dynamics take place through a cascade of period-doubling bifurcations.
Furthermore, it is also observed that the intermittence of periodic orbits between chaotic
dynamics may appear. We also provide several phase portraits to illustrate more details of
the dynamic transitions. In particular, these phase portraits confirm the theoretical finding
that the Nash equilibrium is destabilized through a 1:4 resonance bifurcation.

The rest of this paper is structured as follows. Section 2 introduces the game setup,
where the effects of competition intensities and R&D spillovers are considered. In Section 3,
the equilibria of the model are solved in the closed form, and related economic variables
at the Nash equilibrium are investigated. Section 4 explores the local stability of the Nash
equilibrium and the nearby convergence factor. In Section 5, numerical simulations are
conducted to study complex dynamic behaviors, e.g., periodic orbits and chaos, of our
model. Section 6 concludes this paper.

2. Model Setup

Let us consider a market with two firms producing homogeneous products. We
use q1 and q2 to represent the output quantity of firm 1 and firm 2, respectively. In
real economies, the nonlinearity of the demand function can be widely observed (see,
e.g., [15,16]). Accordingly, we assume that the market is featured via the isoelastic demand
function employed by Puu [17], which is based on the hypothesis of the Cobb–Douglas
utility function via the agents. Specifically, the market inverse demand function is of
the form

P(Q) =
1
Q

=
1

q1 + q2
,

where Q = q1 + q2 is the total market supply.
As mentioned by Goldfarb and Tucker [2], it requires a different emphasis rather

than a fundamentally new economic theory to understand the effects of digital technology.
Therefore, same as traditional economic models, the production cost of firm i is assumed
to be linear, i.e., ciqi + bi, where bi and ci are the fixed cost and marginal cost of firm i,
respectively. Evidently, we have bi > 0 and ci > 0. Goldfarb and Tucker [2] also stated that
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the main difference between digital economies and traditional economies is that certain
costs of digital firms fall substantially and perhaps approach zero, including lower search
costs, lower replication costs, lower transportation costs, lower tracking costs, and lower
verification costs. In other words, the variable costs of digital economies are much lower.
Similarly, Haltiwanger and Haltiwanger [40] pointed out that nondigital goods must be
physically delivered to consumers, while digital goods can bypass the wholesale, retail,
and transport networks; digital goods have very different pricing structures due to their
high-fixed-cost and low-marginal-cost nature.

Bertani et al. [3] stated that the world related to the companies that produce digital
technologies is totally different compared to the world that produces mass productions. In
detail, diminishing returns can be used to characterize a mass production world, where
products are heavily based on resources but lightly based on knowledge. In contrast, a
knowledge-based world that produces digital goods can be characterized by increasing
returns. Furthermore, these high-tech firms possess high R&D fixed costs compared to
their variable production costs since their products require deep know-how and a scarce
quantity of resources. Accordingly, for digital economies, it may be more appropriate to
consider R&D costs as part of fixed costs rather than variable costs. Therefore, in our model,
the above-mentioned high R&D fixed cost of firm i is assumed to be included in the fixed
part of the production cost, i.e., bi.

Take the industry of Internet games in China as an example. There are two dominant
game providers in China, namely, Tencent and NetEase, that compete with each other. Their
fixed costs include office space costs, human resources costs, equipment costs, etc. However,
their variable costs are mainly customer acquisition costs. The R&D costs are complex to
calculate since an idea or innovation may be difficult to define. However, the salaries of
all executives and employees who contributed to R&D obviously belong to the R&D costs,
which include the chief technology officer (or any other technology or product-specific
executives that were a part of the process), engineers, designers, external contractors, or
consultants. Other R&D costs to consider include, e.g., the cloud infrastructure, version
control services, and any other software or tools used to design and develop game products.

This paper focuses on R&D spillovers; thus, the positive cost externality must be
considered. The positive cost externality can be explained as the cost reduction due to
the presence of rivals, which may come from information exchanges on technological
innovations, skilled workers, and R&D results. In the seminal work by d’Aspremont and
Jacquemin [8], R&D spillovers are assumed to reduce the variable costs of products. This
assumption is not applicable to digital goods because the R&D expenditures and thus
the cost reduction due to spillovers should be counted in the fixed costs. As mentioned
above, for digital goods, the R&D costs are mainly included in the fixed costs, but the costs
of customer acquisition mainly constitute the variable costs that are hardly affected by
spillovers. According to this special cost structure of digital goods, in our model, the cost
reduction caused by spillovers is supposed to change only the fixed costs bi. We use ri to
denote the coefficient of positive cost externality in the fixed costs of firm i related to the
R&D spillovers of its rival. Specifically, if we consider the spillover effects, the fixed costs
of producer i become bi − riq−i, where q−i represents the size of the competitor of firm i.
The amplitude of r−i is negatively related to the management level of firm i. The larger
the value of r−i, the greater the leakage of research results, or the greater the outflow of
researchers of firm i, the lower the managerial ability of firm i. Furthermore, the larger the
rival’s output (size), the more significant the R&D spillovers and the stronger the effects
of lowering the fixed cost of firm i. It is reasonable to bound bi − riq−i � 0, which means
that the effects of cost reduction are quite limited. This is because R&D spillovers can only
reduce a company’s R&D expenditures (e.g., the salaries of some technical employees) to a
certain extent. That is, the cost reduction due to spillovers is only a relatively small part of
the fixed costs.

Moreover, additional costs should be paid by firm i to avoid its R&D spillovers (e.g.,
additional management expenditures to avoid the leakage of research results and higher
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salaries to prevent the outflow of researchers), which are positively related to the size of the
firm (i.e., qi) and negatively related to the positive cost externality coefficient (i.e., r−i). We
denote the cost of avoiding spillovers as diqi/r−i, where di > 0 is the unit cost of controlling
R&D spillovers. Thus, the total cost function of firm 1 is of the form

C1(q1, q2) = c1q1 + b1 − r1q2 +
d1

r2
q1.

Similarly, the cost function of firm 2 should be

C2(q2, q1) = c2q2 + b2 − r2q1 +
d2

r1
q2.

Here, we have bi, ci, di, ri > 0 for i = 1, 2.
It should be mentioned that our cost functions are completely distinct from those

employed by Bischi and Lamantia [33] due to the huge difference between the cost struc-
tures of digital and nondigital goods. The positive externality considered by Bischi and
Lamantia [33] actually leads to a reduction in variable costs. However, this is not reasonable
in digital economies since the variable costs of digital firms are mainly due to acquiring
customers and can hardly be affected by R&D spillovers. Thus, we assume that R&D
spillovers can only affect the fixed costs. Moreover, although Bischi and Lamantia [33]
considered the extra cost paid by the firm to avoid spillovers, the cost of avoiding spillovers
should be negatively related to the amplitude of R&D spillovers to the rivals, which is
further related to the positive cost externality coefficients r1 and r2. We consider these
subtle relations in the setup of our cost functions.

Therefore, the profit of firm i is

Πi(qi, q−i) = P(Q)qi − Ci(qi, q−i) =
qi

qi + q−i
− (ciqi + bi − riq−i +

di
r−i

qi).

To describe the effect of competition pressure, we assume that the operation objective
of firm i is

Oi = Πi − λΠ−i,

where λ ≥ 0 characterizes the competition intensity of the market. The objective function
of this form may be traced back to [41,42]. Differently, Cyert and DeGroot [42] used it
to discuss the cooperation between two companies and assumed that the coefficients of
cooperation are negative and distinct. Afterward, Matsumura et al. [34] and Shibata [35]
employed a similar payoff function to investigate the relationship between the competition
degree of a market and the R&D expenditure. In their models, it is supposed that the
parameter λ used to characterize the competition intensity is identical for different firms.
Our model employs the same objective function as Matsumura et al. [34] and Shibata [35]
to describe the competition intensity of the market.

In the special case of λ = 0, we have Oi = Πi, meaning that firm i only focuses
on its own profits. One can see that Oi = (1 − λ)Πi + λ(Πi − Π−i). Accordingly, if
λ > 0, firm i makes decisions by not only considering its own profits but also gaining
a comparative advantage over its rival. As indicated by Shibata [35], the case of λ = 1
corresponds to perfect competition, where no firms have market power. Furthermore, in
specific development stages of digital industries, λ can be greater than one and even take
large values. In this case, instead of marking profits (i.e., (1− λ)Πi < 0), the operation
goals of firms tend to include gaining a comparative advantage (i.e., λ(Πi −Π−i) > 0),
suppressing competitors, capturing market share, and obtaining a monopolistic position
in the market. Indeed, this can be widely observed in digital industries because digital
economies are featured via network effects, winner-take-all, and market lock-in (refer to [3]
for additional information).
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The business model of suppressing competitors at the expense of profits is widespread
in high-tech firms, which was confirmed by various empirical studies such as [29–31].
Denis and McKeon [29] pointed out that negative net cash flows have become much
more pervasive, more persistent, and greater in magnitude since 1971 and firms with
negative net cash flows recently tended to achieve cash balances through frequent equity
offerings. In addition, it was revealed in [30,31] that the proportion of firms going public
prior to achieving profitability has been increasing, which is driven by an increase in
the proportion of high-tech firms. Indeed, these phenomena are related to the different
valuation methods of high-tech companies. For example, Demers and Lev [32] developed
an empirical valuation model and discovered that the reach and stickiness Web traffic
performance measures were value-relevant to the share prices of Internet companies in
1999 and 2000.

Based on the above discussion, the first-order condition for firm 1 is

∂O1

∂q1
=

q2

(q1 + q2)
2 −

(
c1 +

d1

r2

)
− λ

(
− q2

(q1 + q2)
2 + r2

)
= 0,

which is solved via the best-response reaction q1 = R1(q2), where

R1(q2) =

√√√√ q2(λ + 1)

λr2 + c1 +
d1
r2

− q2.

Assume that period t + 1 is the current period and period t is the last period. To maxi-
mize the objective function O1, firm 1 should choose its output at period t + 1 according to

q1(t + 1) = R1(q2(t + 1)) =

√√√√ q2(t + 1)(λ + 1)

λr2 + c1 +
d1
r2

− q2(t + 1). (1)

However, the above reaction requires that the player is completely rational. In the
real world, however, a firm can hardly collect information on business secrets such as the
production plan of its competitor. Thus, it is reasonable to assume the bounded rationality
of firms in the sense that firms have no idea about rivals’ competing strategies but naively
conjecture their rivals will produce the same output as the last period. Specifically, if
firm 1 is boundedly rational, then it naively expects firm 2’s output at period t + 1 to be
qe

2(t + 1) = q2(t). In practice, instead of (1), the reaction function of firm 1 is set to be

q1(t + 1) = R1(q2(t)) =

√√√√ q2(t)(λ + 1)

λr2 + c1 +
d1
r2

− q2(t).

Similarly, the reaction function of firm 2 is

q2(t + 1) = R2(q1(t)) =

√√√√ q1(t)(λ + 1)

λr1 + c2 +
d2
r1

− q1(t).

In short, the iteration map of our game can be described as
q1(t + 1) =

√√√√ q2(t)(λ + 1)

λr2 + c1 +
d1
r2

− q2(t),

q2(t + 1) =

√√√√ q1(t)(λ + 1)

λr1 + c2 +
d2
r1

− q1(t).

(2)
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Remark 1. In the setup of our game, we only select q1(t) and q2(t) to be the decision variables of
the players. Unlike the model of d’Aspremont and Jacquemin [8], our model does not introduce the
R&D investment variable but only treats the output as the endogenous decision. This setup of not
introducing the R&D investment variable is borrowed from Bischi and Lamantia [33], Li et al. [38],
and Zhou and Cui [39]. Furthermore, we assume the R&D expenditures are predetermined before
the decisions of output. This assumption is appropriate as firms generally would not make R&D
investment and output decisions simultaneously.

In the real world, the R&D expenditures (included in the fixed costs b1 and b2), the management
levels (related to r1 and r2), and the competition intensities of the market (i.e., λ) may be decided by
the involved firms and change over time. However, introducing bi(t), ri(t), and λ(t) as decision
variables into the model will result in a much greater complexity of the model and make analysis
impossible. Instead, we assume that the values of bi, ri, and λ are somewhat fixed in a certain
development stage of a digital industry and can be observed or computed from the market information.
For example, we may divide the development of a digital company into three stages: the start-up
stage, the fundraising and expansion stage, and the profitability stage. One can understand that at
each stage, the fixed costs, the management level, and the operation objectives of a firm are relatively
unchanged. In particular, the firm may tend to set its operational goals for the first and second
stages as gaining market share at the expense of profits, namely, setting the value of λ much higher.

In what follows, readers will see that economically insightful implications can be discovered
even by using this simplified game (2).

3. Nash Equilibrium

According to the iteration map (2), by setting q1(t + 1) = q1(t) = q∗1 and q2(t + 1) =
q2(t) = q∗2 , we obtain the following equilibrium equations:

q∗1 =

√√√√ q∗2(λ + 1)

λr2 + c1 +
d1
r2

− q∗2 ,

q∗2 =

√√√√ q∗1(λ + 1)

λr1 + c2 +
d2
r1

− q∗1 .

(3)

Then, we have 
(q∗1 + q∗2)

2 =
q∗2(λ + 1)

λr2 + c1 +
d1
r2

,

(q∗2 + q∗1)
2 =

q∗1(λ + 1)

λr1 + c2 +
d2
r1

.

Consequently, it is acquired that

q∗2(λ + 1)

λr2 + c1 +
d1
r2

=
q∗1(λ + 1)

λr1 + c2 +
d2
r1

,

which implies

q∗2 =
λr2 + c1 +

d1
r2

λr1 + c2 +
d2
r1

· q∗1 . (4)

By plugging (4) back into one of the equilibrium Equation (3) , we acquire two equilib-
ria: the zero equilibrium E0 = [0, 0] and the Nash equilibrium

EN =
[
qN

1 , qN
2

]
=

 (λ + 1)
(

λr1 + c2 +
d2
r1

)
(
(r1 + r2)λ + c1 +

d1
r2
+ c2 +

d2
r1

)2 ,
(λ + 1)

(
λr2 + c1 +

d1
r2

)
(
(r1 + r2)λ + c1 +

d1
r2
+ c2 +

d2
r1

)2

. (5)
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In what follows, we focus on the Nash equilibrium EN . An interesting exploration
is to compute economic variables at the Nash equilibrium under some key competition
intensities, e.g., λ = 0, 1,+∞. From (5), it is obtained that if λ = 0, then

qN
1 =

c2 +
d2
r1

(c1 +
d1
r2
+ c2 +

d2
r1
)2

;

if λ = 1, then

qN
1 =

2
(

r1 + c2 +
d2
r1

)
(

r1 + r2 + c1 +
d1
r2
+ c2 +

d2
r1

)2 .

In particular, if λ→ +∞, then qN
1 → r1/(r1 + r2)

2. Thus, it is theoretically interesting
that in the extremely competitive market (λ → +∞) (this market exists only in theory),
the output of firm 1 is related to the positive externality coefficient (r1, r2) rather than the
marginal cost of production (c1, c2) and the cost of avoiding spillovers (d2/r1, d1/r2). The
output of firm 2 can be similarly analyzed.

Remark 2. According to (4), we can derive some interesting results regarding the ratio qN
2 /qN

1 .
For example, provided that r1 = r2 and d1 = d2, then qN

2 /qN
1 > 1 if c1 > c2, meaning that less

productive firms which produce less efficiently obtain smaller market shares. This is consistent with
the allocation efficiency in an economy. Furthermore, if the competition intensity λ is large enough,
we have that qN

2 /qN
1 ≈ r2/r1, which implies that qN

2 < qN
1 if r2 < r1. Therefore, in a fiercely

competitive environment, a higher management level of firm i (i.e., a smaller r−i) may lead to a
larger market share (i.e., a larger qN

i ), which is consistent with our economic intuition.

At the Nash equilibrium, the price of the product is

PN =
1

qN
1 + qN

2
=

(r1 + r2)λ + c1 +
d1
r2
+ c2 +

d2
r1

λ + 1
.

One can see that if λ = 0, then PN = c1 + d1/r2 + c2 + d2/r1, namely, the sum of the
cost of production without the positive externality and that of avoiding R&D spillovers. If
λ = 1, then

PN =
(r1 + r2) + c1 +

d1
r2
+ c2 +

d2
r1

2
.

Furthermore, when λ approaches +∞, the price is not related to the cost of production
and that of avoiding spillovers, which approaches r1 + r2. That is, in a market of fierce
competition, the product price is determined with the management level of firms. The
higher the management level, the smaller the values of r1 and r2 and the lower the price.

The cost of firm 1 at the Nash equilibrium is complex, which is

CN
1 = b1 +

(λ + 1)
((

c1 +
d1
r2

)(
λr1 + c2 +

d2
r1

)
− r1

(
λr2 + c1 +

d1
r2

))
(
(r1 + r2)λ + c1 +

d1
r2
+ c2 +

d2
r1

)2 .

Consequently, if λ = 0, then

CN
1 = b1 +

(
c1 +

d1
r2

)(
c2 +

d2
r1
− r1

)
(

c1 +
d1
r2
+ c2 +

d2
r1

)2 ;
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if λ = 1, then

CN
1 = b1 +

2
((

c1 +
d1
r2

)(
r1 + c2 +

d2
r1

)
− r1

(
r2 + c1 +

d1
r2

))
(
(r1 + r2) + c1 +

d1
r2
+ c2 +

d2
r1

)2 ;

when λ→ +∞, we have that

CN
1 → b1 +

r1

(
c1 +

d1
r2

)
− r1r2

(r1 + r2)2 .

The variable profit V of a firm is usually defined to be the difference between its
revenue and its variable cost. Accordingly, one can derive that if λ = 0, then the variable
profit of firm i is

VN
1 = PNqN

1 −
(

c1qN
1 − r1qN

2 +
d1

r2
qN

1

)
=

(
c1 r3

1 + c2
2r2

1 + 2c2d2r1 + d2
2
)
r2

2 + d1r3
1r2

((c1 + c2)r1r2 + d2r2 + d1r1)
2 > 0.

Thus, the variable profit of firm 1 is always positive if the competition intensity is the
lowest (λ = 0), which is consistent with economic intuition. This is because, in this case,
the involved companies operate to maximize their own profits and do not care about their
competitors. However, when λ→ +∞, we have that

VN
1 →

r1(r1 + 2 r2)− r1

(
c1 +

d1
r2

)
(r1 + r2)2 .

From the above, one can see that the variable profit of firm 1 will be negative if
r1 + 2 r2 < c1 + d1/r2. This means that firms in a market of extremely fierce competition
(λ→ +∞) may sacrifice their positive variable profits to suppress competitors and capture
the market if the sum of its marginal cost and its spillover-avoiding cost is high enough.

4. Local Stability and Convergence Factors

In this section, we analyze the local stability of the Nash equilibrium obtained in the
above section and then explore the convergence speed of the trajectories near the equilibrium.

Theorem 1. The Nash equilibrium is locally stable if

λr2 + c1 +
d1
r2

λr1 + c2 +
d2
r1

∈
(

3− 2
√

2, 3 + 2
√

2
)

. (6)

Proof. The Jacobian matrix is

J =

 ∂q1(t+1)
q1(t)

∂q1(t+1)
q2(t)

∂q2(t+1)
q1(t)

∂q2(t+1)
q2(t)

 =


0 1

2
√

q2(t)

√
λ+1

λr2+c1+
d1
r2

− 1

1
2
√

q1(t)

√
λ+1

λr1+c2+
d2
r1

− 1 0

 (7)
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By plugging (5) into (7), we have

J(EN) =


0

(r1+r2)λ+c1+
d1
r2
+c2+

d2
r1

2
(

λr2+c1+
d1
r2

) − 1

(r1+r2)λ+c1+
d1
r2
+c2+

d2
r1

2
(

λr1+c2+
d2
r1

) − 1 0

.

Accordingly, the characteristic equation is

Λ2 =

 (r1 + r2)λ + c1 +
d1
r2
+ c2 +

d2
r1

2
(

λr2 + c1 +
d1
r2

) − 1

 (r1 + r2)λ + c1 +
d1
r2
+ c2 +

d2
r1

2
(

λr1 + c2 +
d2
r1

) − 1

. (8)

It is easy to check that the signs of the two expressions in parentheses on the right-hand
side of (8) are opposites. Thus, we obtain two conjugate imaginary eigenvalues

e1,2 = ±i

√√√√√−
 (r1 + r2)λ + c1 +

d1
r2
+ c2 +

d2
r1

2
(

λr2 + c1 +
d1
r2

) − 1

 (r1 + r2)λ + c1 +
d1
r2
+ c2 +

d2
r1

2
(

λr1 + c2 +
d2
r1

) − 1

.

The Nash equilibrium is locally stable if both |e1| < 1 and |e2| < 1 hold. One can
verify that this is equivalent to[(

λr1 + c2 +
d2
r1

)
−
(

λr2 + c1 +
d1
r2

)]2

4
(

λr1 + c2 +
d2
r1

)(
λr2 + c1 +

d1
r2

) < 1,

which can be solved via (6). The proof is completed.

Remark 3. According to the classic bifurcation theory, the Nash equilibrium may lose its stability
through a 1:4 resonance bifurcation when e1,2 = ±i, which will be confirmed through numerical
simulations in the next section.

In the following, we discuss the convergence speed of trajectories around the Nash
equilibrium. For a one-dimensional iteration map x(t + 1) = F(x(t)), we define the
convergence factor to be

C = |F′(x∗)|,

where F′ is the derivative and x∗ is the involved equilibrium of the map. However, for an
n-dimensional iteration map x(t + 1) = G(x(t)) with n > 1, the convergence factor is usually
defined to be the spectral radius of its Jacobian matrix J at the considered equilibrium
x∗, i.e.,

C = max{|e1|, . . . , |en|},

where e1, . . . , en are the eigenvalues of J|x=x∗ . By definition, for any state x(t) sufficiently
close to the equilibrium x∗, it is known that

|x(t + 1)− x∗| < C|x(t)− x∗|.

Therefore, the convergence factor characterizes the convergence speed in the sense
that its reciprocal reflects the amplitude of the convergence speed. If C < 1, then successive
states will approach the considered equilibrium as the evolution of the dynamic system.
The smaller the convergence factor is, the faster a trajectory converges to the equilibrium.
Particularly, if C = 0, the convergence speed is called to be super-linear.
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Thus, for our model, we have that

C =

√√√√√−
 (r1 + r2)λ + c1 +

d1
r2
+ c2 +

d2
r1

2
(

λr2 + c1 +
d1
r2

) − 1

 (r1 + r2)λ + c1 +
d1
r2
+ c2 +

d2
r1

2
(

λr1 + c2 +
d2
r1

) − 1

,

i.e.,

C =

∣∣∣(λr1 + c2 +
d2
r1

)
−
(

λr2 + c1 +
d1
r2

)∣∣∣
2
√(

λr1 + c2 +
d2
r1

)(
λr2 + c1 +

d1
r2

) .

Accordingly, the convergence speed is super-linear if and only if λr2 + c1 + d1/r2 =
λr1 + c2 + d2/r1.

In what follows, some interesting cases are plotted in Figure 1 to illustrate the influ-
ences of the parameters on the convergence factors. For example, in Figure 1a, we set r1 = 1,
r2 = 1, d1 = 1, d2 = 1, and c1 = 1. One can see that the convergence factor increases as the
difference between c2 and c1 increases. In particular, when c2 = c1 = 1, the convergence
factor vanishes, namely, the convergence speed becomes super-linear.

From Theorem 1, we conclude that if r1 and r2 are close enough to each other (precisely,
r1/r2 ∈

(
3− 2

√
2, 3 + 2

√
2
)

), the Nash equilibrium will become locally stable if λ is large
enough. This conclusion is confirmed with Figure 1a, where r1/r2 = 1. It is observed that
the blue curve (λ = 5) is lower than the green (λ = 1) and red (λ = 0.2) ones. That is to
say, in the case of r1/r2 = 1, an increase in λ leads to an increase in the convergence speed
and consequently makes the Nash equilibrium more stable. From an economic point of
view, if the percentages of leakage of research results and that of outflow of researchers are
close to each other (i.e., r1 are r2 are close) for two firms in the same digital industry, a more
competitive environment will lead to the greater stability of the economic system. This
fact may be explained with a cross-sectional comparison of different industries: the more
competitive the industry, the more obvious the winner-takes-all effect and the less unstable
the market.

However, increasing λ may destabilize the Nash equilibrium if r1 and r2 are sufficiently
distinct. This fact is illustrated in Figure 1b, where we set r1 = 1, r2 = 10, d1 = 1, d2 = 1,
and c1 = 1. It is observed that all three curves take values higher than 1 when λ ≥ 5 because
the ratio of r2 to r1 is large. If the value of λ approaches +∞, then the left-hand side of (6)
will approach r2/r1. Thus, the Nash equilibrium may lose its local stability if the value of
λ is sufficiently large and r1 and r2 are sufficiently distinct, meaning that the existence of
firms with quite different managerial abilities in a fiercely competitive market may result
in unstable outcomes.

Figure 1c reports that a decrease in the competition intensity λ may also destabilize
the Nash equilibrium when the d1 and d2 are sufficiently different. In Figure 1c, we fix
r1 = 1, r2 = 10, d1 = 1, d2 = 5, and c1 = 1 but vary λ. The blue curve (c2 = 2) will take
values larger than one if λ approaches zero. This case is theoretically interesting and may
not really exist because d1 and d2 seem to be close in the real market.

In Figure 1d, we explore this case by setting λ = 1, d1 = 1, c1 = 1, c2 = 1, and r2 = r1.
The red, green, and blue curves correspond to d2 = 0.1, 2, and 10, respectively. One can
see that the convergence factor may be greater than one when the identical cost externality
coefficient (r1 = r2) approaches zero if the difference between d1 and d2 is large enough
(see the red and blue curves). However, this is incorrect if d1 and d2 are close (see the
green curve).
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(a) (b)

(c) (d)

(e) (f)

Figure 1. Convergence factor as the parameters vary. (a) Fix r1 = 1, r2 = 1, d1 = 1, d2 = 1, and c1 = 1,
but vary c2. The red, green, and blue curves are corresponding to λ = 0.2, 1, and 5, respectively.
(b) Fix r1 = 1, r2 = 10, d1 = 1, d2 = 1, and c1 = 1, but vary λ. The red, green, and blue curves are
corresponding to c2 = 0.5, 1, and 2, respectively. (c) Fix r1 = 1, r2 = 10, d1 = 1, d2 = 5, and c1 = 1, but
vary λ. The red, green, and blue curves are corresponding to c2 = 0.5, 1, and 2, respectively. (d) Fix
λ = 1, d1 = 1, c1 = 1, and c2 = 1 with r2 = r1. The red, green, and blue curves are corresponding to
d2 = 0.1, 2, and 10, respectively. (e) Fix λ = 1, r2 = 1, d1 = 1, c1 = 1, and c2 = 1, but vary r1. The
red, green, and blue curves are corresponding to d2 = 1, 2, and 10, respectively. (f) Fix λ = 1, r2 = 1,
d1 = 1, c1 = 1, and c2 = 1, but vary d2. The red, green, and blue curves are corresponding to r1 = 0.5,
0.3, and 0.1, respectively.

In contrast to Figure 1d, Figure 1e explores the case of r1 6= r2, where we fix λ = 1,
r2 = 1, c1 = 1, and c2 = 1 but vary r1. The red, green, and blue curves correspond to
d2 = 1, 2, and 10, respectively. It is found that the Nash equilibrium may be destabilized
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if the value of r1 is sufficiently large or sufficiently small compared to r2 = 1. Figure 1f
investigates the influence of d2 on the convergence speed if we fix other parameters. It is
observed that if d2 is large enough compared to d1, then the convergence factor will be
greater than one.

Let λ be of moderate size. One can see that, if the difference between c1 and c2, r1
and r2, and d1 and d2 is small enough, then the Nash equilibrium of our game will be
locally stable. We should mention that this fact can also be deduced by analyzing the
stability condition (6). In real digital economies, c1 and c2 should be close to each other
because the cost of customer acquisition should be about the same for different firms in
the same industry. Moreover, the values of d1 and d2 are also close to each other since
the cost of avoiding the leakage of research results and the per capita cost of preventing
the outflow of researchers should not be much different for distinct firms. However, a
huge difference in the management level of the firms may lead to a huge difference in the
percentage of research leakage or the percentage of outflow of researchers. Therefore, the
parameters r1 and r2 may take quite distinct values. This means that a large difference in
the management level of companies in digital industries may be the main reason for the
instability of the market.

5. Numerical Simulations

In this section, numerical simulations are conducted to investigate the complex dy-
namics of the duopoly game considered in this paper.

First, let us investigate the effects of the competition intensity λ and the positive cost
externality coefficients r1, r2 on the dynamic behaviors of our model. For simplicity, we
assume that the positive cost externality coefficients are identical, namely, r1 = r2 = r.
Figure 2a,b depict the bifurcation diagrams of the iteration map (2) with respect to λ and
r, respectively, where c1 = c2 = 1, d1 = 1, and d2 = 10 are set. In Figure 2a, we vary
λ ∈ (0.54, 1.2) and fix r = 0.55. However, in Figure 2b, we vary r ∈ (0.55, 0.67) and fix
λ = 0.5. The iterations start from the initial state (q1(0), q2(0)) = (0.01, 0.01). The diagrams
against q1 and q2 are colored in red and blue, respectively, where periodic solutions with
different orders and strange attractors can be observed. Furthermore, we find the route to
chaos through a series of period-doubling bifurcations as λ or r decrease.

(a) r = 0.55, λ ∈ (0.54, 1.2) (b) λ = 0.5, r ∈ (0.55, 0.67)

Figure 2. Let r1 = r2 = r. The one-dimensional bifurcation diagrams with respect to λ and r via
fixing the parameters c1 = c2 = 1, d1 = 1, and d2 = 10. We choose (q1(0), q2(0)) = (0.01, 0.01)
to be the initial state of the iterations. The diagrams against q1 and q2 are colored in red and blue,
respectively.

Figure 3 depicts two-dimensional bifurcation diagrams to show more complex dy-
namics with respect to the two parameters λ and r (r1 = r2 = r). Readers can refer
to [43] for additional details regarding two-dimensional bifurcation diagrams. In the
numerical simulations producing the two-dimensional bifurcation diagrams, we fix the
parameters λ = 0, r1 = r2 = 1, and d1 = d2 = 0. Same as above, we set the initial state
to be (q1(0), q2(0)) = (0.01, 0.01). Parameter points corresponding to periodic orbits with



Fractal Fract. 2023, 7, 737 14 of 19

different orders are marked in different colors and are marked in yellow if the order is
greater than 24 or the trajectory diverges (approaches ∞). In other words, the yellow
points may be viewed as the parameter values where complex dynamics such as chaos take
place. Figure 3a,b are given to display the panoramic and localized parameter windows, i.e.,
(λ, r) ∈ (0, 4)× (0.1, 1.0) and (λ, r) ∈ (0.4, 0.5)× (0.55, 0.67), respectively. From Figure 3a,b,
we find a series of period-doubling bifurcations, through which the Nash equilibrium loses
its stability. In detail, the equilibrium first bifurcates to a two-cycle of q1 (q2) if we fix the
value of λ and reduce the value of r. As r further decreases, one can observe a cascade of
period-doubling bifurcations from the two-cycle orbit. Finally, chaotic dynamics appear
when r is small enough.

(a) (λ, r) ∈ (0, 4)× (0.1, 1.0) (b) (λ, r) ∈ (0.4, 0.5)× (0.55, 0.67)

Figure 3. Let r1 = r2 = r. The two-dimensional bifurcation diagram with respect to λ and r via fixing
the parameters c1 = c2 = 1, d1 = 1, and d2 = 10. We choose (q1(0), q2(0)) = (0.01, 0.01) to be the
initial state of the iterations. Parameter points corresponding to periodic orbits with different orders
are marked in different colors and are marked in yellow if the order is greater than 24 or the trajectory
diverges (approaches ∞).

Furthermore, we depict the phase portraits in Figure 4 by fixing the parameters
c1 = c2 = 1, r1 = r2 = 0.55, d = 1, and d2 = 10 and choosing (q1(0), q2(0)) = (0.01, 0.01)
to be the initial state. We plot the trajectory of 5000 iterations. From Figure 4a, it is
observed that the trajectory converges to the Nash equilibrium when λ = 1.172727. If
λ decreases and equals 1.042424 (see Figure 4b), then the trajectory also approaches the
Nash equilibrium, but the convergence speed becomes much slower. These observations
confirm the finding, given in Remark 3, that the Nash equilibrium loses its stability through
a 1:4 resonance bifurcation. In Figure 4c, one can discover that a four-cycle orbit appears
when λ = 0.987879 and the amplitude of this periodic solution becomes larger as λ further
decreases. In Figure 4d, the trajectory seems messy, but indeed a 16-cycle orbit can be
found if we discard the first, e.g., 2000 iteration points. When λ = 0.611111, we observe
a chaotic attractor with 16 pieces (see Figure 4e). If the value of λ becomes smaller and
equals 0.607071 (see Figure 4f), it is found that the number of pieces of the chaotic attractor
is reduced by half and becomes eight. Then, Figure 4g shows that a periodic orbit with
order 32 reappears when λ = 0.594949. From Figure 4h, one can see that the dynamics
of the system become chaotic again and there is a strange attractor with only four pieces
when λ = 0.590909. Moreover, observations on Figure 4i reveal that there exists a periodic
orbit with order 12 when λ = 0.582828. From Figure 4j,k, we discover that a chaotic
attractor with four pieces reappears and the gaps between these pieces become smaller as
the value of λ decreases. Finally, a chaotic attractor with one unique piece emerges when
λ = 0.544444, as shown in Figure 4i.
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(a) λ = 1.172727 (b) λ = 1.042424 (c) λ = 0.987879

(d) λ = 0.619192 (e) λ = 0.611111 (f) λ = 0.607071

(g) λ = 0.594949 (h) λ = 0.590909 (i) λ = 0.582828

(j) λ = 0.548485 (k) λ = 0.546465 (l) λ = 0.544444

Figure 4. The phase portraits of the duopoly via fixing the parameters c1 = c2 = 1, r1 = r2 = 0.55,
d = 1, and d2 = 10. We choose (q1(0), q2(0)) = (0.01, 0.01) to be the initial state of the iterations.

As stated at the end of the previous section, the parameters c1 and c2 (d1 and d2)
should take values close to each other in real digital economies. However, the values
of r1 and r2 may be quite distinct because a huge difference in the management level of
firms may lead to a huge difference in the percentage of research leakage or researcher
outflow of firms. Accordingly, it is necessary to conduct numerical simulations to explore
the influences of r1 and r2 on the dynamic behaviors of the duopoly game considered in
this paper. In Figure 5, we plot the two-dimensional bifurcation diagram with respect to
r1 and r2 by fixing the parameters λ = 2, c1 = c2 = 1, and d1 = d2 = 1. Still, the initial
state of the iterations is set to be (q1(0), q2(0)) = (0.01, 0.01). Similar to Figure 3, we use
different colors to mark parameter points corresponding to periodic orbits with different
orders. In particular, parameter points are marked in yellow if the order is greater than
24 or the trajectory diverges (approaches ∞). We observe that the trajectory will converge
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to a stable equilibrium if the parameter point (r1, r2) lies not far away from the diagonal,
i.e., r1 = r2, which is consistent with the results obtained in the previous section. However,
one can see that if the difference between r1 and r2 is large, periodic solutions of order two,
four, or higher and even chaotic trajectories may appear, meaning that a large difference in
the management level of firms might result in complex phenomena such as periodic orbits
and chaos in digital economies.

(a) (r1, r2) ∈ (0.1, 20)× (0.1, 20) (b) (r1, r2) ∈ (11, 12)× (0.1, 1)

Figure 5. The two-dimensional bifurcation diagram with respect to r1 and r2 via fixing the parameters
λ = 2, c1 = c2 = 1, and d1 = d2 = 1. We choose (q1(0), q2(0)) = (0.01, 0.01) to be the initial state of
the iterations. Parameter points corresponding to periodic orbits with different orders are marked
in different colors and are marked in yellow if the order is greater than 24 or the trajectory diverges
(approaches ∞).

Furthermore, Figure 6 depicts the one-dimensional bifurcation diagram with respect to
r2 via fixing the parameters r1 = 11.5, λ = 2, c1 = c2 = 1, and d1 = d2 = 1. The diagrams
against q1 and q2 are colored in red and blue, respectively. More details of the dynamic
transitions to complicated dynamics can be observed. One can see that the trajectory
approaches the Nash equilibrium if r2 is small enough. As the value of r2 increases, a
two-cycle orbit of q1 (q2) appears and then transitions to complex dynamics through a
cascade of period-doubling bifurcations. However, if we further increase the value of r2,
the trajectory will become simple once more and approach the Nash equilibrium.

Figure 6. The one-dimensional bifurcation diagram with respect to r2. We fix the other parameters
r1 = 11.5, λ = 2, c1 = c2 = 1, and d1 = d2 = 1 and choose (q1(0), q2(0)) = (0.01, 0.01) to be the
initial state of the iterations. The diagrams against q1 and q2 are colored in red and blue, respectively.

For the sake of completeness, Figure 7 reports the two-dimensional bifurcation di-
agrams with respect to the cost parameters c1 and c2 although the cost parameters are
not the focus of our study. Panoramic ((c1, c2) ∈ (0, 1)× (0, 1)) and localized ((c1, c2) ∈
(0.9, 0.91)× (0.14, 0.16)) views are displayed in Figure 7a,b, respectively. The transitions
to chaotic dynamics can be observed in both views. One can see that the equilibrium
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loses its stability as the difference between c1 and c2 becomes large enough. Figure 7b
depicts the transitions between different types of periodic orbits. According to Figure 7b,
the equilibrium bifurcates to a two-cycle of q1 (q2) as the value of c2 decreases if we fix c1.
Then, transitions to chaos from this two-cycle orbit through a cascade of period-doubling
bifurcations can be discovered. Furthermore, we also find the intermittence of periodic
orbits between chaotic dynamics.

(a) (c1, c2) ∈ (0, 1)× (0, 1) (b) (c1, c2) ∈ (0.9, 0.91)× (0.14, 0.16)

Figure 7. The two-dimensional bifurcation diagram with respect to c1 and c2 via fixing the parameters
λ = 0, r1 = r2 = 1, and d1 = d2 = 0. We choose (q1(0), q2(0)) = (0.01, 0.01) to be the initial state of
the iterations. Parameter points corresponding to periodic orbits with different orders are marked
in different colors and are marked in yellow if the order is greater than 24 or the trajectory diverges
(approaches ∞).

At the end, we try to explain the dynamic behaviors of the duopoly found in our
numerical simulations from an economic point of view. As mentioned above, periodic
solutions may take place in the duopoly game considered in this paper as we vary the
involved parameters. In an economic system, periodic solutions are interesting because
a boundedly rational firm cannot learn the pattern behind output and profits if a long
period of periodic dynamics takes place. Furthermore, one can see that chaos may also
appear in the model. If chaos appears, the pattern behind output and profits is nearly
impossible to learn even for completely rational players. Therefore, it is extremely hard
for a firm to handle a chaotic economy, where no market rules can be discovered and
followed. The observations on chaotic dynamics in our numerical simulations are consistent
with empirical validations of chaos in the literature. For example, the existence of low-
dimensional chaos was identified by evidence in various markets such as the US crude oil
market [44], the gold and silver market [45], and the soybean futures market [46]. We know
that chaotic attractors are fractal sets since at small scales a chaotic attractor is approximately
the Cartesian product of a Cantor set and a line segment; thus, it is roughly self-similar and
has a box dimension that is not an integer. Fractal patterns are quite common as nature
is full of fractals. Here, we can conclude that fractal patterns are widespread in economic
systems, which are discovered from not only our numerical simulations but also various
empirical studies.

6. Concluding Remarks

In this paper, we introduced a dynamic Cournot duopoly game of digital economies,
where an isoelastic (nonlinear) demand function features the market. The nonlinear demand
function is employed in our model since many empirical studies, including [15,16], rejected
the linear assumption. Furthermore, the cost functions of our model were built on the
special cost structure of digital goods. After that, we applied this duopoly game to explore
the effects of R&D spillovers by considering various competition intensities of the market.

We investigated the game in detail, solved the Nash equilibrium analytically, and
analyzed the expression of commodity price, firm output, and variable profit under several
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key competition intensities. Moreover, we investigated the local stability of the Nash
equilibrium and introduced the convergence factor, the reciprocal of which reflects the am-
plitude of the convergence speed. In addition, according to bifurcation theory, we derived
that the Nash equilibrium may lose its local stability through a 1:4 resonance bifurcation.

We conducted numerical simulations on the model and investigated the effects of the
involved parameters on the dynamic transitions. Firstly, we assume that r1 = r2 = r for the
sake of simplicity in the investigation of the effects of the competition intensities and R&D
spillovers. By using one-dimensional and two-dimensional bifurcation diagrams, we found
that the Nash equilibrium can be destabilized as λ or r decreases. In real digital economies,
the values of r1 and r2 may be quite distinct, but the parameters c1 and c2 (d1 and d2) seem
to take values close to each other. Therefore, our numerical simulations then focused on
this situation by exploring the dynamic transitions of the model with respect to r1 and
r2. We observed that the Nash equilibrium bifurcates to a periodic solution, after which
chaotic dynamics take place through a cascade of period-doubling bifurcations. It was also
observed that an intermittence of periodic orbits between chaotic dynamics may appear. In
addition, phase portraits were provided to illustrate more details of the dynamic transitions
with respect to λ. Through these phase portraits, we confirmed the previous theoretical
finding that the Nash equilibrium can be destabilized through a 1:4 resonance bifurcation.
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