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Abstract: Due to the complexity of the microstructure of porous media, it is of great significance
to explore the heat transport mechanism in porous media in many engineering applications. In
this study, an expression for effective thermal conductivity (ETC) of porous media embedded with
randomly distributed damaged tree-like bifurcation networks is derived based on the theory of
thermodynamics and fractal features of tree-like bifurcation networks. We investigate the effect of
heat conduction and heat convection in porous media embedded with randomly distributed damaged
tree-like bifurcation networks on the ETC of the porous media. It is found that our fractal model
has good consistency with the existing available experimental data. In addition, the influence of the
microstructural parameters of the model on heat transfer in the porous media is analyzed in detail.
The research results can provide significant theoretical guidance for the development and design of
heat transfer systems.

Keywords: effective thermal conductivity; fractals; porous media; damaged tree-like bifurcation
network

1. Introduction

The metric known as ETC plays a crucial role in quantifying the heat transfer proper-
ties inside porous material. The estimation of ETC in porous media has extensive use in
several domains such as thermoelectric materials, porous construction materials, the chem-
ical industry, petroleum extraction, and related sectors [1–6]. It is well known that porous
media are usually composed of pore space and solid matrix, and the microstructure exhibits
a high degree of complexity and chaos. Therefore, describing it using normal means poses
challenges. The application of fractal geometry theory enables the characterization of
pore properties in porous media when the microstructure of porous media has self-similar
characteristics [7] and offers a novel approach for investigating the challenges associated
with transportation in intricate and disorganized porous materials [8–10]. At present, many
scholars use fractal theory to explore gas flow [11–13], gas diffusion [14–16], and seepage
characteristics [17,18] in porous media. In addition, the investigation of heat transfer in
porous media can be conducted through the utilization of fractal geometry theory [19–21].
For example, Xiao [22] introduced a novel ETC model that incorporates a microscale effect,
leveraging the fractal properties exhibited by porous media. Shen et al. [23] developed a
three-phase unsaturated porous media model based on fractal theory, employing thermo-
electric simulation and a capillary bundle model. The study investigated the impact of
liquid saturation and porosity on the ETC of porous media, elucidating the underlying
influence mechanism.

The tree-like bifurcation network structure exhibits distinct transport characteristics;
therefore, it has attracted the interest and attention of a large number of scholars, and
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it has been widely used in related practical applications, such as microelectronic chip
cooling systems and production engineering, etc. [24,25]. Chen and Cheng [26] discussed
a comparative analysis to examine the distinctions between traditional parallel pipes
and rectangular tree-like bifurcation networks in the context of heat convection. They
discovered that the heat dissipation performance of pipes can be significantly enhanced
by employing rectangular tree-like bifurcation networks, in contrast to the conventional
parallel pipe configurations. Yu and Li [27] conducted a study on the ETC of composites
that contain tree-like bifurcation networks, focusing on the self-similarity properties of
these networks. The results show that the ETC of each component embedded in the
networks exerts a substantial impact on the ETC of the composite [28]. However, the
above research only focuses on the symmetric tree-like bifurcation networks and does not
involve the damage of branches in the networks. Miao et al. [29] conducted a study on the
heat transport and fluid flow, focusing on the fractal self-similarity exhibited by tree-like
bifurcation networks. Xiao et al. [30] published a study to investigate the impact of pore
surface roughness on the ETC of damaged tree-like bifurcation networks, building upon
the research conducted by Miao et al. [29]. The model considered the effects of roughness
and damaged structure of the pipeline on ETC; however, the impact of heat convection
resulting from the movement of liquid was not taken into account. Based on these premises,
Shao et al. [31] introduced an ETC model for porous media that incorporates a damaged
tree-like branching network, taking into account the impact of roughness. The development
of this model takes into account the distinctive features of tree-like bifurcation networks
that have been damaged and conducts separate analyses on the impacts of heat convection
and heat conduction on the ETC of porous media. The underlying assumption of the
model posits the presence of a solitary tree-like bifurcation network within the porous
media. However, in reality, a porous medium is usually composed of tree-like bifurcation
networks that conform to fractal scale distribution. Xia et al. [32] studied the influence of
heat convection caused by liquid flow on ETC by establishing the joint expression of heat
conduction and heat convection in a tree branch network with rough surfaces. Nevertheless,
the impact of branch damage within the tree-like bifurcation networks was not considered
in the scope of this research [33].

The study conducted by Valvano et al. [34] introduces an improved methodology for
the in vivo assessment of thermal conductivity, thermal diffusivity, and perfusion. This is
achieved through the utilization of a self-heated spherical thermistor probe. The method-
ology encompasses the resolution of a time-dependent thermal model that is coupled
with the probe–tissue system. This model is utilized to quantify the “effective” thermal
conductivity and “effective” thermal diffusivity, which serve as representative measures
of the thermal properties of perfused tissue. This study introduces a highly reproducible
thermal conductivity probe with precise temperature control, emphasizing its application
to measure and understand the influence of moisture content on ETC in a diverse biological
cell. Afterwards, Liang et al. [35] introduced the highly repeatable thermal conductivity
probe with precise temperature control to measure and understand the impact of water
content on thermal conductivity in different biological tissues. Bhattacharya et al. [36]
employed a new transient technique, using specialized thermal resistance wire probes
to experimentally establish thermal conductivity of cells, revealing reversible changes
within a specific temperature range, and emphasizing the significant impact of blood per-
fusion on enhancing heat transfer in living tissues. Valvano et al. [34] employed various
methodologies to assess the thermal conductivity and thermal conductivity resulting from
thermal convection in organisms. However, the intricate microstructure of porous media
poses challenges in experimentally elucidating the influence of this complexity on thermal
transport properties.

In the above brief literature research, the current research considering the effect of heat
convection on the ETC did not meditate on The damaged structure of randomly distributed
tree-like bifurcation networks. In our previous study [31], we exclusively examined the
phenomena of heat convection and heat conduction within a solitary tree-like branching
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network that was integrated within a porous medium. The pore structure of the main
pipe with random distribution was not considered. As a result, we will talk about heat
conduction and heat convection in our model, which has bifurcation networks that resemble
damaged trees and are scattered at random. A fractal model of ETC will be built, and
the influence of microstructural parameters of the composite on thermal transport will be
studied. The outcome of this study can contribute to the comprehension of the heat transfer
mechanism occurring within a porous medium that contains tree-like bifurcation networks
that have been damaged.

2. Fractal Characteristics of Porous Media

Creating a mathematical model that faithfully captures the ETC of porous media
embedded with randomly distributed damaged tree-like bifurcation networks is the main
goal of this work. It is postulated that a significant quantity of impaired tree-like bifurcation
networks is uniformly dispersed inside porous media, with the primary diameters of said
networks following the principles of fractal scaling. Refer to Figure 1a.
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Figure 1. (a) Diagrammatic schematic of the porous media with randomly distributed damaged tree-like
bifurcation networks; (b) diagrammatic schematic of a single damaged tree-like bifurcation network.

Therefore, the total number N of tree-like bifurcation networks with a diameter scale
L larger than or equal to the diameter of the main channel d0 can be expressed as [8]:

N(L ≥ d0) =

(
d0max

d

)Df

(1)

where d0max is the maximum diameter of the main channels, and Df is the fractal dimension
of the main channels. The Df can be obtained by [8]:

Df = DE − lnφf
ln(d0min/d0max)

(2)

where φf is areal porosity, d0min is the minimum diameter of the main channels, and DE
is the Euclidean dimension. DE = 2 in two-dimensional space, and DE = 3 in three-
dimensional space. Since there are many tree-like bifurcation networks in the porous media,
Equation (1) can be regarded as a continuous and differentiable function. The number of
main channels with sizes ranging from d0 to d0 + ∆d can be calculated by differentiating
with d0 based on Equation (1) [7–9]:

−dN = Dfd
Df
0maxd0

−(Df+1)dd0 (3)

where −dN > 0; the negative sign of the Equation (3) indicates that the number of main
channels decreases with the increase in the diameter of the main channels. Therefore,
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when d0 is equal to the minimum diameter of the main channels, the total number of main
channels in porous media can be expressed as [8]:

Nt(L ≥ d0min) =

(
d0max

d0min

)Df

(4)

Dividing Equation (3) by Equation (4), we have [7–9]:

−dN
Nt

= Dfd
Df
0mind0

−(Df+1)dd0 = f(d0)dd0 (5)

where f(d0) is the probability function for pore size distribution and can be given by [7]:

f(d0) = Dfd
Df
0mind0

−(Df+1) (6)

According to the basic theory of probability theory, Equation (6) should meet the
normalization condition; please see Ref. [18].

Equations (1)–(6) describe the randomly fractal distribution of tree-like bifurcation
networks with mother channel diameter d0, as shown in Figure 1a. In the following, we
will introduce the geometric structure of the single damaged tree-like bifurcation network
(see Figure 1b), which is made up of “point to line” Y-shaped networks. In our model,
we suppose that each branch in the bifurcation networks is a cylindrical tube, and the
roughness and the thickness of the tube wall are ignored [25]. Figure 1b illustrates the
utilization of lk and dk to denote the length and diameter, respectively, of the kth branching
level (where k ranges from 0 to m). The network bifurcation numbers, denoted as m,
represent the maximum number of branches that occur in a network. At each level of the
network, every tube undergoes a bifurcation, resulting in the formation of n new tubes. In
order to elucidate the geometric configuration of a bifurcation network resembling that of
a tree, next, we proceed to present two scale variables, namely the length ratio α and the
diameter ratio β [33].

A =
lk+1

lk
(7)

B =
dk+1

dk
(8)

So we obtain:
Lk = l0αk (9)

Dk = d0β
k (10)

where l0 and d0 are the length and diameter of the 0th branching level, respectively.
In order to consider an asymmetric tree-like bifurcation network, we assume that p

channels of the kth branching level have been damaged, but the other parts of the network
are intact. For example, if a branch of the tree-like bifurcation network in Figure 1b is
damaged, the damaged part will not generate new branches, and the undamaged part will
not be affected.

These equations above provide a theoretical basis for the analysis of heat transfer in the
porous media embedded with randomly distributed damaged tree-like bifurcation networks.

3. Fractal Model of Effective Thermal Conductivity of Porous Media
3.1. The Effective Thermal Conductivity of Heat Conduction

In general, the heat transport process in the damaged tree-like bifurcation networks is
different from that in the symmetric tree-like bifurcation networks.
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According to Fourier’s law and the thermal–electrical analogy technique, for a single
damaged tree-like bifurcation network, the thermal resistance of the damaged tree-like
bifurcation network can be written as [31]:

Rk =
4l0

λlπd2
0

Z1 (11)

where Z1 =


[

1−
(

α

nβ2

)k
]
+

(
α

nβ2

)k

1−n−kP

[
1−
(

α

nβ2

)m−k+1
](

1− α

nβ2

) , λl is the thermal conductivity of the

fluid, n is the branching number of the tree-like branching network, m is total num-
bers of branching levels, and p is the numbers of damaged channels. With the help of
Equations (4) and (11), the reciprocal of the total thermal resistance of the entire randomly
distributed damaged tree-like bifurcation networks can be calculated by the following relation:

1
Rk

= −
∫ d0max

d0min

1
rk

dN =
λlπd2

0maxDf(1 −φf)

4l0(2 − Df)

1
Z1

(12)

Here, we add up the length of each branch of a single tree-like branching network as a
straight pipe and consider the length of this straight pipe as the equivalent length. Then,
the equivalent length of a single damaged tree-like bifurcation network, le, can be written
as [31]:

Le = ∑m
k=0 lk = l0

1 − αm+1

1 − α
(13)

The total volume of the single damaged tree-like bifurcation network, V, can be
expressed as [31]:

V = ∑k−1
i=0 niVi + ∑m

i=k
(
ni − ni−kp

)
VI

=
πd2

0l0
4

1−(nβ2α)
k

1−nβ2α
+

πd2
0l0

4

(
nβ2α

)k(
1 − n−kP

) 1−(nβ2α)
m−k+1

1−nβ2α

=
πd2

0l0
4 Z2

(14)

where Z2 =

[
1−(nβ2α)

k]
+(nβ2α)

k
(1−n−kP)

[
1−(nβ2α)

m−k+1]
(1−nβ2α)

, and VI is the volume of the

single pipe in the ith branching level. In the present study, we consider the singularly
impaired tree-like bifurcation network as an exemplary model characterized by a solitary
conduit exhibiting a consistent volume. The ETC of the single channel that is equivalent
to the entire network is equivalent to the ETC of the entire network. Hence, utilizing
Equations (13) and (14), the effective cross-sectional area of the individual tree-like bifurca-
tion network, denoted as ae, can be determined [31]:

ae =
V
le

=
πd2

0
4

1 − α

1 − αm+1 Z2 (15)

Due to the distribution of the diameter of main pipes conforming to the fractal scaling
law, the effective cross-sectional area of the total porous media can be calculated from
Equations (2), (4), and (15):

Ae = −
∫ d0max

d0min

ae dN =
πDfd0max

2(1 −φf)

4(2 − Df)

1 − α

1 − αm+1 Z2 (16)

when m = 0, n = 0, and p = 0, the effective cross-sectional area is equal to the total cross-
sectional area of main channels, A0. At this point, a single tree-like branching network can
be seen as an undamaged channel, while the porous medium at this time can be seen as
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a porous medium with a fractal distribution of the diameter of the main pipe, which is
similar to in Yu’s study [10]:

A0 =
πDfd0max

2(1 −φf)

4(2 − Df)
(17)

The area of the complete cross-section of the media, A, according to the notion of
porosity, Aa, is determined by:

Aa =
A0

φf
=

πDfd0max
2(1 −φf)

4(2 − Df)φf
(18)

Likely, the thermal resistance of the media matrix of porous media, Rs, is given by
Fourier’s law and can be calculated as follows:

Rs =
le

Aaλs(1 −φf)
(19)

where λs is the thermal conductivity of the media matrix.
According to Fourier’s law, the ETC of the randomly distributed damaged tree-like bi-

furcation network part, Kd,k, and the ETC of the media matrix part, Kd,s, can be respectively
described as [31]:

Kd,k =
le

AaRk
(20)

Kd,s =
le

AaRs
(21)

According to Fourier’s law and the series-parallel model, the ETC of the whole porous
media, Kd, can be divided into two components: the randomly distributed damaged
tree-like bifurcation network component and the media matrix component, which can be
described as [31]:

Kd = Kd,k + Kd,s =
le

Aa

(
1

Rk
+

1
Rs

)
(22)

Inserting Equations (12), (13), (18), and (19) into Equation (22), the ETC of the whole
porous media, Kd, can be calculated as:

Kd =
1 − αm+1

1 − α

λlφf

(
1 − α

nβ2

)
Z1

+ λs(1 −φf) (23)

3.2. The Effective Thermal Conductivity of Heat Convection

The derivation of the ETC of the whole porous media is presented in Section 3.1.
Nevertheless, the convective heat transfer occurring between the fluid and the wall plays
a crucial role in facilitating the transportation of heat within porous media. This section
primarily focuses on the determination of the ETC associated with heat convection Kcv.

According to Chen and Cheng [26], the fluid dynamics within the tree-like bifurcation
networks exhibit laminar flow, and it is seen that the Nusselt number remains constant
across each layer. Consequently, the coefficient of heat convection, Hr, can be made explicit
as [26]:

Hr =
Nu · λl

d
(24)

The pipe’s characteristic length, denoted as d, is equivalent to the diameter of the
pipe. The Nusselt number, denoted as Nu, represents the dimensionless ratio of convective
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heat transfer to conductive heat transfer. Hence, the heat convection coefficient of the ith
branching level of the tree-like bifurcation network, denoted as Hi, can be determined [26]:

Hi = H0β
−I (25)

where H0 is the heat convection coefficient of the single main pipe of the tree-like bifurcation
network, which can be written as [26]:

H0 =
Nu · λl

d0
(26)

where d0 is the diameter of the 0th branching level. In line with Newton’s cooling formula,
the convective heat transfer rate in a solitary primary pipe, q0, can be written as:

q0 = H0ss,0∆T (27)

where ∆T is temperature difference. Ss,0 is the heat convection area of a single main pipe of
the tree-like bifurcation network, which can be determined by:

Ss,0 = πd0l0 (28)

where l0 is the length of the 0th branching level. According to Chen and Cheng [26],
the temperature difference between tree-like bifurcation networks at different levels is
invariable. Then, by means of Equations (25)–(28), the flow of the heat convection of
the undamaged part of the single damaged tree-like bifurcation network before the kth
branching level, ∆q1,a, can be modified as [31]:

∆q1,a = ∑k−1
i=0 niHiss,i∆T

= πd0l0H0∆T ∑k−1
i=0 niβ

−i
αiβi

= Nuπλll0
1−(nα)k

1−nα ∆T

(29)

where ss,I is the heat convection area of the ith branching level in the tree-like bifurcation
network.

It is likely that the flow of the heat convection of the damaged part of a single damaged
tree-like bifurcation network, ∆q2,a, can be modified as [31]:

∆q2,a = ∑m
i=k
(
ni − ni−kp

)
Hiss,i∆T

= πd0l0H0∆T∑m
i=k
(
ni − ni−kp

)
β−iαiβi

= Nuπλll0(nα)k(1 − n−kP)
1−(nα)m−k+1

1−nα ∆T

(30)

The heat convection flow of a singular damaged tree-like bifurcation network with
smooth surfaces, denoted as qa, can be computed using Equations (29) and (30) [31]:

qa = ∆q1,a + ∆q2,a
= ∑k−1

i=0 niHiss,i∆T + ∑m
i=k
(
ni − ni−kp

)
Hiss,i∆T

= πd0l0H0∆T ∑k−1
i=0 niβ

−i
αiβi + πd0l0H0∆T∑m

i=k
(
ni − ni−kp

)
β−iαiβi

= Nuπλll0
1−(nα)k

1−nα ∆T + Nuπλll0(nα)k(1 − n−kP)
1−(nα)m−k+1

1−nα ∆T

(31)

The heat convection area of the intact portion of a singular damaged tree-like bifurca-
tion network prior to the kth level of branching, denoted as ∆S1,a, can be expressed in a
similar manner:

∆S1,a = ∑k−1
i=0 niss,i

= πd0l0 ∑k−1
i=0 nIαiβi

= πd0l0
1−(nαβ)k

1−nαβ

(32)
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The heat convection area of the damaged part of a single damaged tree-like bifurcation
network, ∆S2,a, is:

∆S2,a = ∑m
i=k
(
ni − ni−kp

)
ss,i

= πd0l0∑m
i=k
(
ni − ni−kp

)
αiβi

= πd0l0(nαβ)
k(1 − n−kP)

1−(nαβ)m−k+1

1−nαβ

(33)

The calculation of the heat convection area of a single damaged tree-like bifurcation
network, denoted as Sa, may be performed using Equations (32) and (33).

Sa = ∆S1,a + ∆S2,a
= ∑k−1

i=0 niss,i + ∑m
i=k
(
ni − ni−kp

)
ss,i

= πd0l0 ∑k−1
i=0 nIαiβi + πd0l0∑m

i=k
(
ni − ni−kp

)
αiβi

= πd0l0
1−(nαβ)k

1−nαβ + πd0l0(nαβ)
k(1 − n−kP)

1−(nαβ)m−k+1

1−nαβ

(34)

The diameter distribution of the main pipes exhibits fractal scaling, according to the
underlying principle, the heat flow, Qcv, and the heat convection area, Scv, can be obtained
by respectively integrating the individual heat flow, qa, and the individual heat convection
area, Sa.

Qcv = −
∫ d0max

d0min
qa dN

= −
∫ d0max

d0min
Nuπλll0

1−(nα)k

1−nα ∆T + Nuπλll0(nα)k(1−n−kP) 1−(nα)m−k+1

1−nα ∆T dN

= Nuπλll0
[

1−(nα)k

1−nα + (nα)k(1 − n−kP) 1−(nα)m−k+1

1−nα

]
d0max

Df(d0min
−Df − d0max

−Df)∆T

(35)

Scv = −
∫ d0max

d0min
Sa dN

= −
∫ d0max

d0min
πd0l0

1−(nαβ)k

1−nαβ +πd0l0(nα β)k(1−n−k P)
1−(nαβ)m−k+1

1−nαβ dN

= πl0
Df

Df−1

[
1−(nαβ)k

1−nαβ + (nαβ)k(1 − n−kP) 1−(nαβ)m−k+1

1−nαβ

]
d0max

Df(d0min
1−Df − d0max

1−Df)

(36)

In accordance with Fourier’s law, the thermal conductivity of heat convection resulting
from fluid flow in porous media, denoted as Kcv, is [31]:

Kcv =
Qcv

Scv
∆T
δT

(37)

The thickness of the thermal boundary layer in thermal convection, denoted as δT, is
primarily influenced by the fluid’s characteristics.

Inserting Equations (35) and (36) into Equation (37), the thermal conductivity of heat
convection caused by fluid flow in the porous media, Kcv, is:

Kcv = NuδTλl
1 − nαβ
1 − nα

1 −
(
nα)k +

(
nα)k(1 − n−kP

)[
1 −

(
nα)m−k+1]

1 −
(
nαβ)k +

(
nαβ)k

(
1 − n−kP

)[
1 −

(
nαβ)m−k+1

] Df − 1
Df

(d0min)
−1

1 −
(

d0min
d0max

)Df

1 −
(

d0min
d0max

)Df−1 (38)

According to the research of Yu et al. [10], only when
(

d0min
d0max

)Df
= 0 does the diameter

of the main channels of damaged tree-like bifurcation networks, d0, conform to fractal
scaling law. Therefore, the thermal conductivity of heat convection caused by fluid flow in
the porous media Kcv can be simplified as:

Kcv = NuδTλl
1 − nαβ
1 − nα

1 −
(
nα)k +

(
nα)k(1 − n−kP

)[
1 −

(
nα)m−k+1]

1 −
(
nαβ)k +

(
nαβ)k

(
1 − n−kP

)[
1 −

(
nαβ)m−k+1

] Df − 1
Df

(d0min)
−1 1

1 −
(

d0min
d0max

)Df−1 (39)
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The average diameter, d0, of the main channels of randomly distributed tree-like
bifurcation networks can be obtained from Equation (6) [32]:

D0 =
∫ d0max

d0min

d0f(d0)dd0 =
Df

Df − 1
d0min

[
1 −

(
d0min

d0max

)Df−1
]

(40)

Inserting Equation (40) into Equation (39), the thermal conductivity of heat convection
caused by fluid flow in the porous media can be simplified again as:

Kcv = NuδTλl
1 − nαβ
1 − nα

1 −
(
nα)k +

(
nα)k(1 − n−kP

)[
1 −

(
nα)m−k+1]

1 −
(
nαβ)k +

(
nαβ)k

(
1 − n−kP

)[
1 −

(
nαβ)m−k+1

] 1
d0

(41)

3.3. The Total Effective Thermal Conductivity of Porous Media

The development of the thermal conductivity model for heat conduction and the ther-
mal conductivity model for heat convection in porous media was conducted in
Sections 3.1 and 3.2, respectively. The current investigation proposes that the heat transfer
mechanism in bifurcation networks resembling trees is facilitated by the combined effects
of heat conduction and heat convection. In alternative terms, the equation representing
the effective thermal conductivity (ETC) of porous media, which encompasses randomly
distributed damaged tree-like bifurcation networks written as Keff, can be formulated
as [31]:

Keff = Kd + Kcv (42)

With respect to Equations (23), (41), and (42), the ETC of whole porous media can be
derived as:

Keff =
1−αm+1

1−α

λlφf

(
1− α

nβ2

)

[

1−
(

α

nβ2

)k
]
+

(
α

nβ2

)k

1−n−kP

[
1−
(

α

nβ2

)m−k+1
]

+ λs(1 −φf)+

NuδTλl
1−nαβ
1−nα

1−(nα)k+(nα)k(1−n−kP)
[
1−(nα)m−k+1

]
1−(nαβ)k+(nαβ)k(1−n−kP)

[
1−(nαβ)m−k+1

] 1
d0

(43)

The dimensionless ETC of porous media with randomly distributed damaged tree-like
bifurcation networks is defined by K+ = Keff

λl
, and it can be expressed as:

K+ = 1−αm+1

1−α

φf

(
1− α

nβ2

)

[

1−
(

α

nβ2

)k
]
+

(
α

nβ2

)k

1−n−kP

[
1−
(

α

nβ2

)m−k+1
]

+ λs
λl
(1 −φf)+

NuδT
1−nαβ
1−nα

1−(nα)k+(nα)k(1−n−kP)
[
1−(nα)m−k+1

]
1−(nαβ)k+(nαβ)k(1−n−kP)

[
1−(nαβ)m−k+1

] 1
d0

(44)

Equation (44) is the dimensionless coefficient of heat conductivity for the whole
porous media. It is also a theoretical model, which can be used for analyzing the effect of
structural parameters of tree-like bifurcation networks (d0,α,β, n, m, P, k), the porosity, φf,
the thermal conductivity of porous media matrix, λs, and the thermal conductivity of fluid,
λl, on the dimensionless thermal conductivity coefficient. In Equation (44), all parameters
have a clear physical meaning, and there are not any empirical constants.

4. Results and Discussion

Figure 2 presents a comparative analysis of the experimental data obtained from the
study conducted by Liang et al. [34–36] and ETC, Keff, versus λs for varying quantities of
impaired channels, as determined by Equation (43). The values of relevant parameters are
all from experimental information from Liang et al. [34–36]. In Figure 2, the permeable me-
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dia’s thermal conductivity fluid is λl = 0.5, which is given by the experimental information
from Liang et al. [35]. The porosity used in the experimental information of Valvano et al.
is 0.0041–0.1645. The porosity used in the experimental data of Liang et al. is 0.1, and
the porosity used in the experimental data of Bhattacharya et al. is 0.013–0.1645 [34–36].
Therefore, the porosity we select in the Figure 2 is 0.1, and the experiment data from Liang
et al. gives the length ratio and diameter ratio of the arterial vascular tree, which are
1.30 and 1.25 [34–36]. So, we select α = 1/1.30 = 0.77, β = 1/1.25 = 0.8. The structural
parameters of pores in reality, such as n, and m, are difficult to obtain in experiments. In
Tien’s research [37], the Nusselt number, denoted as Nu, characterizes the convective heat
transfer in a porous medium confined between two parallel plates in the fully developed
regime. This analysis is based on the Darcy flow model, specifically considering slug flow.
For the case of constant wall temperature, the Nusselt number is represented by Nu = 4.93.
Conversely, for constant wall heat flux, the Nusselt number is given by Nu = 6.0. In this
study, we assume that heat transfer in porous media occurs under constant temperature
conditions. Due to the complex microporous structure of the tree-like branching network,
which is difficult to measure, we arbitrarily select m = 5, n = 2. So, we take m = 5,
n = 2, Nu = 4.93. Consistent with the experimental data, we choose the thickness of the
thermal boundary layer as δT = 2.5 × 10−5 and the average diameter of the randomly
distributed tree-like network as d0 = 1 × 10−2 m [34–36]. The picture reveals that the ETC
of porous media containing randomly distributed damaged tree-like bifurcation networks,
as predicted using the ETC model described by Equation (43), exhibits a notable level of
concordance with the experimental findings. It has also been observed that the ETC exhibits
a positive correlation with the thermal conductivity of the media matrix while displaying a
negative correlation with the number of damaged channels. The observed outcome can
be rationalized by considering that an augmentation in the number of impaired channels
results in a reduction in both the effective cross-sectional area and thermal convection area.
Consequently, the dimensionless ETC experiences a decline as the number of damaged
channels increases.
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Figure 2. The comparison between experimental data and ETC Keff versus λs at
α = 0.77, β = 0.8, k = 2, m = 5, n = 2,φf = 0.1, λl = 0.5, d0 = 1 × 10−2 m, Nu = 4.93,
δT = 2.5 × 10−5 m [34–36].

Figure 3 illustrates the relationship between the dimensionless ETC and the length ratio
for varying numbers of damaged channels. The data presented in the figure demonstrate a
positive correlation between the dimensionless ETC and the length ratio, indicating that as
the length ratio increases, the ETC also increases. Conversely, there is a negative correlation
between the dimensionless ETC and the number of damaged channels, suggesting that
as the number of damaged channels increases, the ETC decreases. The reason for this
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phenomenon is that as the length ratio increases, the heat convection area of the bifurcation
network pipeline also increases, thereby leading to an increase in the overall ETC. It is
worth noting that when p = 4, the dimensionless ETC hardly changes with the change of
the length ratio. The reason for this result is that when all branches of the networks are
damaged, only the heat conduction of matrix part exists in porous media. At this time, the
porous medium can be regarded as a solid medium with all the pipes damaged. The length
ratio hardly influences the dimensionless ETC of porous media.
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Figure 3. The dimensionless ETC K+ versus α and p at β = 0.8, n = 2, k = 2, φf = 0.1, λl = 0.5,
λs = 0.15, d0 = 1 × 10−2 m, Nu = 4.93, δT = 2.5 × 10−5 m.

Figure 4 illustrates the impact of the diameter ratio, denoted as β, on the dimensionless
ETC for varying numbers of damaged channels and compares it with the data in Ref. [31].
The rationale behind this phenomenon is that an increase in the diameter ratio results in
a decrease in the overall thermal resistance. Consequently, the ETC decreases while the
length ratio remains constant. It can be observed from the figure that the dimensionless
ETC exhibits a decreasing trend as the diameter ratio increases. Additionally, it is observed
that the dimensionless ETC exhibits a minor variation with the change in the diameter ratio
when p = 4. The aforementioned statement aligns with the result presented in Figure 4.
Interestingly, by comparing the data with Ref. [31] (m = 5,α = 0.77, n = 2, k = 2), it
can be seen that when p = 2, our model has a higher ETC, but the trends of the two are
basically consistent.
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Figure 5 illustrates the relationship between the ETC, Keff, the ETC of the network part,
Kd,1, the ETC of the matrix part, Kd,2, and the heat convection ETC, Kcv, with respect to the
fractal dimension of the porous media. This relationship is examined for various numbers
of damaged channels. The research indicates that there is a positive correlation between
the fractal dimension of porous media and the ETC. Specifically, as the fractal dimension
increases, the ETC also increases. On the other hand, the ETC of the randomly distributed
damaged tree-like bifurcation network component falls when the fractal dimension of
porous media increases. The influence of the fractal dimension of porous media on ETC
resulting from heat convection is negligible. The ETC of the matrix exhibits a decrease
as the fractal dimension of the porous media increases. The observed phenomenon can
be attributed to the positive correlation between the fractal dimension of pores and the
porosity of porous media. As the fractal dimension of holes increases, the porosity of
the media also increases, thereby resulting in a decrease in the matrix composition of the
porous media. The determination of the total ETC of the porous media may be observed
from Equation (41), which indicates that it is influenced by the ETC of the three constituent
parts. The dominance of heat transmission in porous media by the heat conduction of
the randomly distributed damaged tree-like bifurcation network component as the fractal
dimension grows can be observed in Figure 4.
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Figure 5. The ETC of each component Keff, Kd,1, Kd,2, Kcv versus Df, and p at α = 0.77,
β = 0.8, k = 2, m = 5, n = 2, λs = 0.15, λl = 0.5, d0 = 1 × 10−2 m, Nu = 4.93, δT = 2.5 × 10−5 m.

Figure 6 illustrates the impact of the ratio between the ETC of the wall and the ETC
of the fluid on the dimensionless ETC of the porous media considering various fractal
dimensions. Based on the analysis of Figure 6, it can be inferred that an increase in the
ratio of the ETC of the wall to that of the fluid results in a corresponding increase in
the dimensionless ETC. It is noteworthy to mention that the dimensionless ETC remains
consistent across various fractal dimensions, provided that the ratio between the ETC of
the wall and that of the fluid is approximately 1.1. When the ratio is below 1.1, there is an
observed rise in the dimensionless ETC as the fractal dimension increases. However, when
the ratio exceeds 1.1, a decrease in the fractal dimension is associated with an increase in
the dimensionless ETC. The relationship between porosity and fractal dimension can be
elucidated by observing that an increase in fractal dimension corresponds to an increase
in porosity. In cases when the ETC of the fluid surpasses that of the matrix component,
an increase in porosity leads to a more significant involvement of tree-like bifurcation
networks in the heat conduction process inside porous media. In contrast, if the ETC of the
fluid is lower than that of the matrix, an increase in porosity will result in a reduction in the
heat transfer area of the matrix. Consequently, the overall ETC will fall.
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Figure 6. The dimensionless ETC K+ versus λs
λl

and Df at α = 0.77, β = 0.8, k = 2, m = 5, n = 2,
p = 2, d0 = 1 × 10−2 m, Nu = 4.93, δT = 2.5 × 10−5 m.

5. Conclusions

This research presents the derivation of a dimensionless equation for the ETC of
porous media including randomly distributed damaged tree-like bifurcation networks.
Furthermore, the impact of the structural features of the porous media on the ETC is
investigated. In this study, we took into account not only the heat conduction of the
bifurcation network and matrix components, but also the heat convection resulting from
liquid flow. Our findings indicate that when the ratio of ETC of the wall to that of the fluid is
less than 1.1, there is an observed increase in the dimensionless ETC as the fractal dimension
increases. Conversely, when the ratio exceeds 1.1, a decrease in the fractal dimension
corresponds to an increase in the dimensionless ETC. Additionally, it was observed that
an increase in the fractal dimension results in the dominance of heat conduction in the
heat transfer process of porous medium, namely, inside the randomly distributed damaged
tree-like bifurcation network segment. Furthermore, by a comparative analysis of the
available experimental data and the fractal model suggested in our study, it was shown
that the ETC model for porous media presented in this research has favorable concurrence
with the experimental data. The proposed model aims to enhance the understanding of
heat transport mechanisms in porous media and offer valuable insights for a wide range
of engineering applications. The omission of considering the impact of capillary surface
roughness on the effective heat conductivity of porous media is acknowledged in this
study. Hence, our forthcoming research will focus on investigating the impact of surface
roughness on the effective heat conductivity.
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Nomenclature

Symbols Description Hr the coefficient of heat convection
N branching number Rs the thermal resistance of the media matrix
L diameter scale Rk the thermal resistance of the network
lk the length of the kth branching level φa the porosity of the cross-section of the media
dk the diameter of the kth branching level ∆T temperature difference
Df dimension of the main channels’ fractal φa the porosity of the cross-section of the media
φf areal porosity Rd,a the total thermal resistance of the network
DE Euclidean dimension ∆T temperature difference
n the branching number Q0 the heat convection flow of a single main pipe

D fractal dimension Ss,0
the tree-like bifurcation network’s single main pipe’s
heat convection area

DE Euclidean dimension ∆q1,a the heat convection flow in the undamaged part
d0max the primary channels’ largest diameter ∆q2,a the heat convection flow in the damaged part
d0min the primary channels’ minimum diameter ∆S1,a the heat convection area of the undamaged part
α the length ratio ∆S2,a the heat convection area of the damaged part

β the diameter ratio Ka,1
the effective thermal conductivity of the media
matrix part

Rk
the kth level channel’s single channel’s

Ka,2 the effective thermal conductivity of the network part
thermal resistance

m total number of levels in a branch d0 the average diameter of the main channels
P the number of damaged channels kcv the thermal conductivity of heat convection
le the equivalent length Qcv the total heat flow
V the total volume Scv the total heat convection area
Vi the single pipe’s volume at the branching level qa the individual heat flow
λl the thermal conductivity of the fluid part Sa the individual heat convection area

λs the thermal conductivity of the media matrix δT

the thickness of the thermal boundary layer of thermal
convection caused by fluid flow is mainly related to the
characteristics of the fluid

A0 the overall main channel cross-sectional area Hr the coefficient of heat convection
Aa the area encompassing the whole spectrum of media Keff the effective thermal conductivity

Kd,k the ETC of network part k+ the dimensionless thermal conductivity
Kd,s the ETC of the media matrix part
Kd the ETC of the whole porous media
Nu the Nusselt number
kcv the thermal conductivity of heat convection
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