
Citation: Cui, M.; Zhang, Z. The

Convolution Theorem Involving

Windowed Free Metaplectic

Transform. Fractal Fract. 2023, 7, 321.

https://doi.org/10.3390/fractalfract

7040321

Academic Editors: Ricardo Almeida

and Ahmed I. Zayed

Received: 13 March 2023

Revised: 2 April 2023

Accepted: 7 April 2023

Published: 9 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fractal and fractional

Article

The Convolution Theorem Involving Windowed Free
Metaplectic Transform
Manjun Cui 1,2,3 and Zhichao Zhang 1,2,3,*

1 School of Mathematics and Statistics, Nanjing University of Information Science and Technology,
Nanjing 210044, China

2 Center for Applied Mathematics of Jiangsu Province, Nanjing University of Information Science and
Technology, Nanjing 210044, China

3 Jiangsu International Joint Laboratory on System Modeling and Data Analysis, Nanjing University of
Information Science and Technology, Nanjing 210044, China

* Correspondence: zzc910731@163.com; Tel.: +86-13376073017

Abstract: The convolution product is widely used in many fields, such as signal processing, numeri-
cal analysis and so on; however, the convolution theorem in the domain of the windowed metaplectic
transformation (WFMT) has not been studied. The primary goal of this paper is to give the convolu-
tion theorem of WFMT. Firstly, we review the definitions of the FMT and WFMT and give the inversion
formula of the WFMT and the relationship between the FMT and WFMT. Then, according to the form
of the classical convolution theorem and the convolution operator of the FMT, the convolution theo-
rem in the domain of the WFMT is given. Finally, we prove the existence theorems of the proposed
convolution theorem.

Keywords: free metaplectic transformation; windowed metaplectic transformation; convolution
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1. Introduction

The free metaplectic transformation (FMT), which is also known as a high-dimensional
form of the nonseparable linear canonical transform (LCT), was first produced in [1]. A
2n× 2n real symplectic matrix M = (A, B; C, D) with n(2n + 1) independent parameters
was used in the free metaplectic transformation. When the symplectic matrix M takes differ-
ent matrices, the FMT can reduce to different transformations, such as the Fourier transform
(FT), the fractional Fourier transform (FRFT), the Fresnel transform (FRT), the linear canoni-
cal transform (LCT), and the basic quadratic phase factor multiplication [2]. Today, FMT is
a central tool in time-frequency analysis, with several applications to PDE and mathematical
physics [3–5]. Moreover, it has been widely used in optical systems, filter design, image
processing, time-frequency analysis, harmonic analysis, and so on [6–9].

As a useful mathematical tool, the convolution product plays an important role in
the design and implementation of multiplicative filters, harmonic analysis, image pro-
cessing, and signal processing [10–12]. In recent years, people have conducted a lot of
research on convolution theorems; many one-dimensional convolution theorems have been
proposed, and many different transformations have been obtained based on convolution
operators [13–16]. In the Fourier transform (FT) domain, the classical convolution theorem
shows that the FT of two signals’ convolution is equal to the product of their FT, which
means that the FT can replace the complex convolution operation with a simple product
operation. The FT has its own advantages and good effects in processing and analyzing
stationary signals, but its ability in processing and analyzing nonstationary signals is weak
due to its limitations. The fractional Fourier transform (FRFT) is an extension of the Fourier
transform. By introducing a rotation angle α, it can be considered that the signal rotates ar-
bitrarily by angle α on the time axis, and the information of the time domain and frequency
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domain can be obtained simultaneously [17,18]. In the fractional Fourier domain, a lot of
work has been conducted on convolution; Wei proposed a new convolution structure for
the FRFT [19]. On this basis, the paper [20] extended one dimension to high dimensions
and gave the generalized fractional convolution theorem of N-dimension. The fractional
Fourier transform uses a separable kernel and only has one extra degree of freedom, while
the linear canonical transform (LCT) uses an inseparable kernel and introduces three extra
degrees of freedom, which is more valuable for research. At present, various convolution
operators and corresponding convolution theorems have been proposed in the LCT do-
main [21–25], which have made great contributions to signal processing and application.
However, the FMT, as an n-dimensional nonseparable LCT, has higher extra degrees of
freedom, which is the generalization of the LCT.

Although the FMT has been successfully applied in many fields, it has a large limitation.
Because of its global kernel, there is no way to process the local spectral components
of nontransient signals [26,27]. Therefore, in order to solve this defect, it is necessary
to window the free metaplectic transformation; this concept was first put forward by
Shah et al. in [28]. The windowed free metaplectic transformation (WFMT), also called the
short time free metaplectic transformation, is an efficient signal processing tool that can
locate the frequency spectrum of nontransient signals in the free metaplectic domain. The
WFMT has more degrees of freedom and can produce a localized analysis of chirp signals
that is effective.

In the windowed Fourier transform (WFT) domain, Lu and Zhang [29] used windowed
convolution theorem for time-frequency analysis. In the windowed fractional Fourier
(WFRFT) domain, Gao and Li developed a convolution form with a concise traditional
convolution theorem in the frequency domain [30]. In the windowed linear canonical
transform (WLCT) domain, the WLCT is defined by the convolution operator, and some
properties and practical applications were studied in [31]. The WFT, WFRFT, and WFMT
are all special forms of the WFMT, which urges us to actively explore the convolution theory
of WFMT. Through the analysis of the present research situation, it is very meaningful to
study the convolution theorem of the WFMT. Some scholars have studied the convolution
theory of many time-frequency analysis tools, but no one has studied the convolution
theory of WFMT; so, the study of the convolution theorem of WFMT is extremely important
from a theoretical standpoint. To summarize, this paper studies the convolution theorem of
the WFMT.

In this paper, we mainly study the convolution theorem of the WFMT. A convolution
operator is proposed in the WFMT domain, which makes the convolution theorem in the
WFMT domain have the same concise form as that in the traditional Fourier transform do-
main.In this way, we can transform the convolution in the time domain into the product in
the metaplectic domain, which is very convenient and concise in the frequency domain and
is beneficial to the design of the multiplication filter. Meanwhile, we prove the existence of
the proposed convolution. The remainder of this paper is structured as follows. In Section 2,
we briefly review the definition and elementary properties of the FMT. In Section 3, the
definition of the WFMT and the related convolution theorem are given. In Section 4, we
give the explanation of the existence theorem of the above convolution theorem. Finally,
the conclusion is in Section 5.

2. Preliminaries

In this section, we mainly review some concepts and basic knowledge, which are used
in the following sections.The space composed of all square integrable functions can be
expressed as

L2(Rn) =

{
f :
∫
Rn
| f (x)|2dx < ∞

}
. (1)
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For any positive integer p, the space formed by all p-integrable functions on Rn is
expressed by Lp(Rn). For any function f (x) ∈ Lp(Rn), the norm of f is defined as

‖ f ‖p=

(∫
Rn
| f (x)|pdx

) 1
p
. (2)

We denote a real symplectic 2n× 2n matrix M =

(
A B
C D

)
as M = (A, B; C, D)

(equivalently det(B) 6= 0) for typographical convenience, where A, B, C, and D are n× n
real matrices satisfying

ABT = BAT , CDT = DCT , ADT − BCT = In, (3)

where In denotes the n-dimensional identity matrix. If |detB| 6= 0 and MTJM = J, the ma-
trix M = (A, B; C, D) is considered to be a free symplectic matrix. MT = (AT , CT ; BT , DT)
and M−1 = (DT ,−BT ;−CT , AT) provide the transpose and the inverse of the free sym-
plectic matrix M = (A, B; C, D), respectively.

We define the FMT [32,33] as follows:

Definition 1. The free metaplectic transform (FMT) of any function f ∈ L2(Rn) with a free real
symplectic matrix M = (A, B; C, D) is denoted by FM[ f ] and is defined as [32,33]

FM[ f ](w) =
∫
Rn

f (x)KM(x, w)dx, (4)

where kernel KM(x, w) is given by

KM(x, w) =
1√

detB
eiπ(wTDB−1w−2wTBT−1x+xTB−1Ax), (5)

with |detB| 6= 0.

The corresponding (4) inversion formula is given by

f (x) = FM−1 [FM[ f ](w)](x) =
∫
Rn
FM[ f ](w)KM−1(w, x)dw. (6)

3. Windowed Free Metaplectic Transform

Definition 2 (WFMT). Let g ∈ L2(Rn) be a window function; the windowed free metaplectic
transform (WFMT) of any f ∈ L2(Rn) with a free real symplectic matrix M = (A, B; C, D) is
defined as [28]

(GM
g f )(b, u) =

∫
Rn

f (x)g(x− b)KM(x, u)dx, (7)

where kernel KM(x, u) is given as (5).

Remark 1. Let A = D = diag(cosα, cosα, . . . , cosα) and B = −C = diag(sinα, sinα, . . . , sinα);
then, the definition of the WFMT will reduce to the windowed fractional Fourier transform (WFRFT)
with rotational angle α.

Remark 2. When the window function g(x) = 1, the definition of the WFMT [28] equals
the FMT [32,33].

From (4) and (7), the relationship between the FMT and WFMT can be written as

(GM
g f )(b, u) = FM[h](u), (8)

where h(x, b) = f (x)g(x− b).
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Proposition 1 (The inversion of the WFMT). Let g ∈ L2(Rn) be a window function, and
‖g‖2 6= 0; GM

g f denotes the windowed free metaplectic transform of f , and

f (x) =
1
‖g‖ 2

∫
Rn

∫
Rn
(GM

g f )(b, u)KM(x, u)g(x− b)dudb. (9)

Proof of Proposition 1. Letting h(x, b) = f (x)g(x− b),

(GM
g f )(b, u) =

∫
Rn

h(x, b)KM(x, u)dx = FM[h](u). (10)

According to the inversion formula of FMT (6), we have

h(x, b) =
∫
Rn
FM[h](u)KM−1(u, x)du. (11)

Then,
f (x)g(x− b) =

∫
Rn
(GM

g f )(b, u)KM(x, u)du. (12)

Multiplying g(x− b) on both sides of the above equation and integrating, we obtain∫
Rn

f (x)g(x− b)g(x− b)db =
∫
Rn

∫
Rn
(GM

g f )(b, u)KM(x, u)g(x− b)dudb. (13)

That is,

f (x)‖g‖2
2 =

∫
Rn

∫
Rn
(GM

g f )(b, u)KM(x, u)g(x− b)dudb. (14)

Since ‖g‖2 6= 0, we can obtain

f (x) =
1
‖g‖ 2

∫
Rn

∫
Rn
(GM

g f )(b, u)KM(x, u)g(x− b)dudb.

Thus, the proof is finished.

Definition 3. Given two functions f , h ∈ L2(Rn), the free metaplectic convolution with a free
symplectic matrix M = (A, B; C, D) is denoted by ~M and is defined as [32]

( f ~M h)(b) =
1√

detB

∫
Rn

f (x)h(b− x)eiπ(xTB−1A(x−b)+(x−b)TB−1Ax)dx. (15)

According to (15), f ~M h can be written as

( f ~M h)(b) =
1√

detB
( f1 ∗ h1)(b), (16)

where f1(x) = f (x)eiπ(xTB−1A(x−b)), h1(x) = h(x)eiπ(xTB−1A(x−b)), and ∗ denotes the
common convolution operator.

Proposition 2. For two functions f , h ∈ L2(Rn) in free metaplectic domains, the convolution
theorem can be written as

FM[( f ~M h)(b)](w) = e−iπwTDB−1wFM[ f ](w)FM[h](w). (17)

Proof of Proposition 2. The proof is very simple; so, it is omitted here.
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According to (7) and (15), the WFMT can be expressed in terms of the convolution

(GM
g f )(b, u) =

(
f̃u ~M g̃b

)
(b), (18)

where
f̃u(x) = f (x)eiπ(uTDB−1u−2uTBT−1x+xTB−1Ax), (19)

g̃b(x) = g(−x)eiπ
(
(b−x)TB−1Ax+xTB−1A(b−x)

)
. (20)

We define the convolution product associated with the WFMT as

GM
g ( f ?M h)(b, u) =

(
GM

g f
)
(b, u)

(
GM

g h
)
(b, u). (21)

Theorem 1 (Convolution theorem for the WFMT). Let g ∈ L2(Rn) be a window function,
f ∈ L2(Rn) and h ∈ L2(Rn). For any x ∈ Rn, the windowed convolution is obtained by

( f ?M h)(x) =
∫
Rn

∫
Rn

Au(ξ, y, x) f (ξ)h(y)dξ dy, (22)

where

Au(ξ, y, x) =
1

|detB|

∫
Rn

∫
Rn
KM(x, w)KM(t, w)

U(ξ, u)U(y, u)
U(x, u)

× g̃b(t−ξ)g̃b(t− y)
FM[g̃b](w)

eiπ(ξTB−1A(ξ−t)+(ξ−t)TB−1Aξ)

× eiπ(yTB−1A(y−t)+(y−t)TB−1Ay)eiπwTDB−1wdtdw, (23)

U(x, u) = eiπ(uTDB−1u−2uTBT−1x+xTB−1Ax), (24)

g̃b(x) = g(−x)eiπ
(
(b−x)TB−1Ax+xTB−1A(b−x)

)
. (25)

Proof of Theorem 1. According to (17) and (18), we have

FM

[
(GM

g f )(b, u)
]
(w) = FM

[(
f̃u ~M g̃b

)
(b)
]
(w)

= e−iπwTDB−1wFM[ f̃u](w)FM[g̃b](w). (26)

Let U(x, u) = eiπ(uTDB−1u−2uTBT−1x+xTB−1Ax); then, we have

FM

[
(GM

g ( f ?M h))(b, u)
]
(w)

= e−iπwTDB−1wFM[ ˜( f ?M h)u](w)FM[g̃b](w)

= e−iπwTDB−1wFM[( f ?M h)(x)U(x, u)](w)FM[g̃b](w). (27)

Moreover, we have

FM

[
(GM

g ( f ?M h))(b, u)
]
(w) = FM

[(
GM

g f
)
(b, u)

(
GM

g h
)
(b, u)

]
(w)

= FM

[(
f̃u ~M g̃b

)(
h̃u ~M g̃b

)]
(w). (28)
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Thus,

e−iπwTDB−1wFM[( f ?M h)(x)U(x, u)](w)FM[g̃b](w)

= FM

[(
f̃u ~M g̃b

)(
h̃u ~M g̃b

)]
(w). (29)

So,

FM[( f ?M h)(x)U(x, u)](w)

= eiπwTDB−1w
FM

[(
f̃u ~M g̃b

)(
h̃u ~M g̃b

)]
(w)

FM[g̃b](w)
. (30)

According to the inversion Formula (6), we can obtain

( f ?M h)(x)U(x, u) =FM
−1

eiπwTDB−1w
FM

[(
f̃u ~M g̃b

)(
h̃u ~M g̃b

)]
(w)

FM[g̃b](w)


=
∫
Rn

eiπwTDB−1w

FM[g̃b](w)
FM

[(
f̃u ~M g̃b

)(
h̃u ~M g̃b

)]
(w)KM(x, w)dw

=
∫
Rn

eiπwTDB−1w

FM[g̃b](w)

(∫
Rn

(
f̃u ~M g̃b

)
(t)
(

h̃u ~M g̃b

)
(t)KM(t, w)dt

)
×KM(x, w)dw

=
1

|detB|

∫
Rn

∫
Rn

∫
Rn

∫
Rn

eiπwTDB−1w

FM[g̃b](w)
KM(t, w)KM(x, w)

× f̃u(ξ)g̃b(t−ξ)eiπ(ξTB−1A(ξ−t)+(ξ−t)TB−1Aξ)

× h̃u(y)g̃b(t− y)eiπ(yTB−1A(y−t)+(y−t)TB−1Ay)dξdydwdt

=
1

|detB|

∫
Rn

∫
Rn

∫
Rn

∫
Rn
KM(t, w)KM(x, w)

× g̃b(t−ξ)g̃b(t− y)
FM[g̃b](w)

eiπ(ξTB−1A(ξ−t)+(ξ−t)TB−1Aξ)

× eiπ(yTB−1A(y−t)+(y−t)TB−1Ay)eiπwTDB−1w f (ξ)U(ξ, u)

× h(y)U(y, u)dξdydwdt. (31)

Since U(x, u) 6= 0, we can obtain

( f ?M h)(x) =
∫
Rn

∫
Rn

Au(ξ, y, x) f (ξ)h(y)dξ dy,

where Au(ξ, y, x) is defined as (23). Thus, the proof is finished.

Remark 3. Let A = D = diag(cosα, cosα, . . . , cosα) and B = −C = diag(sinα, sinα, . . . , sinα)
in the matrix M = (A, B; C, D); then, the convolution theorem of the WFMT will reduce to the
convolution theorem of the WFRFT in [30].

Remark 4. Since the FMT uses the global kernel, there is no way to deal with the local spectral
components of nontransient signals, but the WFMT can solve this problem well. Therefore, the con-
volution theorem proposed in this paper is less limited than the convolution theorem proposed
in [32], and it is better for capturing and analyzing nontransient signals. The convolution
theorem (21) has the simplicity and elegance consistent with the classical convolution theorem
in the FT. However, the convolution theorems in [28,32,33] are not so concise and elegant with an
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extra chirp function. Through the convolution theorem proposed in this paper, we can transform the
convolution in the time domain into the simple product in the metaplectic domain.

Theorem 2. For any functions f , h, k ∈ L2(Rn) and the free real symplectic matrix M, the
convolution of the WFMT satisfies the commutative law and the associative law:
(i) (Commutative law)

f ?M h = h ?M f . (32)

(ii) (Associative law)
( f ?M h) ?M k = f ?M (h ?M k). (33)

Proof of Theorem 2. The commutative law is obvious. Next, we prove the associative law.

(( f ?M h) ?M k)(m) =
∫
Rn

∫
Rn

Au(x, l, m)( f ?M h)(x)k(l)dxdl

=
∫
Rn

∫
Rn

Au(x, l, m)k(l)
∫
Rn

∫
Rn

Au(ξ, y, x) f (ξ)h(y)dξdydxdl

=
∫
Rn

∫
Rn

∫
Rn

∫
Rn

Au(x, l, m)Au(ξ, y, x) f (ξ)g(y)k(l)dxdydldξ, (34)

( f ?M (h ?M k))(m) =
∫
Rn

∫
Rn

Au(ξ, x, m)(h ?M k)(x) f (ξ)dξdx

=
∫
Rn

∫
Rn

Au(ξ, x, m) f (ξ)
∫
Rn

∫
Rn

Au(y, l, x)h(y)k(l)dydldξdx

=
∫
Rn

∫
Rn

∫
Rn

∫
Rn

Au(ξ, x, m)Au(y, l, x) f (ξ)h(y)k(l)dxdydldξ. (35)

Obviously, Au(x, l, m)Au(ξ, y, x) = Au(ξ, x, m)Au(y, l, x). Thus,

( f ?M h) ?M k = f ?M (h ?M k).

Thus, the proof is finished.

Example 1. For simplicity, we chose a two-dimensional Gaussian function g(x) = e−(x1
2+x2

2) as
the window function and fixed the center of the window function at the origin. For the symplectic
matrix M, we chose

M =

(
A B
C D

)
=


1 2 −1/2 −1/2
−2 1 −1/2 1/2
−1 −3 1 1
−1 0 −1/2 1/2

. (36)

Thus,

B−1 =

(
−1 −1
−1 1

)
,

wTDB−1w =
(

w1 w2
)( −2 0

0 1

)(
w1
w2

)
= −2w1

2 + w2
2, (37)
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wTBT−1
x =

(
w1 w2

)( −1 −1
−1 1

)(
x1
x2

)
= −w1x2 − w1x2 − w2x1 + w2x2, (38)

xTB−1Ax =
(

x1 x2
)( 1 −3
−3 −1

)(
x1
x2

)
= x1

2 − 6x1x2 − x2
2, (39)

xTB−1Ay =
(

x1 x2
)( 1 −3
−3 −1

)(
y1
y2

)
= (x1 − 3x2)y1 + (3x1 + x2)y2, (40)

KM(t, w) =
√

2eiπ((−2w1
2+w2

2)+2(w1t2+w1t2+w2t1−w2t2)+(t1
2−6t1t2−t2

2)), (41)

U(x, u) = eiπ((−2u1
2+u2

2)+2(u1x2+u1x2+u2x1−u2x2)+(x1
2−6x1x2−x2

2)), (42)

g̃b(x) = e−(x1
2+x2

2)e−2iπ(x1
2−6x1x2−x2

2). (43)

According to the above formulas, we obtain

( f ?M h)(x) =
∫
R2

∫
R2

Au(ξ, y, x) f (ξ)h(y)dξ dy

=2
∫
R2

∫
R2

∫
R2

∫
R2

√
2eiπ((−2w1

2+w2
2)+2(w1t2+w1t2+w2t1−w2t2)+(t1

2−6t1t2−t2
2))

×
√

2e−iπ((−2w1
2+w2

2)+2(w1x2+w1x2+w2x1−w2x2)+(x1
2−6x1x2−x2

2))

× e−iπ((−2u1
2+u2

2)+2(u1x2+u1x2+u2x1−u2x2)+(x1
2−6x1x2−x2

2))

× eiπ((−2u1
2+u2

2)+2(u1ξ2+u1ξ2+u2ξ1−u2ξ2)+(ξ1
2−6ξ1ξ2−ξ2

2))

× eiπ((−2u1
2+u2

2)+2(u1y2+u1y2+u2y1−u2y2)+(y1
2−6y1y2−y2

2))

× e−((t1−ξ1)
2+(t2−ξ2)

2)e−2iπ((t1−ξ1)
2−6(t1−ξ1)(t2−ξ2)−(t2−ξ2)

2)

× e−((t1−y1)
2+(t2−y2)

2)e−2iπ((t1−ξ1)
2−6(t1−ξ1)(t2−ξ2)−(t2−ξ2)

2) 1
FM[g̃b](w)

× e2iπ((ξ1−3ξ2)(ξ1−t1)+(3ξ1+ξ2)(ξ2−t2))e2iπ((y1−3y2)(y1−t1)+(3y1+y2)(y2−t2))

× eiπ(−2w1
2+w2

2)dtdw f (ξ)h(y)dξ dy. (44)

Let

I f
u (ξ) = f (ξ)eiπ((−2u1

2+u2
2)+2(u1ξ2+u1ξ2+u2ξ1−u2ξ2)+(ξ1

2−6ξ1ξ2−ξ2
2)),

Ih
u(y) = h(y)eiπ((−2u1

2+u2
2)+2(u1y2+u1y2+u2y1−u2y2)+(y1

2−6y1y2−y2
2)).

Then, we can obtain
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( f ?M h)(x) =4e−iπ((−2u1
2+u2

2)+2(u1x2+u1x2+u2x1−u2x2)+(x1
2−6x1x2−x2

2))

×
∫
R2

∫
R2

∫
R2

∫
R2

eiπ((−2w1
2+w2

2)+2(w1t2+w1t2+w2t1−w2t2)+(t1
2−6t1t2−t2

2))

× e−iπ((−2w1
2+w2

2)+2(w1x2+w1x2+w2x1−w2x2)+(x1
2−6x1x2−x2

2))

× e−((t1−ξ1)
2+(t2−ξ2)

2)e−2iπ((t1−ξ1)
2−6(t1−ξ1)(t2−ξ2)−(t2−ξ2)

2)

× e−((t1−y1)
2+(t2−y2)

2)e−2iπ((t1−y1)
2−6(t1−y1)(t2−y2)−(t2−y2)

2) 1
FM[g̃b](w)

× e2iπ((ξ1−3ξ2)(ξ1−t1)+(3ξ1+ξ2)(ξ2−t2))e2iπ((y1−3y2)(y1−t1)+(3y1+y2)(y2−t2))

× eiπ(−2w1
2+w2

2) I f
u (ξ)Ih

u(y)dtdwdξ dy,

=4e−iπ((−2u1
2+u2

2)+2(u1x2+u1x2+u2x1−u2x2)+(x1
2−6x1x2−x2

2))

×
∫
R2

∫
R2

1
FM[g̃b](w)

eiπ(−2w1
2+w2

2)

× eiπ((−2w1
2+w2

2)+2(w1t2+w1t2+w2t1−w2t2)+(t1
2−6t1t2−t2

2))

× e−iπ((−2w1
2+w2

2)+2(w1x2+w1x2+w2x1−w2x2)+(x1
2−6x1x2−x2

2))

× (
∫
R2

I f
u (ξ)e−((t1−ξ1)

2+(t2−ξ2)
2)e−2iπ((t1−ξ1)

2−6(t1−ξ1)(t2−ξ2)−(t2−ξ2)
2)

× e2iπ((ξ1−3ξ2)(ξ1−t1)+(3ξ1+ξ2)(ξ2−t2))dξ)(
∫
R2

Ih
u(y)

× e−((t1−y1)
2+(t2−y2)

2)e−2iπ((t1−y1)
2−6(t1−y1)(t2−y2)−(t2−y2)

2)

× e2iπ((y1−3y2)(y1−t1)+(3y1+y2)(y2−t2))dy)dtdw. (45)

For ease of writing, we let

I(t) =(
∫
R2

I f
u (ξ)e−((t1−ξ1)

2+(t2−ξ2)
2)e−2iπ((t1−ξ1)

2−6(t1−ξ1)(t2−ξ2)−(t2−ξ2)
2)

× e2iπ((ξ1−3ξ2)(ξ1−t1)+(3ξ1+ξ2)(ξ2−t2))dξ)(
∫
R2

Ih
u(y)e

−((t1−y1)
2+(t2−y2)

2)

× e−2iπ((t1−y1)
2−6(t1−y1)(t2−y2)−(t2−y2)

2)e2iπ((y1−3y2)(y1−t1)+(3y1+y2)(y2−t2))dy). (46)

According to (4) and (6), the FMT and the inverse of the FMT can be written as

FM[I(t)](w) =
√

2
∫
R2

I(t)eiπ((−2w1
2+w2

2)+2(w1t2+w1t2+w2t1−w2t2)+(t1
2−6t1t2−t2

2))dt, (47)

f (x) =FM−1 [FM[ f ](w)](x)

=
√

2
∫
Rn
FM[ f ](w)e−iπ((−2w1

2+w2
2)+2(w1x2+w1x2+w2x1−w2x2)+(x1

2−6x1x2−x2
2))dw. (48)

Thus, we obtain
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( f ?M h)(x) =4e−iπ((−2u1
2+u2

2)+2(u1x2+u1x2+u2x1−u2x2)+(x1
2−6x1x2−x2

2))

×
∫
R2

eiπ(−2w1
2+w2

2)

FM[g̃b](w)
e−iπ((−2w1

2+w2
2)+2(w1x2+w1x2+w2x1−w2x2)+(x1

2−6x1x2−x2
2))

×
(∫

R2
I(t)eiπ((−2w1

2+w2
2)+2(w1t2+w1t2+w2t1−w2t2)+(t1

2−6t1t2−t2
2))dt

)
dw

=2
√

2e−iπ((−2u1
2+u2

2)+2(u1x2+u1x2+u2x1−u2x2)+(x1
2−6x1x2−x2

2))

×
∫
R2

eiπ(−2w1
2+w2

2)

FM[g̃b](w)
FM[I](w)

× e−iπ((−2w1
2+w2

2)+2(w1x2+w1x2+w2x1−w2x2)+(x1
2−6x1x2−x2

2))dw

=2e−iπ((−2u1
2+u2

2)+2(u1x2+u1x2+u2x1−u2x2)+(x1
2−6x1x2−x2

2))

×FM−1

[
eiπ(−2w1

2+w2
2)

FM[g̃b](w)
FM[I](w)

]
(x). (49)

Therefore,

eiπ((−2u1
2+u2

2)+2(u1x2+u1x2+u2x1−u2x2)+(x1
2−6x1x2−x2

2))( f ?M h)(x)

=2FM−1

[
eiπ(−2w1

2+w2
2)

FM[g̃b](w)
FM[I](w)

]
(x). (50)

Performing the FMT on both sides of the above formula,

FM

[
eiπ((−2u1

2+u2
2)+2(u1x2+u1x2+u2x1−u2x2)+(x1

2−6x1x2−x2
2))( f ?M h)(x)

]
(w)

=2
eiπ(−2w1

2+w2
2)

FM[g̃b](w)
FM[I](w), (51)

it follows that

e−iπ(−2w1
2+w2

2)FM

[
eiπ((−2u1

2+u2
2)+2(u1x2+u1x2+u2x1−u2x2)+(x1

2−6x1x2−x2
2))( f ?M h)(x)

]
(w)

×FM[g̃b](w) = 2FM[I](w). (52)

According to the convolution theorem of the FMT in (17), the above formula can be rewritten as

FM

[[
eiπ((−2u1

2+u2
2)+2(u1x2+u1x2+u2x1−u2x2)+(x1

2−6x1x2−x2
2))( f ?M h)(x)

]
~M g̃b

]
(w)

=2FM[I](w); (53)

thus,[
eiπ((−2u1

2+u2
2)+2(u1x2+u1x2+u2x1−u2x2)+(x1

2−6x1x2−x2
2))( f ?M h)(x)

]
~M g̃b = 2I. (54)

The left side of the above equation can be written as([
eiπ((−2u1

2+u2
2)+2(u1x2+u1x2+u2x1−u2x2)+(x1

2−6x1x2−x2
2))( f ?M h)(x)

]
~M g̃b

)
(b)

=
√

2
∫
R2
( f ?M h)(x)e−(x1

2+x2
2)eiπ((−2u1

2+u2
2)+2(u1x2+u1x2+u2x1−u2x2)+(x1

2−6x1x2−x2
2))dx, (55)

and the right side can be written as
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2I(b) = (GM
g f )(b, u)(GM

g h)(b, u). (56)

According to the definition of the WFMT (7), we know

(GM
g ( f ?M h))(b, u) =

√
2
∫
R2
( f ?M h)(x)e−(x1

2+x2
2)

× eiπ((−2u1
2+u2

2)+2(u1x2+u1x2+u2x1−u2x2)+(x1
2−6x1x2−x2

2))dx, (57)

which is equal to (55). Thus, we have

(GM
g ( f ?M h))(b, u) = (GM

g f )(b, u)(GM
g h)(b, u). (58)

Therefore, we obtain the convolution theorem of the above concrete example, which is consistent
with the convolution theorem proposed in this paper.

4. Existence Theorems

In this section, we introduce some existence theorems of the proposed
convolution theorem.

Lemma 1. Let g ∈ L2(Rn) be a window function, f ∈ L2(Rn) and h ∈ L2(Rn). Then, the
Parseval theorem of the windowed free metaplectic transform is obtained by∫

Rn

∫
Rn
(GM

g f )(b, u)(GM
g h)(b, u)dudb = ‖g‖2

2〈 f , h〉2. (59)

Theorem 3. Let g ∈ L2(Rn) be a window function, f ∈ L2(Rn) and h ∈ L2(Rn). Thus, we
can obtain

‖ f ?Mg‖2 ≤ ‖ f ‖2‖g‖2‖h‖2. (60)

Proof of Theorem 3. For f ∈ L2(Rn) and h ∈ L2(Rn), 1
r +

1
s = 1, 1 ≤ r, s < ∞, we have

‖ f ~M h‖∞ ≤ ‖ f ‖r‖h‖s. (61)

Thus, ∣∣∣(GM
g f )(b, u)

∣∣∣ = ∣∣∣( f̃u ~M g̃b

)∣∣∣ ≤ || f̃u||2‖g̃b‖2 = ‖ f ‖2‖g‖2. (62)

From Lemma (1), we have∥∥∥(GM
g f
)
(b, u)

∥∥∥
2
= ‖ f ‖2‖g‖2. (63)

So, ∥∥∥GM
g ( f ?M h)(b, u)

∥∥∥
2
=
∥∥∥(GM

g f
)
(b, u)

(
GM

g h
)
(b, u)

∥∥∥
2

=

(∫
Rn

∫
Rn

∣∣∣(GM
g f
)
(b, u)

(
GM

g h
)
(b, u)

∣∣∣2) 1
2

≤ ‖ f ‖2‖g‖2

(∫
Rn

∣∣∣(GM
g h
)
(b, u)

∣∣∣2) 1
2

= ‖ f ‖2‖g‖2

∥∥∥GM
g h
∥∥∥

2

= ‖ f ‖2‖g‖
2
2‖h‖2. (64)

Since
∥∥∥GM

g ( f ?M h)(b, u)
∥∥∥

2
= ‖ f ?M h‖2‖g‖2, we obtain

‖ f ?M h‖2‖g‖2 ≤ ‖ f ‖2‖g‖
2
2‖h‖2. (65)
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Hence, we obtain
‖ f ?M h‖2 ≤ ‖ f ‖2‖g‖2‖h‖2.

Thus, the proof is finished.

Theorem 4. For the free real symplectic matrix M, let f ∈ Lr(Rn), h ∈ Ls(Rn), 1 < r, s < ∞,
and g ∈ Lr′(Rn) ∩ Ls′(Rn) be a window function, 1

r +
1
r′ = 1, 1

s +
1
s′ = 1; with respect to the free

real symplectic matrix M = (A, B; C, D), we have∣∣∣GM
g ( f ?M h)(b, u)

∣∣∣ ≤ ‖ f ‖r‖g‖r′‖h‖s‖g‖s′ . (66)

Proof of Theorem 4.∣∣∣GM
g ( f ?M h)(b, u)

∣∣∣ = ∣∣∣(GM
g f
)
(b, u)

(
GM

g h
)
(b, u)

∣∣∣
=
∣∣∣( f̃u ~M g̃b

)
(b)
(

h̃u ~M g̃b

)
(b)
∣∣∣

≤ ‖ f ‖r‖g‖r′‖h‖s‖g‖s′ .

Thus, the proof is finished.

Theorem 5. Let g ∈ L2(Rn) be a window function, f , h ∈ L2(Rn). Then,∣∣∣∣∫Rn

∫
Rn

∣∣∣GM
g ( f ?M h)(b, u)

∣∣∣dudb
∣∣∣∣ ≤ ‖ f ‖2‖h‖2‖g‖

2
2. (67)

Proof of Theorem 5. According to Lemma (1) and the Hölder inequality, we have∣∣∣∣∫Rn

∫
Rn

∣∣∣GM
g ( f ?M h)(b, u)

∣∣∣dudb
∣∣∣∣ = ∣∣∣∣∫Rn

∫
Rn

∣∣∣(GM
g f
)
(b, u)

(
GM

g h
)
(b, u)

∣∣∣dudb
∣∣∣∣

≤ ‖g‖2
2

∣∣∣∣∫Rn
f (t)h(t)dt

∣∣∣∣
≤ ‖ f ‖2‖h‖2‖g‖

2
2.

Thus, the proof is finished.

Theorem 6. Let g ∈ Lq(Rn) be a window function, f , h ∈ Lp(Rn), 1 ≤ p, q < ∞, 1
p +

1
q − 1 ≥ 0,

( f ?M h) ∈ Lr(Rn), and 1
r = 1

p + 1
q − 1. Then,∥∥∥GM

g ( f ?M h)(b, u)
∥∥∥

r
≤ 1√

detB
‖ f ‖p‖h‖p‖g‖

2
q. (68)

Proof of Theorem 6. By (16) and Young‘s Inequality, we have

‖ f ~M g‖r =

(∫
Rn

∣∣∣∣ 1√
detB

( f1 ∗ g1)(b)
∣∣∣∣rdb

) 1
r

=
1√

detB
‖ f1 ∗ g1‖r

≤ 1√
detB

‖ f1‖p‖g1‖q, (69)

where f1(x) = f (x)eiπ(xTB−1A(x−b)), g1(x) = g(x)eiπ(xTB−1A(x−b)), and ∗ denotes the
common convolution operator. It is apparent that ‖ f1‖p = ‖ f ‖p, ‖g1‖q = ‖g‖q; thus,

‖ f ~M g‖r ≤
1√

detB
‖ f ‖p‖g‖q. (70)
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Hence, ∥∥∥GM
g f
∥∥∥

r
=
∥∥∥ f̃u ~M g̃b

∥∥∥
r

≤ 1√
detB

|| f̃u||p‖g̃b‖q =
1√

detB
‖ f ‖p‖g‖q. (71)

Since
∣∣∣(GM

g h
)
(b, u)

∣∣∣ = ∣∣∣(h̃u ~M g̃b

)
(u)
∣∣∣ ≤ ‖h‖p‖g‖q, thus∥∥∥GM

g ( f ?M h)
∥∥∥

r
=
∥∥∥(GM

g f
)(
GM

g h
)∥∥∥

r

=

(∫
Rn

∫
Rn

∣∣∣(GM
g f
)
(b, u)

(
GM

g h
)
(b, u)

∣∣∣rdudb
) 1

r

≤ ‖h‖p‖g‖q

(∫
Rn

∫
Rn

∣∣∣(GM
g f
)
(b, u)

∣∣∣rdudb
) 1

r

= ‖h‖p‖g‖q

∥∥∥GM
g f
∥∥∥

r

≤ 1√
detB

‖ f ‖p‖h‖p‖g‖
2
q.

Thus, the proof is finished.

5. Conclusions

In this paper, according to the definition of the windowed free metaplectic transfor-
mation, we introduced a convolution theorem in the WFMT, which has an elegant and
simple result as the traditional FT in the frequency domain.This convolution theorem is a
perfect extension of the convolution theorem in the WFRFT domain. Finally, according to
the new convolution of the WFMT, we introduced several kinds of existence theorems for
the convolution theorem of the WFRFT.
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