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Abstract: In this article, two classes of sufficient conditions of weak solutions are given to guarantee
the energy conservation of the compressible Euler equations. Our strategy is to introduce a test
function ϕ(t)vε to derive the total energy. The velocity field v needs to be regularized both in time
and space. In contrast to the noncompressible Euler equations, the compressible flows we consider
here do not have a divergence-free structure. Therefore, it is necessary to make an additional estimate
of the pressure p, which takes advantage of an appropriate commutator. In addition, by using the
weak convergence, we show that the energy equality is conserved in a point-wise sense.

Keywords: conservation of energy; the isentropic compressible Euler equations; commutator estimate;
regularity of the solutions

1. Introduction

This paper is devoted to studying the weak solution for compressible Euler equations,
which is given by {

∂t($v) +∇ · ($v⊗ v) +∇p($) = 0,
∂t$ +∇ · ($v) = 0,

(1)

with the initial data
($v)(0, x) = ($0v0)(x), $(0, x) = $0(x), (2)

here ∇ · (∗) = ∑d
i=1 ∂i(∗)i and v ⊗ v is noted as the component uiuj in the matrix. In

addition, $ is the density of the fluid, v stands for velocity vector field, and p($) denotes
the scalar pressure. We define v0 = 0 on the set {x|$0(x) = 0}. For simplicity, we consider
the compressible Euler equations on the periodic domain Td, d = 2 or 3, and denote the
time interval [0, T] by I.

If we let $ ≡ C, then system (1) becomes the classical noncompressible Euler equa-
tions, i.e., {

∂tv + v · ∇v +∇p = 0,
∇ · v = 0.

(3)

For the domain [0, T]×T3, the weak solutions considered by Onsager [1] to Equation (3)
satisfy the Hölder condition

|v(t, x + ∆x)− v(t, x)| ≤ C|∆x|α

for any t ∈ [0, T], where constant C independent of ∆x ∈ T3. In 1949, he conjectured that

(i) If α > 1/3, the energy of every weak solution must be conserved;
(ii) If α < 1/3, the energy of weak solutions will be dissipated.

For part (i) of the conjecture, in 1994, Constantin et al. [2] gave the first complete proof
that energy is conserved as α > 1/3 by considering the weak solutions of Equation (3) in
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3D. Subsequently, the weaker assumptions of the velocity v in Besov spaces also lead to
the conservation of energy; see [3,4]. A significant result of Conjecture (ii) came from a
series of breakthrough articles by De Lellis and Székelyhidi [5,6], where they show that the
energy will be dissipative for the solutions in L∞

t Cα
x if α < 1/10. Later, De Lellis et al. [7]

showed that the energy of every weak solution is dissipated if the solutions belong to
CtCα

x , α < 1/5, and in 2018, this result was improved to α < 1/3 by Isett in article [8].
Other forms of weak solutions violate the energy conservation, such as dissipative solutions
to Equation (3) in 2D obtained by Choffrut [9], the uniqueness for weak solutions of the
noncompressible porous media equations studied by Cordoba et al. [10], the uniqueness of
weak solutions for Equation (3) due to De Lellis and Székelyhidi [11], and nonuniqueness
of weak solutions for Equation (3) achieved by Isett [12].

In this work, we investigate the energy conservation of weak solutions for Equation (1).
Unlike the way the homogeneous Euler equations were dealt with in [13,14], where the
temporal derivative of v can be completely transferred to a test function, the nonhomo-
geneous flows contain a nonlinear term ∂t($v) that needs to be estimated by the time
commutator. To avoid the time commutator estimate, Leslie and Shvydkoy [15] chose the
test function ($v)ε/$ε instead of vε to multiply the momentum equation to obtain energy
conservation, where convolution only works in space. However, the disadvantage is that
the vacuum needs to be excluded. Recently, Feireisl et al. [16] took a direct method, Besov
regularity both in space and time, which allows the authors to handle a vacuum state. If
the solution satisfies

v ∈ Bα,∞
3 (I×Td), $, $v ∈ Bβ,∞

3 (I×Td),

0 ≤ $ ≤ $ ≤ $ ∈ L∞(I×Td), p ∈ C2[$, $]
(4)

then they showed that the energy of weak solutions is conserved in the sense of distributions.
Akramov et al., in article [17], improved the assumption p ∈ C2[$, $] to p ∈ C1,γ−1[$, $],
1 < γ < 2 by the inequality

‖pε($)− p($ε)‖Lq ≤ Cεγβ‖$‖γ

Bβ,∞
γq

.

However, this paper will investigate if the energy of weak solutions is conserved in a
point-wise sense. In order to not add any assumptions about the pressure term p itself, we
use the pressure law p($) = κ$γ, γ > 1. Following the ideas in [18], two types of results
that ensure energy conservation are given by "trading" the regularity between variables
$ and v, which is the spirit of the article. The first type of result is that the density $ has
strong regularity and assumes that the velocity belongs to the Besov space. It is concluded
that the energy can be conserved for system (1) if the Hölder exponent of v is greater than
1/3. The second result is that the velocity field v admits more regularity, which allows the
existence of a less regular density $. The density $ or the velocity v is given more regularity
conditions to ensure energy conservation in a point-wise sense on I, whereas the results
of [16,17] hold only in a distributional sense. Similar to the idea of the treatment of the
nonlinear term ∂t($v) in [16], we will smooth system (1) in both time and space, which
allows the existence of a vacuum in the system.

The rest of the paper is organized as follows. In Section 2, we give the definition of
weak solutions, some important inequalities and the energy equality of a smooth solution.
Lemmas 1 and 2 are two key commutator estimates that are used to vanish the error terms.
The definition of weak continuity is presented by Lemma 3, which will be used to show
the energy conservation of weak solutions held in a point-wise sense. In Section 3, we
state the main results of our article, and two classes of sufficient conditions are given to
guarantee the energy conservation of weak solutions to Equation (1). Section 4 is devoted
to elaborating on the conclusion of our paper.
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2. Preliminaries

For 0 < α < 1 and p ≥ 1, we define the Besov space as the set of all functions with the
following norm

‖u‖Bα,∞
p (Ω) =: ‖u‖Lp(Ω) + sup

ξ∈Ω
|ξ|−α‖u(·+ ξ)− u‖Lp(Ω∩(Ω−ξ)),

where the domain Ω is [0, T]× Td and Ω− ξ = {y− ξ|y ∈ Ω}. The same definition of
Besov space can be found in [16].

Let η be a standard mollifier from R+ ×Rd to R, i.e., η(t, x) = 0 for |(t, x)| ≥ 1, and∫
R+

∫
Rd η(t, x)dxdt = 1. We define ηε(t, x) = 1

εd+1 η( t
ε , x

ε ) for any ε > 0. If a function
f ∈ Lp(Ω), the convolution of f is given by

f ε(t, x) = ( f ∗ ηε)(t, x).

For 0 < α < 1 and p ≥ 1, by the Besov norm, we can obtain the following inequality:

‖∇uε‖Lp(Ω) . εα−1‖u‖Bα,∞
p (Ω), (5)

‖uε − u‖Lp(Ω) . εα‖u‖Bα,∞
p (Ω), (6)

‖u(·+ ξ)− u(·)‖Lp(Ω) . |ξ|α‖u‖Bα,∞
p (Ω), (7)

where ‖g‖ . ‖h‖ denotes ‖g‖ ≤ C‖h‖ for some harmless constant C > 0.
To state the results, we need to give the definition of weak solutions for Equation (1).

Definition 1. A couple ($, v, p) is called a weak solution of Equation (1) with initial data (2) if

(i) ∫
I

∫
Td
($v · ∂tφ̃ + $v⊗ v : ∇φ̃ + p∇ · φ̃)dxdt = 0

for every test vector field φ̃ ∈ C∞
0 (I×Td).

(ii) ∫
I

∫
Td
($∂tφ + $v · ∇φ)dxdt = 0

for every test function φ ∈ C∞
0 (I×Td).

(iii) ($v)(t, ·) ⇀ ($0v0)(x) in D′(Td) as t→ 0, i.e.,

lim
t→0

∫
Td
($v)(t, x)φ̃(x)dx =

∫
Td
($0v0)(x)φ̃(x)dx

for every test vector field φ̃ ∈ C∞
0 (Td).

(iv) $(t, ·) ⇀ $0(x) in D′(Td) as t→ 0, i.e.,

lim
t→0

∫
Td

$(t, x)φ(x)dx =
∫
Td

$0(x)φ(x)dx

for every test function φ ∈ C∞
0 (Td).

The following lemma is crucial for the commutator estimate. Here we rely on Lions’
proof in [19].
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Lemma 1 ([18,19]). Let ∂ be the partial derivative in time or space. Assume that ∂tg, ∇g ∈
Lp(Ω), h ∈ Lq(Ω), 1 ≤ p, q ≤ ∞ and 1

p + 1
q ≤ 1. Then,

‖∂(ghε)− ∂(gh)ε‖Lr(Ω) ≤ C(‖∂tg‖Lp(Ω) + ‖∇g‖Lp(Ω))‖h‖Lq(Ω),

where the constant C > 0 does not depend on ε, g and h, and r is determined by 1
r = 1

p + 1
q .

Moreover, ∂(ghε)− ∂(gh)ε converges to zero in Lr(Ω) as ε tends to zero if r < ∞.

Lemma 2 ([18]). Let g ∈ Bα,∞
p (Ω), h ∈ Lq(Ω) and 1 ≤ p, q ≤ ∞. Then,

‖ghε − (gh)ε‖Lr(Ω) ≤ Cεα‖h‖Lq(Ω)‖g‖Bα,∞
p (Ω)

where the constant C > 0 does not depend on g and h, and with 1
r = 1

p + 1
q . In addition,

‖ghε − (gh)ε‖Lr(Ω) ≤ Cεα → 0

as ε tends to zero.

Lemma 3 ([20]). Let Y be a separable Banach space and K ⊂ Rm be compact. Assume that
fn : K→ Y∗, n = 1, 2, · · · is a sequence of measurable functions such that

ess sup
x∈K

‖ fn(x)‖Y∗ ≤ M, n = 1, 2, · · · .

In addition, assume that the family of (real) functions

〈 fn, Ψ〉 : x 7→ 〈 fn(x), Ψ〉, x ∈ K, n = 1, 2, · · ·

be equi-continuous for any fixed Ψ belonging to a dense subset in the space Y.
Then fn ∈ C(K;Y∗weak), n = 1, 2, · · · , and there exists f ∈ C(K;Y∗weak) such that

fn → f

in C(K;Y∗weak) as n→ ∞.

Next, we will give the energy conservation of a smooth solution of system (1).

Lemma 4. If ($, v) is the smooth solution of system (1), then the following energy equality holds

E(t) =:
∫
Td

(1
2

$|v|2 + P($)
)
(t, x)dx

=
∫
Td

(1
2

$0|v0|2 + P($0)
)
(x)dx =: E(0),

where the function P($) = κ
γ−1 ($

γ − $
γ−1
∗ $), $∗ = min(t,x)∈R+×Td{$(t, x)}.

Proof. To derive the energy equality of the compressible Euler equations, we assume that
($, v) is a smooth solution to system (1). Multiplying the mass and momentum equations
of system (1) by v2 and 2v, respectively, we obtain

∂t$v2 + v∇$v2 + ($∇ · v)v2 = 0, (8)

$∂tv2 + 2$(v · ∇v)v + 2v∇p = 0. (9)
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Combining (8) and (9) and utilizing integration by parts, it yields that

∂

∂t

∫
Td

$|v|2dx +
∫
Td

2∇pvdx = 0. (10)

Define p($) = $P′($)− P($), from the pressure law p($) = κ$γ, γ > 1, P($) can be
calulated as

P($) = $
∫ $

$∗

p(z)
z2 dz = $

( κ

γ− 1
zγ−1

∣∣∣z=$

z=$∗

)
=

κ

γ− 1
($γ − $

γ−1
∗ $). (11)

Consequently,∫
Td
∇pvdx = −

∫
Td

p∇ · vdx = −
∫
Td
($P′($)− P($))∇ · vdx

= −
∫
Td
(P′($)$∇ · v + P′($)∇$v)dx = −

∫
Td
∇ · ($v)P′($)dx

=
∫
Td

∂t$P′($)dx =
∂

∂t

∫
Td

P($)dx, (12)

where we used the equality ∂t$ +∇ · ($v) = 0. From (10) and (12), we obtain the en-
ergy equality

d
dt

E(t) =
d
dt

∫
Td

(1
2

$|v|2 + P($)
)

dx = 0.

This proves that E(t) = E(0).

3. Main Results

In this section, we provide two results that ensure the energy conservation of system (1)
by “trading” the regularity between the velocity and the density. The first type of result
gives the density $ strong regularity and assumes that the velocity belongs to the Besov
space. It is concluded that the energy conservation of system (1) if the Hölder exponent
of v is greater than 1/3. The second result is to give the velocity field v more regularity,
which allows the existence of a less regular density $. The detailed results are presented
as follows.

Theorem 1. Let ($, v) be a solution of (1) in the distributional sense. Assume ($, v) satisfy

$ ∈ L∞(I×Td), v ∈ Bα,∞
3 (I×Td),

∂t$ ∈ Lq(I×Td), ∇$ ∈ Lr(I×Td),

∇√$ ∈ L∞(I; L
3
2 (Td)), v ∈ Ls(I×Td),

(13)

where α > 1
3 , 1

q +
3
s ≤ 1, 1

r +
3
s ≤ 1. Then the conservation of energy holds in the point-wise sense,

i.e., for all t ∈ I, we have E(t) = E(0), where

E(t) =
∫
Td

(1
2

$|v|2 + p($)
γ− 1

)
(t, x)dx.

Remark 1. Applying the isentropic pressure law p($) = κ$γ instead of the pressure p, we allow
the existence of a vacuum state if γ > 1.

Remark 2. The condition ∇√$ ∈ L∞(I; L
3
2 (Td)) is to ensure $γ ∈ C(I; Lk

weak(T
d)) and

√
$ ∈

C(I; Lk
weak(T

d)), k > 1, which is crucial to derive energy conservation in a point-wise sense (this
can be checked in the proof of Theorem 1). We can omit ∇√$ ∈ L∞(I; L

3
2 (Td)) in assumption (13)
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if energy conservation holds only in the distributional sense, which is different from the condition (4)
in article [16]. In fact, $v ∈ Bβ,∞

3 (I×Td) is not included in

∂t$ ∈ Lq(I×Td), ∇$ ∈ Lr(I×Td).

Remark 3. Constantin et al. [2] mollified the system (3) only in space, thus the velocity field
v only needs Besov regularity in space (that is, v ∈ L3(I; Bα,∞

3 (Td))) to ensure that energy is
conserved. However, here we convolve the system (1) in both time and space, then the condition
v ∈ Bα,∞

3 (I×Td) is natural.

Remark 4. Thanks to Besov embedding theorem, we observe that Bα,∞
3 (I×Td) ↪→ L∞(I; L3(Td)),

α > 1
3 . Thus, the assumption v ∈ L∞(I; L3(Td)), which has been used in the inequality (28) can

be removed.

Remark 5. The significant difference between our result and those in [15–17] is that we can
establish the conservation of energy in a point-wise sense on I, whereas it is in the sense of distribution
in [16,17], and we admit the existence of a vacuum state (if γ > 1), which is excluded in [15]. In
addition, we can also remove the condition p ∈ C1,(γ−1)([$, $]) in [17]. The price to pay is that the
density $ is given more regularity conditions to ensure energy conservation. Thus, there is no direct
correlation between our result and theirs in [16,17].

Theorem 2. Let ($, v) be a solution of (1) in the distributional sense. Assume ($, v) satisfy

$ ∈ L∞(I×Td),

v ∈ Bα,∞
3 (I×Td), ∇ · v ∈ L∞(I; L1(Td)),

(14)

where α > 1
2 . Then the energy conservation holds in the point-wise sense, i.e., E(t) = E(0) for all

t ∈ I.

Remark 6. Compared with Theorem 1, we do not need to add any regularity condition on the
density besides the assumption $ ∈ L∞(I× Td), and the vacuum state of the system can also be
presented if γ > 1.

Remark 7. Since this theorem requires more regularity assumptions for the velocity v to compen-
sate for the roughness of the density $, we need to add the condition ∇ · v ∈ L∞(I; L1(Td)) to
guarantee $γ ∈ C(I; Lk

weak(T
d)) and

√
$ ∈ C(I; Lk

weak(T
d)), k > 1. The main difference between

our result and [16,17] is that, similar to the previous result, we have the ability to establish the
conservation of energy in a point-wise sense up to the initial time. If energy is conserved only
in the distributional sense, the assumption ∇ · v ∈ L∞(I; L1(Td)) can be replaced by the weaker
assumption ∇ · v ∈ L1(I×Td).

Remark 8. System (1) can become nonhomogeneous noncompressible Euler equations by adding
∇ · v = 0. The energy conservation for the noncompressible Euler equations was investigated
in [15,16,18]. Moreover, Chen and Yu [18] tell us that if

$ ∈ L∞(I×Td), v ∈ Bβ,∞
p (I; Bα,∞

q (Td)),
√

$v ∈ L∞(I; L2(Td)), v0 ∈ L2(Td),

where α, β > 1
2 , then the energy equality conserves in a point-wise sense on I.

Proof of Theorem 1. To prove Theorem 1, by mollifying the system (1) both in space and
time, we obtain

∂t($v)ε +∇ · ($v⊗ v)ε +∇pε = 0, (15)
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∂t$
ε +∇ · ($v)ε = 0. (16)

Let ϕ(t) ∈ D(0,+∞) be a test function, where D(0,+∞) denotes the set of functions
that are smooth and compactly supported on (0,+∞). To obtain the energy equality,
Equation (15) is multiplied by the test function ϕ(t)vε and integrated in time-space, and
we have ∫

I

∫
Td

ϕ(t)vε[∂t($v)ε +∇ · ($v⊗ v)ε +∇pε]dxdt = 0. (17)

Next, we will deal with each term in Equation (17) by Equation (16) and the appropriate
commutators. The first term in (17) can be written by∫

I

∫
Td

ϕ(t)vε∂t($v)εdxdt

=
∫
I

∫
Td

ϕvε[∂t($v)ε − ∂t($vε)]dxdt +
∫
I

∫
Td

ϕvε∂t($vε)dxdt

=: I1ε +
∫
I

∫
Td

ϕ∂t$|vε|2dxdt +
∫
I

∫
Td

ϕ$∂t
|vε|2

2
dxdt. (18)

The second term of Equation (17) can be calculated as∫
I

∫
Td

ϕ(t)vε∇ · ($v⊗ v)εdxdt

=
∫
I

∫
Td

ϕvε[∇ · ($v⊗ v)ε −∇ · ($v⊗ vε)]dxdt +
∫
I

∫
Td

ϕvε∇ · ($v⊗ vε)dxdt

= I2ε +
∫
I

∫
Td

ϕ∇ · ($v)|vε|2dxdt +
∫
I

∫
Td

ϕ$v · ∇ |v
ε|2
2

dxdt

=: I2ε −
∫
I

∫
Td

ϕ∂t$
|vε|2

2
dxdt. (19)

From Lemma 4, without loss of generality, we can deduce P($) = κ
γ−1 $γ by setting

$∗ = 0 in Equation (11). By the isentropic pressure law p($) = κ$γ, the pressure term in
(17) can be treated as∫

I

∫
Td

ϕ(t)vε(∇p)εdxdt

= κγ
∫
I

∫
Td

ϕ[($γ−1∇$)ε − ($γ−1)ε∇$]vεdxdt + κγ
∫
I

∫
Td

ϕ($γ−1)ε∇$vεdxdt

= I3ε + κγ
∫
I

∫
Td

ϕ[($γ−1)εvε − $γ−1v]∇$dxdt + κγ
∫
I

∫
Td

ϕ$γ−1v∇$dxdt

=: I3ε + I4ε + κγ
∫
I

∫
Td

ϕ$γ−1∇$vdxdt. (20)

Using the mass equation and the periodicity of the domain Td, we deduce that

κγ
∫
I

∫
Td

ϕ(t)$γ−1∇$vdxdt

= κγ
∫
I

∫
Td

ϕ$γ−1(∇ · ($v)− $∇ · v)dxdt

= −κγ
∫
I

∫
Td

ϕ$γ−1∂t$dxdt− κγ
∫
I

∫
Td

ϕ$γ∇ · vdxdt

= −
∫
I

∫
Td

ϕ∂t p($)dxdt + κγ2
∫
I

∫
Td

ϕ$γ−1∇$vdxdt.

This equality means

κγ
∫
I

∫
Td

ϕ(t)$γ−1∇$vdxdt =
1

γ− 1

∫
I

∫
Td

ϕ(t)∂t p($)dxdt.
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Thus, combining (18)–(20), Equation (17) can be reduced as follows

−
∫
I

∫
Td

∂t ϕ
(1

2
$|vε|2 + p($)

γ− 1

)
dxdt +

4

∑
i=1
Iiε = 0. (21)

To ensure that the energy equality is conserved in the distributional sense, our follow-
ing work will show that ∑4

i=1 Iiε → 0 of (21) as ε tends to zero.
Utilizing Lemma 1 and the Hölder inequality, I1ε can be estimated as follows

|I1ε| = |
∫
I

∫
Td

ϕ(t)vε(∂t($v)ε − ∂t($vε))dxdt|

≤ ‖ϕ‖L∞(I)

∫
I

∫
Td
|(∂t($v)ε − ∂t($vε))vε|dxdt

. (‖∂t$‖Lq(I×Td) + ‖∇$‖Lr(I×Td))‖v‖
2
Ls(I×Td)

,

where 1
q +

2
s ≤ 1 and 1

r +
2
s ≤ 1. Moreover, I1ε → 0 as ε→ 0.

In order to estimate I2ε, we will divide I2ε into two parts and utilize the follow-
ing commutator

(gh)ε − ghε = [(gh)ε − gεhε] + [gεhε − ghε]. (22)

where g and h are real functions. Similar to the method used by Constantin et al. in [2],
we define

rε(g, h) =
∫

ηε(µ, τ)(δµ,τg(t, x)δµ,τh(t, x))dµdτ,

where

δµ,τg(t, x) = g(t− µ, x− τ)− g(t, x), δµ,τh(t, x) = h(t− µ, x− τ)− h(t, x)

Then, one can easily check the following equality holds

(gh)ε − gεhε = rε(g, h)− (g− gε)(h− hε). (23)

We observe that I2ε can be handled as

I2ε =
∫
I

∫
Td

ϕ(t)[∇ · ($v⊗ v)ε −∇ · ($v⊗ vε)]vεdxdt

=
∫
I

∫
Td

ϕ[($v⊗ v)ε − $v⊗ vε] : ∇vεdxdt

= −
∫
I

∫
Td

ϕ$[(v⊗ v)ε − v⊗ vε] : ∇vεdxdt

+
∫
I

∫
Td

ϕ[∇ · ($v⊗ v)ε −∇ · ($(v⊗ v)ε)]vεdxdt

=: I1
2ε + I2

2ε.

In view of (22), we will divide I1
2ε into two parts and estimate them separately, that is,

I1
2ε =

∫
I

∫
Td

ϕ(t)$[(v⊗ v)ε − v⊗ vε] : ∇vεdxdt

≤
∫
I

∫
Td

ϕ$((v⊗ v)ε − vε ⊗ vε) : ∇vεdxdt

+
∫
I

∫
Td

ϕ$(vε ⊗ vε − v⊗ vε) : ∇vεdxdt

=: I11
2ε + I12

2ε .
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Applying equality (23) to I11
2ε , it follows that

|I11
2ε | = |

∫
I

∫
Td

ϕ(t)$(vε ⊗ vε − (v⊗ v)ε) : ∇vεdxdt|

. |
∫
I

∫
Td

$∇vε : rε(v, v)dxdt|+ |
∫
I

∫
Td

$∇vε : ((v− vε)⊗ (v− vε))dxdt|

. ‖$‖L∞(I×Td)‖∇vε‖L3(I×Td)(‖rε(v, v)‖
L

3
2 (I×Td)

+ ‖v− vε‖2
L3(I×Td)

)

. ε3α−1‖$‖L∞(I×Td)‖v‖
3
Bα,∞

3 (I×Td)
→ 0 (24)

as ε→ 0 for any α > 1
3 , where we have used ‖rε‖

L
3
2
≤ ε2α‖v‖2

Bα,∞
3

which is guaranteed by

article [2]. I12
2ε can be estimated by Lemma 1 as follows

I12
2ε =

∫
I

∫
Td

ϕ(t)$(vε ⊗ vε − v⊗ vε) : ∇vεdxdt

=
1
2

∫
I

∫
Td

ϕ$(vε − v)∇|vε|2dxdt

= −1
2

∫
I

∫
Td

ϕ∇ · ($vε − $v)|vε|2dxdt

= −1
2

∫
I

∫
Td

ϕ∇ · [$vε − ($v)ε + ($v)ε − $v]|vε|2dxdt

=
1
2

∫
I

∫
Td

ϕ∇ · (($v)ε − $vε)|vε|2dxdt +
1
2

∫
I

∫
Td

ϕ(∂t$
ε − ∂t$)|vε|2dxdt

. (‖∂t$‖Lq(I×Td) + ‖∇$‖Lr(I×Td))‖v‖
3
Ls(I×Td)

+ ‖∂t$‖Lq(I×Td)‖v‖
2
Ls(I×Td)

, (25)

and I12
2ε → 0 as ε→ 0 for any 1

q +
3
s ≤ 1, 1

r +
3
s ≤ 1. Similarly,

|I2
2ε| = |

∫
I

∫
Td

ϕ(t)[∇ · ($(v⊗ v)ε)−∇ · ($v⊗ v)ε]vεdxdt|

. (‖∂t$‖Lq(I×Td) + ‖∇$‖Lr(I×Td))‖v‖
3
Ls(I×Td)

, (26)

and I2
2ε → 0 as ε→ 0 for any 1

q +
3
s ≤ 1, 1

r +
3
s ≤ 1.

Therefore, combining (24), (25) and (26), as ε tends to zero for any α > 1
3 , one shows

that I2ε → 0.
The term I3ε can be computed as

I3ε = κγ
∫
I

∫
Td

ϕ(t)[($γ−1∇$)ε − ($γ−1)ε∇$]vεdxdt

. |
∫
I

∫
Td

ϕ
∫
Bε(µ,τ)

ηε(µ, τ)$γ−1(t− µ, x− τ)(∇$(t− µ, x− τ)−∇$(t, x))dµdτvεdxdt|

. |
∫
I

∫
Td

∫
Bε(µ,τ)

ηε(µ, τ)$γ−1(t− µ, x− τ)(∇$(t− µ, x− τ)−∇$(t− µ, x))dµdτvεdxdt|

+ |
∫
I

∫
Td

∫
Bε(µ,τ)

ηε(µ, τ)$γ−1(t− µ, x− τ)(∇$(t− µ, x)−∇$(t, x))dµdτvεdxdt|

. sup
Bε(µ,τ)

∫
I

∫
Td
|$γ−1(t− µ, x− τ)(∇$(t− µ, x− τ)−∇$(t− µ, x))vε|dxdt

+ sup
Bε(µ,τ)

∫
I

∫
Td
|$γ−1(t− µ, x− τ)(∇$(t− µ, x)−∇$(t, x))vε|dxdt

. ‖$‖γ−1
L∞(I×Td)

‖∇$‖Lr(I×Td)‖v‖Ls(I×Td),
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where Bε(µ, τ) is a open ball with radius ε. Since C∞
0 (I×Td) is dense in Lr(I×Td) for any

r < ∞, we have

lim
ε→0

sup
Bε(µ,τ)

‖$γ−1(t− µ, x− τ)(∇$(t− µ, x− τ)−∇$(t− µ, x))‖Lr(I×Td) = 0

and
lim
ε→0

sup
Bε(µ,τ)

‖$γ−1(t− µ, x− τ)(∇$(t− µ, x)−∇$(t, x))‖Lr(I×Td) = 0,

which means that I3ε → 0 as ε→ 0, provided that 1
r +

1
s ≤ 1.

The term I4ε can be treated as

I4ε = κγ
∫
I

∫
Td

ϕ[($γ−1)εvε − $γ−1v]∇$dxdt

= κγ
∫
I

∫
Td

ϕ[($γ−1)εvε − ($γ−1v)ε]∇$dxdt

+ κγ
∫
I

∫
Td

ϕ[($γ−1v)ε − $γ−1v]∇$ = dxd

=: I1
4ε + I2

4ε.

Note that the point-wise identity (23), replacing g and h with $γ−1 and v, we have

I1
4ε = κγ

∫
I

∫
Td

ϕ[($γ−1)εvε − ($γ−1v)ε]∇$dxdt

≤ κγ|
∫
I

∫
Td

ϕ[($γ−1)ε − $γ−1](vε − v)∇$dxdt|

+ κγ|
∫
I

∫
Td

ϕ
∫
Bε(µ,τ)

ηε(µ, τ)[$γ−1(t− µ, x− τ)

− $γ−1(t, x)](v(t− µ, x− τ)− v(t, x))dµdτ∇$dxdt|
=: I11

4ε + I12
4ε .

Utlizing the property of convolution, we know that

I11
4ε = κγ|

∫
I

∫
Td

ϕ[($γ−1)ε − $γ−1](vε − v)∇$dxdt|

. ‖$‖γ−1
L∞(I×Td)

‖∇$‖Lr(I×Td)‖v‖Ls(I×Td),

and I11
4ε tends to zero as ε→ 0, provided that 1

r +
1
s ≤ 1. Moreover, owning to the density

of C∞
0 (I×Td) in Lr(I×Td) for any r < ∞, I12

4ε can be estimated as

|
∫
I

∫
Td

ϕ
∫
Bε(µ,τ)

ηε[$
γ−1(t− µ, x− τ)− $γ−1(t, x)](v(t− µ, x− τ)− v(t, x))dµdτ∇$dxdt|

. sup
Bε(µ,τ)

∫
I

∫
Td
|[$γ−1(t− µ, x− τ)− $γ−1(t− µ, x)](v(t− µ, x− τ)− v(t− µ, x))∇$|dxdt

+ sup
Bε(µ,τ)

∫
I

∫
Td
|[$γ−1(t− µ, x− τ)− $γ−1(t− µ, x)](v(t− µ, x)− v(t, x))∇$|dxdt

+ sup
Bε(µ,τ)

∫
I

∫
Td
|[$γ−1(t− µ, x)− $γ−1(t, x)](v(t− µ, x− τ)− v(t− µ, x))∇$|dxdt

+ sup
Bε(µ,τ)

∫
I

∫
Td
|[$γ−1(t− µ, x)− $γ−1(t, x)](v(t− µ, x)− v(t, x))∇$|dxdt

. ‖$‖γ−1
L∞(I×Td)

‖∇$‖Lr(I×Td)‖v‖Ls(I×Td),
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and I12
4ε → 0 as ε→ 0 for any 1

r +
1
s ≤ 1.

On the other hand,

I2
4ε = κγ

∫
I

∫
Td

ϕ[($γ−1v)ε − $γ−1v]∇$dxdt

. ‖$‖γ−1
L∞(I×Td)

‖∇$‖Lr(I×Td)‖v‖Ls(I×Td),

and I2
4ε → 0 as ε tends to zero.

Therefore, letting ε→ 0, from (13) and (21) we can obtain

−
∫
I

∫
Td

∂t ϕ
(1

2
$|v|2 + p($)

γ− 1

)
dxdt = 0, (27)

here ϕ(t) ∈ D(0,+∞). From the previous assumptions, we can know that

d
dt

E(t) =
d
dt

∫
Td

(1
2

$|v|2 + p($)
γ− 1

)
dx = 0

is established in a distributional sense.
Next, we will prove the energy is conserved in a point-wise sense up to the initial time.

For this, the test function ϕ(t) needs to be extended to ϕ(t) ∈ D(θ,+∞), where θ is fixed
and θ < −1. Using p($) = κ$γ, the energy equality can be written as

E(t) =
∫
Td

(1
2

$|v|2 + κ

γ− 1
$γ
)

dx.

Thus, we only need to show the continuity of $γ and
√

$v in the strong topology as t
tends to 0+. For any fixed ψ(x) ∈ C∞

0 (Td), one obtains that

d
dt

∫
Td

ψ(x)$γ(t, x)dx = −γ
∫
Td

ψ(x)$γ−1∇ · ($v)dx

. |
∫
Td

ψ(x)$γ−1∇$ · v +∇ψ(x)$γvdx|

. (‖$‖γ−1
L∞(I×Td)

‖∇$‖
L∞(I;L

3
2 (Td))

+ ‖$‖γ

L∞(I×Td)
)‖v‖L∞(I;L3(Td)) (28)

is bounded due to (13). By Lemma 3, thus, we have

$γ ∈ C(I; Lk
weak(T

d)), k > 1. (29)

In addition, utilize the convexty of $ 7→ $γ, one has∫
Td

$γ(t0)dx ≤ lim inf
t→t+0

∫
Td

$γ(t)dx for all t0 ≥ 0. (30)

On the other hand, we see

lim sup
t→0+

∫
Td
|√$v−√$0v0|2dx

≤ lim sup
t→0+

∫
Td

2
√

$0v0(
√

$0v0 −
√

$v)dx + lim sup
t→0+

∫
Td

2κ

γ− 1
($γ

0 − $γ)dx

+ lim sup
t→0+

[ ∫
Td

(
$|v|2 + 2κ

γ− 1
$γ
)

dx−
∫
Td

(
$0|v0|2 +

2κ

γ− 1
$

γ
0

)
dx
]
.
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From inequality (30) and E(0) ≥ E(t) for all t ∈ I, it yields that

lim sup
t→0+

∫
Td
|√$v−√$0v0|2dx

≤ 2 lim sup
t→0+

∫
Td

√
$0v0(

√
$0v0 −

√
$v)dx

≤ 2 lim sup
t→0+

∫
Td

v0($0v0 − $v)dx + 2 lim sup
t→0+

∫
Td

√
$vv0(

√
$−√$0)dx

= R1 + R2.

In order to show the continuity of
√

$v in the strong topology as t tends to 0+, we will
consider the continuity of $v and

√
$ as t goes to 0+. Applying the momentum equation

of (1), one obtains

d
dt

∫
Td

ψ̃(x)($v)(t, x)dx

=
∫
Td
∇ψ̃(x) : ($v⊗ v)dx +

∫
Td

κ

γ− 1
∇ · ψ̃(x)$γdx

. ‖$‖L∞(I×Td)‖v‖
2
L∞(I;L2(Td))

+ ‖$‖γ

L∞(I×Td)
,

which is bounded due to (13). Thus, we have

$v ∈ C(I; L2
weak(T

d)). (31)

Moreover, by virtue of (13) and (31), it is given by R1 = 0. Similarly,

d
dt

∫
Td

ψ(x)
√

$(t, x)dx = −
∫
Td

ψ(x)
(

v∇√$ +
1
2
√

$∇ · v
)

dx

= −
∫
Td

(
ψ(x)∇√$− 1

2
∇(ψ(x)

√
$)
)

vdx =
1
2

∫
Td
[∇ · ψ(x)

√
$− ψ(x)∇√$]vdx

. (‖∇√$‖
L∞(I;L

3
2 (Td))

+ ‖$‖
1
2
L∞(I×Td)

)‖v‖L∞(I;L3(Td))

is bounded due to (13). Thus,

√
$ ∈ C(I; Lk

weak(T
d)), k > 1. (32)

From (13) and (32), we know that R2 = 0. Thus, we deduce

lim
t→0+

∫
Td
|√$v−√$0v0|2dx = 0.

Similarly, we have the right temporal continuity of
√

$v in L2(Td), that is,

lim
t→t+0

∫
Td
|(√$v)(t)− (

√
$v)(t0)|2dx = 0 for all t0 ≥ 0. (33)

Moreover, by virtue of (33) and inequality E(0) ≥ E(t) for all t ∈ I, we obtain

lim sup
t→t+0

∫
Td

$γ(t)dx ≤
∫
Td

$γ(t0)dx for all t0 ≥ 0. (34)

Therefore, combining (29), (30) and (34), we obtain that

lim
t→t+0

∫
Td
|$γ(t)− $γ(t0)|dx = 0 for all t0 ≥ 0. (35)
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Finally, we choose positive ξ and ϑ for any t0 > 0 such that ξ + ϑ < t0 and define a
time cut-off function

Γξ(t) =



0 0 ≤ t ≤ ξ,
t−ξ

ϑ ξ ≤ t ≤ ξ + ϑ,
1 ξ + ϑ ≤ t ≤ t0,
ϑ+t0−t

ϑ t0 ≤ t ≤ t0 + ϑ,
0 t ≥ t0 + ϑ.

Utilizing Γξ(t) instead of ∂t ϕ(t) in Equation (27), we can obtain

1
ϑ

ξ+ϑ∫
ξ

∫
Td

(1
2

$|v|2 + κ

γ− 1
$γ
)

dxdµ− 1
ϑ

t0+ϑ∫
t0

∫
Td

(1
2

$|v|2 + κ

γ− 1
$γ
)

dxdµ = 0.

Letting ϑ→ 0, according to (33) and (35), it follows that E(ξ)− E(t0) = 0. Furthermore,
sending ξ → 0, it can be deduced that

E(t0)− E(0) = 0

for all t0 ∈ I. This completes the proof of Theorem 1.

Proof of Theorem 2. Following the method of the previous section, one has

−
∫
I

∫
Td

∂t ϕ
(1

2
$ε|vε|2 + p($)

γ− 1

)
dxdt +

3

∑
i
Jiε = 0,

where the pressure term is calculated as follows∫
I

∫
Td

ϕ(t)(∇p)εvεdxdt

= −κ
∫
I

∫
Td

ϕ($γ)ε∇ · vεdxdt

= −κ
∫
I

∫
Td

ϕ[($γ)ε∇ · vε − $γ∇ · v]dxdt− κ
∫
I

∫
Td

ϕ$γ∇ · vdxdt

=: J3ε − κ
∫
I

∫
Td

ϕ$γ∇ · vdxdt.

Applying the mass equation and the periodicity of Td, we can obtain

−κ
∫
I

∫
Td

ϕ$γ∇ · vdxdt = κγ
∫
I

∫
Td

ϕ$γ−1∇$vdxdt

= κγ
∫
I

∫
Td

ϕ$γ−1(∇ · ($v)− $∇ · v)dxdt

= −
∫
I

∫
Td

ϕ(t)∂t p($)dxdt− κγ
∫
I

∫
Td

ϕ$γ∇ · vdxdt.

This equality implies that

−κ
∫
I

∫
Td

ϕ(t)$γ∇ · vdxdt =
1

γ− 1

∫
I

∫
Td

ϕ(t)∂t p($)dxdt.

In the same method as the previous Theorem 1, we need to show ∑3
i Jiε → 0 as ε goes

to zero.
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We handle the term J1ε as

J1ε =
∫
I

∫
Td

ϕ(t)[∂t($v)ε − ∂t($
εvε)]vεdxdt

= −
∫
I

∫
Td

∂t ϕ[($v)ε − $εvε]vεdxdt−
∫
I

∫
Td

ϕ[($v)ε − $εvε]∂tvεdxdt

=: J 1
1ε + J 2

1ε.

The first term of the above equality can be calculated as

|J 1
1ε| .

∫
I

∫
Td
|($v)ε − $εv||vε|dxdt +

∫
I

∫
Td
|$εv− $εvε||vε|dxdt

=: J 11
1ε + J 12

1ε .

Thanks to Lemma 2, J 11
1ε can be estimated as

J 11
1ε =

∫
I

∫
Td
|($v)ε − $εv||vε|dxdt

. εα‖$‖L∞(I×Td)‖v‖
2
Bα,∞

2 (I×Td)
→ 0

as ε→ 0 for any α > 0. We estimate J 12
1ε by (7) and Hölder’s inequality, then

J 12
1ε =

∫
I

∫
Td
|$εv− $εvε||vε|dxdt

. ‖$ε‖L∞(I×Td)‖v
ε − v‖L2(I×Td)‖v

ε‖L2(I×Td)

. εα‖$‖L∞(I×Td)‖v‖
2
Bα,∞

2 (I×Td)
→ 0

as ε→ 0. On the other hand, according to (5), (6) and Lemma 2, we can obtain

|J 2
1ε| = |

∫
I

∫
Td

ϕ(t)(($v)ε − $εvε)∂tvεdxdt|

.
∫
I

∫
Td
|($v)ε − $εv||∂tvε|dxdt +

∫
I

∫
Td
|$εv− $εvε||∂tvε|dxdt

. ε2α−1‖$‖L∞(I×Td)‖v‖
2
Bα,∞

2 (I×Td)
→ 0

as ε tends to zero for any α > 1
2 . Thus, J1ε → 0 as ε→ 0 for any α > 1

2 .
The calculation of J2ε is as follows

|J2ε| = |
∫
I

∫
Td

ϕ(t)[∇ · (($v)ε ⊗ vε)−∇ · ($v⊗ v)ε]vεdxdt|

. |
∫
I

∫
Td
[($v)ε ⊗ vε − ($v⊗ v)ε] : ∇vεdxdt|

. |
∫
I

∫
Td
[($v)ε ⊗ v− ($v⊗ v)ε] : ∇vεdxdt|

+ |
∫
I

∫
Td
[($v)ε ⊗ vε − ($v)ε ⊗ v] : ∇vεdxdt|

=: J 1
2ε + J 2

2ε.

From the Assumption (14) and Lemma 2, we have

J 1
2ε = |

∫
I

∫
Td
[($v)ε ⊗ v− ($v⊗ v)ε] : ∇vεdxdt|

. ε2α−1‖$‖L∞(I×Td)‖v‖
3
Bα,∞

3 (I×Td)
→ 0
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and

J 2
2ε = |

∫
I

∫
Td
[($v)ε ⊗ vε − ($v)ε ⊗ v] : ∇vεdxdt|

. ε2α−1‖$‖L∞(I×Td)‖v‖
3
Bα,∞

3 (I×Td)
→ 0

as ε tends to zero for any α > 1
2 .

To estimate J3ε, we divide it into two parts

J3ε = −κ
∫
I

∫
Td

ϕ[($γ)ε∇ · vε − $γ∇ · v]dxdt

≤ κ|
∫
I

∫
Td

ϕ[($γ)ε∇ · vε − ($γ∇ · v)ε]dxdt|

+ κ|
∫
I

∫
Td

ϕ[($γ∇ · v)ε − $γ∇ · v]dxdt|

=: J 1
3ε + J 2

3ε.

Using the same method estimating I1
4ε, we obtain

J 1
3ε = κ|

∫
I

∫
Td

ϕ[($γ)ε∇ · vε − ($γ∇ · v)ε]dxdt|

. ‖$‖γ

L∞(I×Td)
‖∇ · v‖L1(I×Td),

J 2
3ε = κ|

∫
I

∫
Td

ϕ[($γ∇ · v)ε − $γ∇ · v]dxdt|

. ‖$‖γ

L∞(I×Td)
‖∇ · v‖L1(I×Td).

Thus, J 1
3ε, J 2

3ε → 0 as ε tends to zero.
Finally, similar to the proof of Theorem 1, we show that energy is conserved in the

point-wise sense on I. The main difference is that Theorem 2 reduces the regularity of the
density $ by enhancing the regularity of the velocity profile. For this, the following terms
need to be estimated again.

From the mass equation of (1), we know that

d
dt

∫
Td

ψ(x)$γ(t, x)dx = −γ
∫
Td

ψ(x)$γ−1∇ · ($v)dx

= −
∫
Td

ψ(x)∇$γvdx− γ
∫
Td

ψ(x)$γ∇ · vdx

=
∫
Td

$γ[(1− γ)ψ(x)∇ · v +∇ψ(x)v]dx

. ‖$‖γ

L∞(I×Td)
(‖∇ · v‖L∞(I;L1(Td)) + ‖v‖L∞(I;L1(Td)))

is bounded due to (14). Thus, one obtains

$γ ∈ C(I; Lk
weak(T

d)), k > 1.

Similarly,

d
dt

∫
Td

ψ(x)
√

$(t, x)dx =
∫
Td

ψ(x)
(
− v∇√$− 1

2
√

$∇ · v
)

dx

=
∫
Td

√
$
(
∇ · (ψ(x)v)− 1

2
ψ(x)∇ · v

)
dx =

∫
Td

√
$
(1

2
ψ(x)∇ · v +∇ψ(x)v

)
dx

. ‖$‖
1
2
L∞(I×Td)

(‖∇ · v‖L∞(I;L1(Td)) + ‖v‖L∞(I;L1(Td))),
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thanks to (14), it is bounded. Therefore,

√
$ ∈ C(I; Lk

weak(T
d)), k > 1.

By Assumption (14), one can easily check that $v ∈ C(I; L2
weak(T

d)). This completes
the proof of Theorem 2.

4. Conclusions

In this paper, we investigate the relationship between the regularity of weak solutions
and the energy conservation for the isentropic compressible Euler equations. By “trading”
regularity between the density and velocity profile, we provide two types of sufficient
conditions on the regularity of weak solutions to ensure energy conservation in the point-
wise sense. The innovations of this paper include: (i) the energy conservation of weak
solutions can be established in a point-wise sense on I; (ii) our method can deal with the
vacuum case with adiabatic coefficient γ > 1. This work is of great significance for the
study of fluid structure changes, such as the velocity and the density.

For future research direction, one can try to consider the compressible Euler equations
of weak solutions that exhibit uniqueness and satisfy energy conservation.
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