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Abstract: This paper deals with the longitudinal movement control of an airplane (pitch angle)
using fractional order adaptive controllers (FOACs). It shows the improvements achieved in the
plane’s behavior, in terms of the minimization of a given performance index. At the same time, less
control effort is needed to accomplish the control objectives compared with the classic integer order
adaptive controllers (IOACs). In this study, fractional order direct model reference adaptive control
(FO-DMRAC) is implemented at the simulation level, and exhibits a better performance compared
with the classic integer order (IO) version of the DMRAC (IO-DMRAC). It is also shown that the
proposed control strategy for FO-DMRAC reduces the resultant system control structure down to
a relative degree 2 system, for which the control implementation is simpler and avoids oscillations
during the transient period. Moreover, it is interesting to note that this is the first time that an FOAC
with fractional adaptive laws is applied to the longitudinal control of an airplane. A suitable model
for the longitudinal movement of the airplane related to the pitch angle θ as the output variable
with the lifter angle (δe) as the control variable, is first analyzed and discussed to obtain a reliable
mathematical model of the plane. All of the other input variables acting on the plane are considered
as perturbations. For certain operating conditions defined by the flight conditions, an FO-DMRAC
is designed, simulated, and analyzed. Furthermore, a comparison with the implementation of the
classical adaptive general direct control (relative degree ≥ 2) is presented. The boundedness and
convergence of all of the signals are theoretically proven based on the new Lemma 3, assuring the
boundedness of all internal signals ω(t).

Keywords: airplane control; fractional order control (FOC); longitudinal pitch angle control; model
reference adaptive control (MRAC); PSO optimization tuning

1. Introduction

Controlling the pitch angle θ(t) (attitude) of an aircraft (see Figure 1) is relevant in
the aviation industry, since an important part of the pilots’ tasks is to maintain a specific
attitude, that is to say, to achieve a straight and level flight, as well as to ascend or to
descend with a certain angle θ (attitude) with respect to the horizon. Since these tasks
require the pilot to be diligent, most sophisticated aircraft have an autopilot attitude to
complete the job and achieve the following goals:
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- To relieve the pilot from manipulating the controls, reducing the loads on the plane,
and improving navigation accuracy;

- To fly the airplane without direct control over the longitudinal control surfaces (eleva-
tor or tail).

Small planes widely use classical controllers, such as proportional-integral-derivative
(PID) controllers because of their simplicity to maintain the airplane under control [1–5].
The main disadvantage is that they do not have adaptation capabilities to face large varia-
tions in the operating conditions, external perturbations acting on the plane, or eventual
plane parameter variations, since PID parameters are fixed.

In controlling plane trajectories, rather simple controllers, such as the integer order
(IO) PID have been reported in the control literature. Only a few attempts have been
made to use adaptive or more complex control strategies [6–9]. Moreover, techniques, such
as µ-synthesis [10] and nonlinear control [11] have also been used to control airplanes
with good results. In [11], a tracking controller consisting of feedforward and static state
feedback was designed to guarantee uniform asymptotic trajectory tracking. The landing
control of an F-18 fighter aircraft based on a PID controller with an active disturbance
rejection (ADR) system was studied in [12]. In [13], an LQR controller based on genetic
algorithms was designed for the longitudinal control of an F-16 fighter aircraft under
different flight regimes. The longitudinal control of a B-1 bomber was analyzed in [14]
using an optimal multivariable control approach [15–17] of the LQG/LTR type based on an
adaptive observer [18,19].

Furthermore, in [9,12], the longitudinal control of an F-16 Falcon fighter aircraft was
studied by applying advanced control techniques, such as MRAC in its combined version
(CMRAC), which could serve as a basis for comparison for an extension of the CMRAC
techniques to the fractional order case (FO-CMRAC).

Additionally, in [20], the longitudinal control using backstepping control was applied
to a model X-plane similar to the NexStar plane with rectangular wings. In [21], the
longitudinal and lateral control of unmanned vehicles, such as helicopters, were studied.
The control approach used is of the adaptive type based on a continuous linearization for
different operating points to then apply MRAC.

In [22], a typical MRAC approach was used (integer order plant and integer adaptive
control laws) for the longitudinal control of an F-15 aircraft and the fractional part of this
work was the fractional filter that approximates the plant that is newly approximate to an
integer transfer function of the plant. Moreover, in this work, two new blocks were used
(dynamic inversion and PI compensator blocks) achieving a more complex implementation.

It is important to mention that no attempt has been reported in the technical literature
about the use of FO adaptive controllers for the longitudinal control of an airplane in which
fractional adaptive laws are applied to an integer plant (airplane model) with no other
additional special blocks.

The paper is organized as follows. In Section 2, the airplane model used in this study
is presented for certain flight conditions and controlled by a standard DMRAC. Section 3 is
devoted to the description of the DMRAC strategy. Section 4 presents some basic concepts
of fractional order calculus that will be used in this study, and a new lemma (Lemma 3)
that relaxes the stability condition is proposed. In Section 5, several simulation results are
presented with numerical values of the parameters corresponding to the Cessna 182 plane
used in this study [2]. Finally, in Section 6, some conclusions are drawn.

2. General Concepts on Plane Dynamics and Flight Control
2.1. Mathematical Model of the Longitudinal Movement of a Plane

In this Section, the basic concepts of a plane’s dynamics and its control are presented.
In many cases, plane dynamic motion can be modeled assuming small disturbances con-
cerning the airplane’s static stable path (operating point). The differential equations used
in this study represent only the plane’s longitudinal movement, although the complete
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movement is in three dimensions. These equations are considered linear (or linearized) with
constant coefficients corresponding to small deviations in the airplane’s operating point.

We consider the static stable path condition of a straight and level flight. The move-
ment equations must consider the aerodynamic force and moment disturbances. By choos-
ing ω1 = 0 (angular velocity along the z-axis in rad/s), we obtain the plane small distur-
bances longitudinal equations separated from the small disturbances directional-lateral
equations [2].

Next, for a better understanding of the variables in the equations that follow, Table 1
shows the glossary of terms with their respective units used in this paper.

Table 1. Glossary of terms used in the control of the Cessna-182.

Variable Meaning Variable Meaning

θ1 [rad] Stationary pitch angle Zα
[
ft·rad/s2] Vertical acceleration per

unit angle of attack

θ [rad]
Pitch angle or perturbed

pitch angle Z .
α [ft·rad/s]

Vertical acceleration per
unit rate change of angle

of attack

U1 [mph]
Stationary longitudinal

velocity Zq [ft·rad/s]
Vertical acceleration per

unit pitch rate

u [mph]
Perturbed longitudinal

velocity Zδe

[
ft·rad/s2] Vertical acceleration per

unit elevator angle

α [rad]
Angle of attack or

perturbed angle of attack Mu [ft·rad/s]
Pitch angular acceleration

per speed unit change

γ [rad] Path flight angle MTu [ft·rad/s]
Pitch angular acceleration
per unit change in speed

(due to thrust)

g
[
ft/s2] Acceleration of gravity Mα

[
1/s2] Pitch angular acceleration

per unit angle of attack

Xu [1/s]
Forward acceleration per

speed unit change MTα

[
1/s2] Pitch angular acceleration

per unit angle of attack
(due to thrust)

XTu [1/s]
Forward acceleration per

speed unit change
(due to thrust)

M .
α [1/s]

Pitch angular acceleration
per unit rate of change of

attack angle

Xα
[
ft·rad/s2] Forward acceleration per

unit angle of attack Mq [1/s]
Pitch angular acceleration

per unit pitch rate

Xδe

[
ft·rad/s2] Forward acceleration per

unit elevator angle Mδe

[
1/s2] Pitch angular acceleration

per unit elevator angle

Zu [1/s]
Vertical acceleration per

speed unit change

To simplify the analysis, Figure 1 shows the geometry and the longitudinal angles of
interest for the aircraft used in this study.

V is the wind speed relative to the aircraft, θ is the pitch angle, α is the angle of attack,
and (it is important to note that this symbol is the same as the order of fractional derivatives,
nevertheless this should not be confusing because of the context) γ is the flight path angle.
Note that γ = θ − α.



Fractal Fract. 2023, 7, 342 4 of 24

Figure 1. Fundamental angles of the longitudinal movement of an aircraft (figure uploaded by Baron
Johnson [23]).

The airplane used in this study for the simulations of different adaptive control
strategies, in its integer and fractional order versions, is the Cessna-182 utility aircraft,
which is very popular due to its low cost and high performance. In addition, this aircraft is
widely used in the training process for civil pilots.

Using the plane general dynamic equations and the aerodynamic and trust force dis-
turbances, we obtain the following equations describing the plane’s disturbed longitudinal
movement [2,8].

.
u(t) = −gθ(t)cosθ1 + Xu · u(t) + XTu · u(t) + Xα · α(t) + Xδe · δe(t),
U1 ·

.
α(t)−U1 ·

.
θ(t) = −g · θ(t)sinθ1 + Zu · u(t) + Zα · α(t) + Z .

α ·
.
α(t) + Zq ·

.
θ(t) + Zδe · δe(t),..

θ(t) = Mu · u(t) + MTu · u(t) + Mα · α(t) + MTα · α(t) + M .
α ·

.
α(t) + Mq ·

.
θ(t) + Mδe · δe(t),

(1)

where u(t) is the perturbed linear velocity along the longitudinal axis of the aircraft, α(t)
is the angle of attack, θ(t) is the perturbed pitch angle, δe(t) is the tail elevator angle and
Xi(t), Zi(t), and Mi(t) are, respectively, the derivatives of cinematics forward, vertical, and
moments variables concerning the variable of interest i.

Then, a linearized model around a specified operating point is defined allowing for
the introduction of basic and advanced control concepts for the resulting dynamical system.
First, it is convenient to perform the following change of notation:

x1(t) = θ(t),
x2(t) =

.
θ(t),

x3(t) = u(t),
x4(t) = α(t),

to express the set of Equation (1) in the state space matrix form, represented as:

.
x(t) = A · x(t) + B · u(t),
y(t) = C · x(t),

where A, B, andC are the constant matrices of proper dimensions. Following some algebraic
manipulation, we arrive at the following system of equations expressed in state variables:
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.
x1(t) = x2(t),
.
x2(t) = −

gsinθ1 M .
α

Z .
α+U1

x1(t) +
(

Mq + M .
α

Zq+U1
Z .

α+U1

)
x2(t) +

(
Mu + MTu

M .
α ·Zu

Z .
α+U1

)
x3(t),

.
x3(t) = −gcosθ1x1(t) + (Xu + XTu)x3(t) + Xαx4(t) + Xδe δe(t),
.
x4(t) = − gsinθ1

Z .
α+U1

x1(t) +
(

Zq+U1
Z .

α+U1

)
x2(t) +

(
Zu

Z .
α+U1

)
x3(t) +

(
Zα

Z .
α+U1

)
x4(t) +

(
Zδe

Z .
α+U1

)
δe(t).

(2)

The matrix representation of System (2) becomes


.
x1.
x2.
x3.
x4

 =


0 1 0 0

− gsinθ1 M .
α

Z .
α+U1

Mq + M .
α

Zq+U1
Z .

α+U1
Mu + MTu

M .
α ·Zu

Z .
α+U1

Mα + MTα

M .
α ·Zα

Z .
α+U1

−gcosθ1 0 Xu + XTu Xα

− gsinθ1
Z .

α+U1

Zq+U1
Z .

α+U1

Zu
Z .

α+U1

Zα
Z .

α+U1




x1
x2
x3
x4



+


0

Mδe +
M .

α ·Zδe
Z .

α+U1
0

Xδe
Zδe

Z .
α+U1

δe(t),

y(t) =
[
1 0 0 0

]
x1
x2
x3
x4

,

(3)

where δe(t) is the system input and y(t) = θ(t) is the system output.
The fractional order direct model reference adaptive control (FO-DMRAC) designed

for this application will be later compared with its integer order counterpart (IO-DMRAC).
The flight conditions will be those corresponding to a straight and level flight, considering
the operating conditions shown in Table 2.

Table 2. Cessna-182 operating conditions in straight and level flight.

Operating Conditions

Altitude [feet] 5.000

Velocity [m.p.h.] 130

Weight [pounds] 2.650

Dynamic Pressure [p.s.i] 49.6

Center of gravity in percent [%] 26.4

For more information on the operational and technical characteristics of this aircraft,
the reader is referred to [24].

Additionally, Table 3 shows the values of the derivative coefficients of Equation (1) or
Equation (2) for the operating conditions given in Table 2.

Performing a state space analysis, it can be shown that the dynamic model of the
longitudinal movement of the aircraft for small variations has the input variable δe(t) and
the output variable y(t) for dimension 1.
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Table 3. Derivative coefficients of the Cessna-182 airplane.

Derivative Coefficients and Values

Derivative Coefficient Units Derivative Coefficient Units

Xu = −0.95 ft/s2

ft/s
Zδe = 0 ft/s2

rad

XTu = 0.47 ft/s2

ft/s
Mu = 0 rad/s2

ft/s

Xα = 605.76 ft/s2

rad MTu = 0 rad/s2

ft/s

Xδe = 0 ft/s2

rad Mα = 19259.390 rad/s2

rad

Zu = −9.09 ft/s2

ft/s
MTα

= 0 rad/s2

rad/s

Zα = −1425807 ft/s2

rad M .
α = 2542.51 rad/s2

rad/s

Z .
α = −61.63 ft/s2

rad/s
Mq = 4336.60 rad/s2

rad/s

Zq = −181.38 ft/s2

rad/s
Mδe = 35251.27 rad/s2

rad

Next, in Equation (4), the Cessna-182 model is represented in state variables for the
operating conditions indicated in Tables 1 and 2, resulting in

.
x1.
x2.
x3.
x4

 =


0 1 0 0
0 −6.8485 0 −19.2591

−32.17 0 −0.0456 −19.4588
0 0.9877 −0.0014 −2.2329




x1
x2
x3
x4

+


0

34.7012
0

0.2162

δe(t),

y(t) =
[
1 0 0 0

]
x1(t)
x2(t)
x3(t)
x4(t)

 = x1(t).

(4)

Furthermore, since the analysis interest is on the longitudinal movement, and in
particular it is desired to control the pitch angle (rotation about the Y axis) of the aircraft,
then the transfer function of interest is

Wp(s) =
x1(s)
δe(s)

=
θ(s)
δe(s)

. (5)

Therefore, according to Equation (3) or Equation (4), the output will be y(t) = x1(t) = θ(t).
Then, applying the Laplace transform to Equation (4) and imposing null initial conditions,
the transfer function Wp(s) has the form

Wp(s) =
θ(s)
δe(s)

= C(sI − A)−1B + D (6)

where A is a 4 × 4 matrix, B is a 4 × 1 matrix, C is a 1 × 4 matrix, and D = 0.
Then, under these operating conditions, the transfer function of the plant, that is,

between the pitch angle θ(t) and the elevator angle δe(t), is given by

Wp(s) =
θ(s)
δe(s)

=
34.7012(s + 0.0589)(s + 2.0996)

(s2 + 0.0444s + 0.02533)(s2 + 9.0826s + 34.3275)
, (7)

or equivalently,

Wp(s) =
θ(s)
δe(s)

=
34.7012s2 + 74.9025s + 4.2914

s4 + 9.127s3 + 34.7561s2 + 1.7542s + 0.8695
. (8)

Thus, the resulting airplane transfer function is of order 4 (n = 4) and relative degree
2 (n∗ = 2).
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Controlling the pitch angle or attitude of the aircraft θ(t) is of central importance in
aeronautics. Thus, an important pilot’s task is to maintain a specific attitude allowing to
achieve a straight and level flight, as well as to ascend or descend with a certain degree θ
of attitude concerning the artificial horizon. Since this task is quite demanding for a pilot,
most sophisticated aircraft have an autopilot attitude to complete this job. This takes care
of two important issues:

- Relieving the pilot from the excessive manipulation of the controls, reducing the loads
developed on the plane, and thus improving the navigation accuracy;

- Flying the airplane without direct control over the longitudinal control surfaces (elevator).

It should be noted that in the state-of-the-art literature review, no implementations of
attitude adaptive controllers (pitch angle control) using fractional order controllers have
been reported.

2.2. Control Process Description

Figure 2 shows a simplified schematic block diagram for the DMRAC, in which
parameters k and θ are adjusted over time for using their corresponding adaptive laws to
maintain the error to be small or zero as t approaches infinity.
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In our case, Figure 3 shows in detail the simplified block diagram of the DMRAC
which will be used in this study, from analytical and simulation viewpoints. This Figure
shows the plant, the reference model, the actuator, and the controller for the relative degree
2 (n∗ = 2). A complete block diagram implementation of the controller can be seen in [25].
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For simplicity, we will consider that the actuator dynamic is fast enough for consider-
ing this transfer function as a unity (the same assumption is made for the sensor dynamic
which is not shown in the block diagram).

It is also interesting to show the behavior of the system output yp(t) = θ(t), when the
model reference output, denoted as ym(t) = θm(t), changes over time. Figure 4 shows the
evolution of the system output yp(t) in open-loop when the input δe(t) is a unit step at
t = 0.
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From Figure 4 we can deduce that for any step change in the reference, the pilot
should constantly manipulate the plane for almost 200 s to maintain a straight and level
flight, which is a demanding task besides the navigation activities, and this motivates the
development of automatic control strategies to help pilot duties.

3. Control Strategies

For the sake of completeness, a brief description of the DMRAC algorithm for plants of
relative degree 2 (n∗ = 2) (that will be used to control the plane as an alternative), is given
in what follows. For a more detailed explanation of the algorithm, the reader is referred
to [25].

DMRAC Algorithm

Generally speaking, the main objective of the MRAC is to minimize the error between
the plant output and the model reference output. In the DMRAC, the controller parameter
adjustment is based on the control error (difference between the actual and the desired
outputs) [25].

For the particular case of the adaptive control of a linear (or linearized) nth order plant
with a relative degree 1 (n∗ = 1), it is used the DMRAC scheme shown in Figure 5, that
gives rise to the well-known Error Model 1.
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Under very well-known hypotheses [25], the control law for the DMRAC shown in
Figure 5 has the form

u(t) = θT(t)·ω(t),

where θ(t) =
[
k(t), θT

1 (t), θ0(t), θT
2 (t)

]T ∈ R2n and ω(t) =
[
r(t), ωT

1 (t), yp(t), ωT
2 (t)

]T ∈
R2n are the controller parameters vector and the auxiliary signals vector, respectively, and
n is the order of the plant. The auxiliary signals ω1 ∈ Rn−1, ω2 ∈ Rn−1 are defined by

.
ω1(t) = Λω1 + lu(t),
.

ω2(t) = Λω2 + ly(t),

with k(t),θ0(t), r(t), yp(t) ∈ R and θ1(t), θ2(t), ω1(t), ω2(t) ∈ <n−1. (Λ, l) is any arbitrary
stable and controllable pair, with Λ ∈ <n−1×n−1 as an asymptotically stable matrix. For
simplicity, in our study, we choose (Λ, l) in the controllable canonical form. In this particular
case (n∗ = 1), the parameters adaptive laws are chosen as:

.
k(t) = −sgn

(
kp
)
e1(t)r(t),.

θ0(t) = −sgn
(
kp
)
e1(t)yp(t),.

θ1(t) = −sgn
(
kp
)
e1(t)ω1(t),.

θ2(t) = −sgn
(
kp
)
e1(t)ω2(t),

(9)

and the output error e1(t) = yp(t)− ym(t) can be expressed as e1(t) =
kp
km

Wm(s)φT(t)ω(t),
where Wm(s) is a strictly positive real (SPR) transfer function and φ(t) = θ(t)− θ∗ is the
parametric error, with θ∗ as the ideal (but unknown) control parameters.

ε(t) = e1(t) + k(t)e2(t)
e2(t) = θT(t)ω(t)−Wm(s)θT(t)ω(t)
ω(t) = Wm(s)I2nω(t)

where e1(t) = yp(t)− ym(t) is the control error, ε(t) is the augmented control error, e2(t)
is the auxiliary error, ω(t) is a filtered version of ω(t) vector, and k1(t) is an additional
adjustable parameter. I2n denotes the identity matrix of dimension 2n.

In our specific case study, since the plant’s relative degree exactly equals 2 (n∗ = 2),
we can make a small modification to the diagram, as shown in Figure 5, (which is only
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valid for n∗ = 1), avoiding the introduction of the concept of augmented control error ε(t)
and auxiliary error e2(t), simplifying the adaptive controller when n∗ is exactly 2. Figure 6
shows the modification introduced to the block diagram of Figure 5, with the new block
in red.
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For the particular case of the longitudinal movement of the airplane under investiga-
tion, we will use a fourth order model with a relative degree 2, but with making use of the 

Figure 6. Block diagram associated to the output error e1(t) valid only for the case of an nth order
plant with a relative degree exactly equal to 2.

For the particular case of the longitudinal movement of the airplane under investi-
gation, we will use a fourth order model with a relative degree 2, but with making use
of the simpler relative degree equal to 1 implementation, as shown in Figure 5, with the
modification included in Figure 6.

Additionally, the corresponding simplified block diagram of Figure 6, for this specific
case, the control error e1(t) can be expressed, as shown in Figure 7.
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From Figure 7, the output error can be expressed as e1(t) =
kp
km

Wm(s)L(s)φT(t)ω(t)
L(s)

with L(s) = (s + a), such that Wm(s)L(s) is now an SPR Hurwitz transfer function and
ω(t) = ω(t)

L(s) = ω(t)
s+a is a new Hurwitz filtered version of ω(t). In this case, we can use

adaptive laws similar to Equation (9) to change ω(t) by the filtered version ω(t), that is
to say

.
k(t) = −sgn

(
kp
)
e1(t)r(t),.

θ0(t) = −sgn
(
kp
)
e1(t)yp(t),.

θ1(t) = −sgn
(
kp
)
e1(t)ω1(t),.

θ2(t) = −sgn
(
kp
)
e1(t)ω2(t),

(10)

or written in the compact form

.
θ(t) = −sgn

(
kp
)
e1(t)ω(t), (11)
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where ω(t) = 1
s+a
[
r(t)yp(t)ω1(t)ω2(t)

]
and e1(t) =

kp
km

Wm(s)L(s)φT(t)ω(t)
L(s) .

Furthermore, the control law u(t) = θT(t)ω(t) +
.
θ

T
(t)ω(t) in view of (11) can be

expressed as
u(t) = θT(t)ω(t)− sgn

(
kp
)
e1(t)ωT(t)ω(t),

that does not contain the parameter derivative.
Then, choosing L(s) = (s + a), the realization of PL(θ) = L(s)θ(t)L−1(s) [26] is free

of drifts, and the subsequent stability test of the modified system under control becomes
the essence of the solution to the control problem when the relative degree of the plant is 2
(n∗ = 2). Prior to ending this section, it is interesting to show some properties of the linear
operator PL(θ) used in the new adjustment control law. It satisfies the following properties:

(i) PL
(
θT) = L(s)θT(t)L−1(s)

(ii) PL(θ
∗) = θ∗ if θ∗ is constant;

(iii) PL(θ)− θ = PL(φ)− φ, where θ(t) = θ∗ + φ(t)

4. Fractional Calculus Overview

In this section, we present some definitions and concepts on the derivative and integral
operators of the fractional order [26,27] that will be used in the stability analysis of the
implementation of the FO-DMRAC for flight control.

Definition 1 ([27]). The Riemann–Liouville fractional integral of order α > 0 of a function
f (t) ∈ R is defined by

Iα
t0

f (t) =
1

Γ(α)

∫ t

t0

f (τ)
(t− τ)1−α

dτ, t > t0 andRe(α) > 0, (12)

where Γ(α) is the Gamma function defined as

Γ(α) =
∫ ∞

0
tα−1e−tdt. (13)

Definition 2 ([27]). Let α ≥ 0 and [n] = α. The Caputo fractional derivative of order α of a
function f (t) ∈ R is defined as

C
t0

Dα
t f (t) =

1
Γ(n− α)

∫ t

t0

f (n)(τ)
(t− τ)α−n+1 dτ; as long as f (n) ∈ L1[t0, t]. (14)

Some additional tools (lemmas and theorems) that are useful in the stability analysis
of the fractional order adaptive control systems are presented in what follows.

Lemma 1 (Principle of fractional comparison). Let e(t) ∈ Rn be a vector of differentiable
functions. Then, ∀t ≥ t0, the following inequality holds [28–31]

C
t0

Dα
t

{
eT(t)Pe(t)

}
≤ 2eT(t)PC

t0
Dα

t e(t), ∀α ∈ (0, 1],

where P ∈ Rn×n is a symmetric square matrix of constant coefficients and positive definite. A proof
of Lemma 1 can be found in [28].

Another lemma that is useful in the study of the evolution of the output error in FO
models is the following:
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Lemma 2. Let e(·) : R+ → R be a uniformly continuous and bounded function. If there exists an
α ∈ (0, 1], such that

1
Γ(α)

∫ t

t0

e(τ)2

(t− τ)1−α
dτ < M, ∀t ≥ t0, with M ∈ (0, ∞),

then

lim
t→∞

tα−ε

∫ t
t0

e(τ)2dτ

t

 = 0, ∀ε > 0.

A proof of this lemma is given in [30].
For completeness, we state Theorem 1 related to the boundedness and convergence of

FO dynamical systems.

Theorem 1. Let the state error e(t) and the output error e1(t) be represented by equations

C
t0

Dβ
t e(t) = Amne(t) + bmn

[
φT(t)ω(t)

]
, e(t0) = e0,

e1(t) = kphT
mne(t), e1(t0) = e10,

(15)

where Amn ∈ Rn×n is a Hurwitz matrix and such that given matrix Q = QT > 0 ∈ Rn×n. Then,
there exists a matrix P = PT > 0 ∈ Rn×n, such that

AT
mnP + PAmn = −Q,

Pbmn = hmnkp

This implies that the triplet {Amn, bmn, hmn} satisfies the conditions of the Kalman--
Yakubovich–Popov Lemma [25]. Furthermore, kp is an unknown constant, but with a
known sign, e(t) : R+ → Rn corresponds to the vector of the non-accessible states error,
e1(t) : R+ → R is the output error (accessible), bmn, hmn ∈ Rn with φ(t) : R+ → Rm is the
parameter error vector defined as φ(t) = θ(t)− θ∗ with θ(t) : R+ → Rm, the estimated
parameters (of the controller) and θ∗ : R+ → Rm, the unknown ideal parameters (of the
controller). ω(t) : R+ → Rm is a vector of available auxiliary signals and β ∈ (0, 1] is
the fractional order of the plant, whose adaptive adjustment laws estimate the unknown
controller parameters, which are given by

C
t0

Dα
t φ(t) = C

t0
Dα

t θ(t) = −γsgn(k)e1(t)ω(t), φ(t0) = 0 (16)

with α < β and α ∈ (0, 1]. Then, assuming that e(t) and φ(t) are differentiable and
uniformly continuous functions, it holds that

i. The parametric error φ(t), the state error e(t), and the output error e1(t) remain
bounded for all time;

ii. Furthermore, if the auxiliary signal ω(t) is bounded, then C
t0

Dα
t φ(t) and C

t0
Dβ

t e(t)
also remain bounded;

iii. The mean value of the squared norm of the state error ‖e(t)‖2 is (tε−α) ∀ε > 0. The
proof of this theorem can be found in [32].

Corollary 1. From Theorem 1, it is evident that if (iii) holds, it must also hold that the mean value
of the square norm of the output error e1(t) is (tε−α)∀ε > 0, since e1(t) = hT

mne(t) with hT
mn a

vector has components that are constants.

Finally, a new lemma (Lemma 3) for the case when the relative degree is 2 (n∗ = 2)
is stated, that relaxes the hypothesis made on the auxiliary signals ω(t) in point (ii) of
Theorem 1.
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Lemma 3. Let us consider a system of order n and relative degree n∗ = 2 represented by the state
equations

.
xp(t) = Apxp(t) + bpu(t),

yp(t) = hT
p xp(t),

(17)

whose FO adaptive laws to adjust the controller parameters are given by

C
t0

Dα
t φ(t) = C

t0
Dα

t θ(t) = −γe1(t)ω(t), φ(t0) = 0,

and whose error equation is given by (in this case, the error equation is of integer order, that is to
say, β = 1 with β > α. See Equation (15),

.
e(t) = Amne(t) + brp[φ(t)ω(t)], e(t0) = e0,
e1(t) = hT

mne(t), e1(t0) = e10,
(18)

Ap ∈ Rn×n is the state matrix of the plant, xp ∈ Rn is the state vector, bp and hp are
vectors ∈ Rn whose input u(t) and output are yp(t) ∈ R, such that Zp(s) and Rp(s) are
monic polynomials of order n− 2 and n, respectively. kp is s constant parameter called the
high frequency gain, and its sign is known. Without a loss of generality, we will consider
that it is positive throughout the entire analysis, and (kp > 0) and Zp(s) is Hurwitz. In
addition, it is assumed that the parameters of the plant (gain kp and coefficients of the
polynomials Zp(s) and Rp(s)) are unknown and their reference model is also of the relative
degree 2 (n∗m = 2) and Hurwitz, where Amn is also Hurwitz. Then, since e(t) and φ(t) are
bounded by part (i) of Theorem 1, the auxiliary signals ω(t) and ω(t) will also be bounded.
This is an important conclusion because we do not need to assume that the auxiliary signals
ω(t) or ω(t) should be bounded, as is imposed in part (ii) of Theorem 1.

Proof. Assuming that e(t) and φ(t) are uniformly continuous and differentiable, and based
on Theorem 1, in which it has been shown that both e(t) and φ(t) are bounded, then,

.
e(t)

will also be bounded, since e(t) is bounded, differentiable, and uniformly continuous. Then,
since the auxiliary signals ω(t) and ω(t) are part of the equation for

.
e(t) (Equation (18)),

then ω(t) must be bounded and ω(t) will also be bounded, since ω(t) = 1
(s+a)ω(t) is with

1
(s+a) Hurwitz. This concludes the proof. �

In our case, the control law is u(t) = θT(t)ω(t)− sgn
(
kp
)
e1(t)ωT(t)ω(t), but it can

also be the classical adaptive control law u(t) = θT(t)ω(t), as long as the structure of the
error equation is of Equation (18) type, in which case, ω(t) is replaced by ω(t).

Remark 1. Lemma 3 can be easily extended to the general case when n∗ ≥ 2, as long asβ of
Equation (15) is equal to 1 (β = 1), as is the case of Equation (18).

This lemma allows us to relax the hypothesis that must be considered in Theorem 1,
in order to prove that the FO derivatives are bounded, the auxiliary signal ω(t) should also
be bounded, which is not necessary to impose in the case of β = 1. In other cases, with
β ∈ (0, 1), only Theorem 1 should be used by now.

Furthermore, if the auxiliary signal ω(t) is bounded (as shown in Lemma 3), then
Theorem 1 guarantees that the squared norm of the state error ‖e(t)‖2 and the output
|e1(t)|2 tend to 0, as t tends to infinity. Thus, the stability of the proposed FO adaptive
control system has been proved.

FO-DMRAC Algorithm

Figure 6 shows the block diagram of the FO-DMRAC for the specific case when n∗ = 2.
Since the equation of the plant is of integer order, the only equations that change are the



Fractal Fract. 2023, 7, 342 14 of 24

adaptive laws. For comparison purposes, it is interesting to note that for the IO case and
n∗ = 2, these adaptive laws are given by

.
θ(t) =

.
φ(t) = −sgn

(
kp
)
e1(t)ω(t) (19)

and for the FO case, these adaptive laws become

C
t0

Dα
t θ(t) = C

t0
Dα

t φ(t) = −sgn(kp)e1(t)ω(t) (20)

The control law in both cases is given by

u(t) = θT(t)ω(t)− sgn
(
kp
)
e1(t)ωT(t)ω(t) (21)

where ω(t) = 1
(s+a)ω(t) with a, an arbitrary scalar is greater than 0. For simplicity, we

will choose a = 1. Furthermore, the high frequency gain of the plant is kp = 34.7012 (see
Equation (7)), which is supposed to be unknown, but its sign is assumed to be known
(sgn(kp) > 0).

5. Simulation Results and Comparisons

Computer simulations were performed in MATLAB-Simulink [33,34]. For all simula-
tions, zero initial conditions were considered for the airplane. Table 4 shows the implemen-
tation details of the IO-DMRACs and the FO-DMRACs.

Fractional adaptive laws were implemented using the Ninteger Toolbox for MAT-
LAB [35]. Specifically, the NID block was used, which is based on the Oustaloup ap-
proximation method [36]. In this study, five poles and five zeros were selected in the
implementation, and the frequency interval chosen was ω ∈ [0.01; 100] [rad/s]. It is impor-
tant to mention that better approximations can be achieved if the bandwidth is increased
(e.g., ∈ [0.010; 1000] at the expense of increasing the simulation time.

Table 4. Implementation of the IO-DMRACs and FO-DMRACs.

Reference model Wm(s) = 2
s2+3s+2

Plant Wp(s) = 34.7012s2+74.9025s+4.2914
s4+9.127s3+34.7561s2+1.7542s+0.8695

Control laws

θ(t) =
[
k(t) θT

1 (t) θ0(t) θT
2 (t)

]T ∈ R8

ω(t) =
[
r(t) ωT

1 (t) yp(t) ωT
2 (t)

]T ∈ R8

u(t) = θT(t)ω(t)− e1(t)ωT(t)ω(t)
Note: θT

1 (t) and θT
2 (t) ∈ R3

Auxiliary signals

.
ω1(t) = Λω1(t) + lu(t)
.

ω2(t) = Λω2(t) + lyp(t)

Λ =

 0 1 0
0 0 1
−6 −11 −6


l = [0 0 1]T

First order filter L(s) with a = 1. L(s) = 1
(s+a) =

1
(s+1)

Output error
e1(t) =

kp
km

Wm(s)φT(t)ω(t)
Wm(s) = (s + 1)Wm(s) y ω(t) = 1

(s+1)ω(t)

Integer order adaptive laws
.
θ(t) = −γe1(t)ω(t)

Fractional order adaptive laws C
t0

Dα
t θ(t) = −γe1(t)ω(t)

5.1. IO-DMRAC v/s FO-DMRAC Using the Particle Swarm Optimization (PSO)

In this Section, we compare the control results using IO-DMRAC v/s FO-DMRAC,
when the controller parameters of both implementations are optimized using the parti-
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cle swarm optimization (PSO) technique [22,37], using 50 particles and 50 iterations. It
should be noted that any other optimization technique could also be used to determine
the controller’s parameters, and it is at the discretion of the designer. First, we analyze the
open-loop response of the plant to a unit step input and zero initial conditions to observe
the behavior of the oscillations during the transient period before reaching the steady-state
regime. The result is shown in Figure 8.
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Figure 8. Open−loop system response to a unit step reference change at t = 0.

From the open-loop response shown in Figure 8, we note that the time to reach the
steady state regime is almost 300 s, which is considered too long. Therefore, an automatic
control system has to be designed to reduce the time of the transient response while tracking
the reference accurately.

5.2. Simulation Results Using the Exact Knowledge of n∗ = 2

In this section, we analyze the behavior of the controller given in Figure 6, i.e., assum-
ing that the relative degree of the plant is exactly equal to 2.

The objective function used to optimize the process behavior is defined as

Jnorm = ωessess + ωdu

∫ t

t0=0

∣∣∣∣du
dt

∣∣∣∣dt +
∫ t

t0=0

(
ωe·

e2
1(t)

σe(t)
+ ωu·

u2(t)
σu(t)

)
dt (22)

where ess is the control steady-state error,
∣∣∣ du

dt

∣∣∣ is the rate of change of the input to the plant
(or the controller output), e1(t) is the control error, (t) is the output of the controller, ωe
and ωu are the weighted parameters, and σe(t) and σu(t) are the standard deviations of the
control error and controller output as a time function, respectively. The reference is the unit
step.

Remark 2. In this study, a rather general objective function (Equation (22)) was chosen. Neverthe-
less, any other properly defined objective function could also be used by the designer.

Using the values and equations shown in Table 4 and considering the weights ωess = 1,
ωdu = 1, ωe = 2, and ωu = 1, the design parameter values for each case (IO-DMRAC and
FO-DMRAC) were obtained and used in the simulations.

Figure 9 shows the evolution of the fitness function (objective function) Jnorm as a
function of the number of iterations used in the PSO algorithm.
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Figure 9. Evolution of the objective function Jnorm as the number of iterations increases using PSO
for the IO-DMRAC.

The optimal parameter values obtained for the case of IO-DMRAC were:

γk = 5.3633, γ11 = 0.1, γ12 = 0.1, γ13 = 49.58,
γ0 = 0.1, γ21 = 0.1, γ22 = 7.6837 and γ23 = 0.1.

As in the previous case, Figure 10 shows the evolution of the objective or fitness
function while increasing the number of iterations of the PSO method in the case of the
FO-DMRAC.
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Figure 10. Evolution of the objective function or cost function Jnorm as the number of iterations
increases using PSO and FO-DMRAC.

The best parameter values obtained for the FO-DMRAC case were

αk = 0.3, α11 = 0.5315, α12 = 1, α13 = 1,
α0 = 0.3, α21 = 0.3, α22 = 1, α23 = 0.8608,

γk = 5.6173, γ11 = 0.03, γ12 = 0.03, γ13 = 33.5375,
γ0 = 0.03, γ21 = 10.0493, γ22 = 0.03, γ23 = 0.11957.

From Figures 9 and 10, it is interesting to observe a faster rate of convergence to a
stable value of the objective function in the FO case (Figure 10) compared to the integer
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case (Figure 9), even though the number of optimization parameters is twice the one used
in the IO case. This seems to be an indication that, since in the FO case there are more
degrees of freedom in the controller, the behavior attained is better than the one obtained
for the IO case.

Figures 11 and 12 show the responses of both adaptive controllers regarding the
tracking of the reference signal (in green). Both responses are similar to FO-DMRAC
and IO-DMRAC and approximate the reference very well. Nevertheless, in the case of
FO-DMRAC, the response is smoother than in the IO-DMRAC case.
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Moreover, Figures 13 and 14 show that the control effort in the IO case is greater
than that required in the FO case. Particularly, this effort for the IO case is greater in the
transient period.
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Table 5 shows the optimal values of the cost function Jnorm when all controller parame-
ters are varied.
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Table 5. Jnorm cost function using optimization by PSO for IO-DMRAC and FO-DMRAC.

ISE ISI ISE+ISI Jnorm

IO-DMRAC-PSO 0.0207 3.056 3.0767 10.31

FO-DMRAC-PSO 0.0090 3.005 3.014 8.989

From Table 5, it can be seen that a better performance is achieved when using FO-
DMRAC, since all of the indices are smaller than the IO case. Furthermore, the control
effort is smaller in the transient period, as is shown in Figure 14.

Remember that the weights used in the optimization processes were chosen as ωess = 1,
ωdu = 1, ωe = 2, and ωu = 1.

5.3. Simulation Results Using the Generalized Controller for n∗ ≥ 2

In this section, we analyze the problem from a viewpoint different from the one used
in Section 5.1, i.e., using the general implementation of the FO-DMRAC when the relative
degree is greater than or equal to 2 (n* ≥ 2). The idea is to compare the behavior with the
one implemented in Section 5.1, which, as mentioned, only works for the case when the
relative degree is exactly equal to 2 (n* = 2).

The block diagram of the generalized DMRAC when n* ≥ 2 is shown in Figure 15 [25].
In this case, additional errors must be considered, such as the auxiliary error e2(t) and
augmented error ε(t), as well as an additional gain k1(t). In this case, Wm(s) and Wp(s) are
the transfer functions of the reference model and the plant, respectively.
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It is important to mention that the structure of Figure 15 is the same for both the
integer and fractional adaptive control cases. The only difference lies in the laws for the
adjustment of the parameters (IO derivative in one case and FO derivative in the other one).

Then, to make the analysis comparable (when n∗ = 2 and FO-DMRAC) with the
generalized adaptive implementation of the integer order DMRAC (or IO-DMRAC), we
have determined the values of the γ’s and α’s optimized by PSO. The resulting values are:

γk = 5.3633, γ11 = 0.1, γ12 = 0.1, γ13 = 49.58,
γ0 = 0.1, γ21 = 0.1, γ22 = 7.6837, γ23 = 0.1.

Table 6 shows the design parameters for the general case IO-DMRAC when the relative
degree of the plant is greater than or equal to 2 (n∗ ≥ 2).

A plot of the pitch angle θ(t) for the generalized IO-DMRAC case (n∗ ≥ 2; black color)
and FO-DMARC case (n∗ = 2; red color) are shown in Figure 16 together with the output
signal of the reference model θm(t) in green.

Table 6. Implementation details of the general IO-DMRAC controller for the case n∗ ≥ 2.

Reference Model Wm(s) = 2
s2+3s+2

Plant Wp(s) = 34.7012s2+74.9025s+4.2914
s4+9.127s3+34.7561s2+1.7542s+0.8695

Generalized control law
θ(t) =

[
k(t) θT

1 (t) θ0(t) θT
2 (t)

]T ∈ R8

ω(t) =
[
r(t) ωT

1 (t) yp(t) ωT
2 (t)

]T ∈ R8

u(t) = θT(t)ω(t)

Auxiliary signals

.
ω1(t) = Λω1(t) + lu(t)
.

ω2(t) = Λω2(t) + lyp(t)

Λ =

 0 1 0
0 0 1
−6 −11 −6


l = [0 0 1]T

u(t) = Wm(s)u(t)
ω(t) = Wm(s)ω(t)

Output error and augmented error
e1(t) = yP(t)− ym(t)

e2(t) = θT(t)ω(t)− u(t)
ε(t) = e1(t) + k(t)e2(t)

Integer order adaptive laws

.
k1(t) = −γ

ε(t)e2(t)
1+ω(t)ωT(t)

.
θ(t) = −γ

ε(t)ω(t)
1+ω(t)ωT(t)

θm(t) is the reference signal or the desired evolution of the pitch angle (green color).
The signal in black is the plant output when the generalized IO-DMRAC implementation
is used (i.e., n∗ ≥ 2), and finally in red, the plant output is shown when FO-DMRAC is
considered using the simple structure (n∗ = 2)

Without being exhaustive, it can be seen from Figures 16 and 17 that the best response
and least control effort is achieved with the FO-DMRAC for n∗ = 2. Furthermore, the
generalized IO-DMRAC case presents oscillations in the transient period, something that
does not occur in the cases of the IO and FO controls when n∗ = 2.
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Figure 17. Zoom of the transient evolution of the control effort δe(t) during the 10 first seconds. Black
signal corresponds to the generalized IO-DMRAC structure case, and IO-DMRAC (blue color) and
FO-DMRAC (red color) are the cases when the simple structure is used (n∗ = 2).

It is important to point out that the generalized case corresponds to the structure
shown in Figure 15 (i.e., n∗ ≥ 2). Furthermore, as discussed in the previous paragraph,
the results for the generalized IO-DMRAC-PSO case are supported by the results shown
in Table 7, where the best result is achieved with the FO-DMRAC with a relative degree
exactly equal to 2 (n∗ = 2), and with text highlighted in blue.
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Table 7. Jnorm cost function using PSO for IO-DMRAC and FO-DMRAC.

ISE+ISI Jnorm

IO-DMRAC-PSO 3.0767 10.31

FO-DMRAC-PSO 3.014 8.989

Generalized IO-DMRAC-PSO 3.29046 13.5

Finally, Figure 18 shows the boundedness of all auxiliary signals ω of the FO-DMRAC
when n∗ = 2. This is also true for the case when n∗ ≥ 2 is in the state of Lemma 3.
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6. Conclusions

In this paper, we have analyzed and compared two types of adaptive controllers of the
direct type that were applied to an integer order plant using integer and fractional order
adjustment laws, namely, the classic or integer DMRAC (IO-DMRAC) and the FO-DMRAC.
The simulation results allow us to verify the boundedness of all of the signals in the FO
case, as assured by using Lemma 3. Moreover, through simulations, it was possible to show
the advantages of the FO implementation, in particular when the relative degree of the
plant is exactly equal to 2 (n∗ = 2). It was also possible to prove that the auxiliary signals
ω(t) remain bounded without the need of using hypothesis (ii) of Theorem 1, thus relaxing
the stability analysis.

It is promising to say that, when possible, it is useful to decrease the relative degree of
the plant to 2, since the performance is better than in the cases of larger relative degrees,
in which case one is obliged to use the generalized scheme (n* ≥ 2) that is more complex
to implement due to errors and auxiliary blocks. In addition, the fact that the output
signal to be controlled is subject to oscillations and overshoots in the transient period, this
phenomenon does not occur when case of n* = 2 is considered. Finally, it is important to
note, as said before, this is the first time that an FOAC is used in the longitudinal control
of an airplane using fractional-order adaptive laws applied to an integer-order system
(airplane model) without changing the classic structure of MRAC. Finally, the analysis
of asymptotic stability is a subject still pending for future research work in the field of
fractional-order MRAC control systems.
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