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Abstract: Quantum calculus plays a significant role in many different branches such as quantum
physics, hypergeometric series theory, and other physical phenomena. In our paper and using
quantitative calculus, we introduce a new family of normalized analytic functions in the open unit
disk, which relates to both the generalized Mittag-Leffler function and the Jackson differential
operator. By using a differential subordination virtue, we obtain some important properties such as
coefficient bounds and the Fekete-Szeg® problem. Some results that represent special cases of this
family that have been studied before are also highlighted.
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1. Introduction

First, let us assume that A represents a family of analytic functions as the form below

u(m)=n+ Y an*, neD, )
k=2

where D represents the set of all values 7 in the open unit disk 77 € C satisfying || < 1.
The Hadamard product of both functions uq (1) = n + § apyfand up = 5 + OZOJ by 17
k=2 k=2
in A is defined by (see [1])

(uyxu)(n) =n+ Y agben®, n €D.
k=2

For the analytic functions 1y and uy (uy, uy € D), the function u; is called subordinate to
the function up, and it is written uq (1) < ua(#); if we have a function w (Schwarz function),
which is analytic in the open disk D with the conditions w(0) = 0 and |w(y)| < 1,7 € D
satisfies u1(7) = up(w(n)) for all # € D. If the function u; € S (the class of univalent
functions in D), then (cf., e.g., [2,3])

u1(n) < uz(n) < up(0) =up(0) and wug(D) C up(D).
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The Geometric Function Theory (GFT) is an important branch of the field of complex
analysis, which is concerned with the study of many important geometric properties in
complex analysis, which are related to analytic functions and have numerous applications
in different fields, such as analytic number theory, dynamical systems, and fractal calculus.
It also has many applications in special functions and probability distributions as well as in
fuzzy algebra and other fields.

There are many classes of normalized functions which appear simultaneously with
studying GFT, e.g.,

A function u(17) € Abelongs to the class of starlike functions S* if it satisfies

Re <'7”,(’7)> >0 (7eDb),

u(n)

and a function u(#) € A belongs to the class of starlike functions of order v denoted by

S*(v) if it satisfies
i (1)
Re >v cD),
( men) ) (7 €D)

forv(0<v<1).
In addition, a function u(77) € A belongs to the class of convex functions C* if it satisfies

nu’ ()
Re <1+ e ) >0 (peD),

and a function u(7) € A belongs to the class of convex functions of order v denoted by
C*(v) if it satisfies

(1)
Re<1+ () ) >v  (yeDh),

forsomev (0 <v <1).

For more details of the classes §*, S*(v), C* and C*(v), see, e.g., Robertson [4], Bul-
boaca [2], Miller and Mocanu [5] and Duren [3].

Moreover, a function u(#) € A is said to be in the class C if it satisfies

Re (”(7;7)) >0 (neDh),

and u(n) € Abelongs to the class C(v) if it satisfies

Re (u%}y)) >v  (neb),

for v (0 < v < 1), the classes C and C(v) were studied by MacGregor [6] and Ezrohi [7],
respectively.
Furthermore, a function u(1) € A belongs to the class B if it satisfies

Re (u,(n)) >0 (geDb),
and the function u(%) € A belongs to the class B(v) if it satisfies
Re (u/(;y)) >v (neb),

for some v (0 < v < 1). The class B was studied by Goel [8] and Yamaguchi [9]. In addition,
the class B(v) was studied by Chen [10,11] and Goel [12]; see also [13].
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Furthermore, let

N = {‘JB SP(n) = Y bey, bo =1, ReB(y) >0 (by =1, € D)},
k=0

denote all the Carathéodory functions (see [14,15]).

Quantum calculus plays a significant role in the quantum physics and hypergeometric
series theory as well as other physical phenomena. The applications of g-differentiation
and also g-integration were defined and introduced by Jackson [16,17]; see also [18-24].

The Mittag-Leffler function E,(77) (7 € C) was obtained by Mittag-Leffler [25,26]
which in the form

=] k

_ 7
Eu(n) = k;] mr

(e € C; Re(a) > 0).
Wiman [27] introduced Wim'’s function E, (77) (17 € C) in the form

00 k

_ Ui
Eyp(n) = I;) T(ak 1 p)’

where a and B are complex values in C, Re(a) > 0 and Re(p) > 0.
Prabhakar [28] introduced the function Ei, (1) (7 € C) in the form

RN ON
Eepln) = kgo r(zxkiﬁ) K

(a,B,6 € C; Re(a) > 0; Re(B) > 0; Re(s) >0),
where (0),, is the Pochhammer symbol:

I'(6+n) 1, n=>0
@ = =175 {5((5+1)...(5+n1)' @

For the Mittag-Leffler function and related articles, see for example [29-34].
Raina’s function ([35]; see also [18]) is defined by

v Nk 4
NHu,b(n) _k;)l”(ak—i—b) n,n E]D)/

where a and b are complex values in C, Re(a) > 0 and Re(b) > 0 and the sequence
{N (k) }gen, is bounded (N (k) € C).

Remark 1.
1.  IfN(k) =1 (k > 0), then Raina’s function gives the Mittag—Leffler function.

2. If (n)y is the well-known Pochhammer symbol, N (k) = (azlégb)k,a =1 andb =1, then
k

Raina’s function reduces to the following Gaussian hypergeometric function:

o @) o
oFi(a,b;c;n) = ];) Or ThiD) n € D.

Definition 1 ([16]). The Jackson derivative of u(n) is defined as follows

oot = U, o<1 <),
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Therefore,

11k
v, (7") :ﬁ’?k ', ke Nu{o},

when u(7) has the form (1), then we have

@WMFﬂ+§%MM“I
=2

where L
1-1
klj .= ——.
K= 51—

In addition, note that

k=0 and lim (3;) u(y) =u'(y),
=1~

where « is a constant in C.
Whens € C, then the g-shifted factorial denoted by (s; q). is defined as follows (see [16])

7—1

(si9)e =1 (1 - qfs), TeN={12..}, (sq)0=1 3)

j=0

By using (3), we can formulate g-shifted gamma function as follows:

I(s+71)(1—¢)"

@0). = G wem)
where )
iNe(l—q) °
Iy(s) = ”’)Gs(;q):) (0<q<1)
and

(9w =[1(1-'5)-
=0
In geometric function theory, there are many famous operators dealing with normal-
ized functions, e.g.,
Let D* be a differential operator D* : A — A defined as follows

mww=u_awwww (a>-1),

D* represents Ruscheweyh derivatives as defined by Ruscheweyh [36], which can be in

the form ( D
R
Du(n) =n+ ). ¢

Tl ag ;7k/ ne D/ (“ > _1)/
k=2 :

(k—=1)
where («); denotes the Pochhammer symbol defined by (2).
In addition, for u(y) € A and 5 € D, the following integral operators A(u), L(u) and

Ly (u) are defined as

7
u

A )= [ a,

0

1
L) () = [ ut)
0
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and

1
L) () = =22 [ w0V (> ).
T 0
The operators A(u) and L(u) are the Alexander operator and Libera operator, which were
introduced by Alexander [37] and Libera [38], respectively. L, (1) represents a generalized
Bernardi operator; the operator L, (1) when v € N = {1,2,...} was introduced by
Bernardi [39].
Moreover, Jung et al. [40] introduced the following integral operator:

2(7
nT(0)

n
1 () () = /(1og(¥))H u(t) dt (>0, u(n) €A),
0

they showed that
(o] 2 o
17(u) (1) =1 + ) () a1y
o \k+1

The operator I9(u) is closely related to multiplier transformations studied earlier by
Flett [41].

Furthermore, denote by J;;, (1) : A — A the Srivastava—Attiya operator, which is
introduced by Srivastava and Attiya [42]; see also ([43]) defined by

Jsp () (1) = Gop(n) = (L+b)*[@(n,5,b) =b~*] xu(y) (1 €D),

where ¢(7,s, b) is the general Hurwitz-Lerch-Zeta function defined by (cf., e.g., ([44],
p- 121 et seq.)) and

(beC\Zy, Zy =2 U{0}={0, -1, =2,... },s€C, n D)
For NV(0) # 0, the normalized function yrL;  (see [18]) is defined by

oy NE=DI)
NLap(n) =1+ k:ZZ NOT(d(k—1)+b)

n, neD. (4)

If N(k) = (k+1)"", r € R is a non-negative value, 2 = 0 and b = 1; then, the
operator (4) is the integral operator defined by Séldgean (Sidldgean integral operator of
order r) (see [45]).

Now, by using the g-gamma function, the class of normalized functions ; x L, (77) is
defined as follows:

oNLap(n) =1+ Y @ld,b,N,q)n, 1 €D,
k=2

where

N (k= 1)Ty(b)
N, (d(k—1) +b)’

®(d,b,N,q) := ®)

with Rea > 0,Reb > 0and N (0) # 0.
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Considering the quantum operator 0,4, Attiya et al. [18] introduced the g-Raina differ-
ential operator » Ly : A — Aby

NLY(a,b)u(n) = u(y) *on Lap(n),
LY@, B)uln) = 13g (L (e, B)uln) ),
N L2 (@ B)uln) = wLY(a,b) (wLY(a,b)u(), ©)

WL (a,b)u(n) = Nc;(a,b)(Nﬁg—l(a,b)u(q)), uweA keN k>2.
Employing the above definition and if u € A, which is in the form (1), then we have

N(k—l)l“q(b)
0)T4(d(k—1) +b)

NLG(a,b)u(n) =1+ Z ank, a # 0.

Analogously to yrL], we add the significant parameter « (« % 0) for a new operator
£g’ (w,a,b,a) as follows:

., F—-1\"  N(k—1)T,(b)
Lol e, b "“Z< : )N<0>rq<d<k—q1>+b>”k’7k"”AO 7

(
=5+ i (W) @y (d, b, N, q)aen", n €D,

where @y (d,b, N, q) is given by (5)

Remark 2.

(i)  Putting w =1, in (7), we obtain the g-Raina differential operator defined in [18].

(ii)) Puttinga =1and N'(k—1) =1 (k > 1), (7), we obtain the g-differential operator of [22].

(iii) Puttinga =1,d =0and N'(k—1) =1 (k > 1) in (7), we obtain the Sdligean g-differential
operator defined in [46].

(iv) Puttinga =1, N'(k—1) = 1and q = 1in (7), we obtain the class studied by Bansal and
Prajapat [47] (see also [48]).

Definition 2. Let us define the convex analytic function Q); g in D as follows:

L =0
Qi) = MG, fi=1
F2(j,9), f0<j<1,

3
Fs(,9), ifj>1,

where S € C\ {0}, and the following functions are defined by (see [49])

F1(,8)(n) =1+ 2\y(1 g(itg)>2’
12_%jZ sinh? <7ZT arccos(j) arctanh(/7 )) /

Fa(i9)m) =1+ 17—+ 53— S‘“(zy(t) /0 V1I-221- (ét)2>'
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o=/t . tY'(t)
=1 Vir’ t € (0,1), taken with t = cosh( o)

Legendre’s complete elliptic integral from the first kind and Y'(t) is the complementary integral of
Legendre’s function Y (t), which satisfies (Y'(£))* = 1 — (Y(t))*.

where £(1) ), Y(t) is the well-known

Now, we define and introduce the class Sq”é («,d, b) of analytic functions as follows:

Definition 3. The function u € A is called to be in the class S;’é(zx, d, b) if we have the following
subordination relation

zx(ﬁg’H(N,d, b,a)u(;y))
L3 (., d, b, a)u()

where erc\,\ in the form (see also [18,49,50])

+1—zx-<0]~,<3(;7), & #0

Qis(n) =1+mn+727°+..., €D, 8)

is given by Definition 2.

. e _ . n,j . . . n,j
Definition 4. Whenq — 17, then the function u € Sq,%(zx, d, b) is said to be in the class Sy (a,d,b).

Lemma 1 ([51]). Let G(n) = E gx1* be a univalent convex function in ) satisfying the inequality
k=0

H(n) = Y e < G(1p).
k=0
Then, |hy| < |g1| forall k > 1.

Lemma2 ([52]). LetP(y) =1+ of: pinf* be analytic in D that satisfies Re P(17) > 0 (7 € D). Then,
k=1
‘pz = Npﬂ <2max{1;|2X - 1]}, R e C.

2. Estimation Coefficient for the Class Sg'é (a,d,b)

The following theorem is related to functions in the class Sg’j (a,d,b)

Theorem 1. If u is in the class Sg’j (w,d,b), then

£, d,b, )uly) < exp (/0’7 de>

where w is a Schwarz function where w(0) = 0 and also, w(y)| < 1, y € D. Furthermore,

for || := o0 < 1, we obtain
10:q(—0)—1 10 1
N

Proof. Since u € Sg’j(lx, d,b), then

£3 (v, d,b,a)u(n)
Ui

(s dboutm) 1 o) -1
— o= D.
Cilvd,bauly) 7 N ’e ®
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Integrating both sides of (9), it follows that

1 Qg —1
L3 (n,d,b,a)u(n) < 17exp (/ Qial0) ~1 dx>,
0 X
which is equivalent to

L%z, d, b, a)u Qg -1
H% Ju(n) < oxp ( /’7 js(x) dx)-
7 0 X

Since

is(—elyl) < Re (Qg(w(ne))) < Qjs(elnl),
this yields

10j5(—aly]) —1 1Re(Qjs(w(n0))) —1 1Qjg(elyl) —1
R T . do< | == -
e | . o< |,

Therefore, we obtain

10):a(— -1
/ i, (—aln)) do < log
0

¢

Ly (w,d,b,a)u(i) </10<‘(elf7|) p
n —Jo

L5 (v d, b, a)u(y)
U

10jg(-0) 1
ARV P BV
o4

10j5(0) -1
< e ahta— P
o)

Remark 3. Theorem 1 represents a generalization of results of some authors, e.g.,

1. Putting « =1, in Theorem 1, we have the result due to Attiya et al. ([18], Theorem 6).

2. Puttingw = 1and N (k) = 1 forall k > 1, in Theorem 1, we have the result due to Noor and
Razzague ([22], Theorem 6).

3. Puttinga =1, N (k) =1(k>1),d =0and b =1, then in Theorem 1, we have the result
due to Hussain et al. ([53], Theorem 3.1).

Theorem 2. If u belongs to the class S:;’é(oc, d,b), then

las| < n|’h| , and
qE +1"®y(d, b, N, q)
k—2
alk—1][1+ L5 "\<I> (d,b, N, q) j=1 q[f]q]H%

where & # 0 and 7yq is defined by (8).

Proof. Letting

a(ﬁg“ (v, d, b,(x)u(n))

+1—a
Li(n,d,b,a)u(r)

P(y) =

therefore,
oy L3 (,d,b,a)u(y) )
= T (v, d, b a)u(y)

(7 € D),
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letting P(n) =1+ OZO; pen¥, which gives
k=1

oy (L4 (v d, b, )u(n)) = (L3, d,ba)uln)) P(y), 1 €D,
therefore, we have

N+ i <W> K]y @ (d, b, N, q)agn*

= <’7 + i (W) <I>k(d,b,/\/,q)akf7k> <1 + i Pw">

k=1

ol o] (e -1 n
=Y pi Y pen* Y <o¢)> O (d, b, N, q)ar*. (po=1)

44

[eS) k—1 +1 4 -1 n
=n+) <Pk1 + Z([] Iy + (& )> Dj1(d, b, N, q) aj ij1>’7k-

By matching the coefficients of ¥ of the equality mentioned above, we obtain

[K]q + (& —

([k]q*(“l 1)>n<l>k(d, b, N, q)ay

® )> [k]q q)k(dr b;N, q)ak = pr1+ (

+kZ:2([j+1]q+(“

o

1 n
)> (Dj+l(drb1N/q) ﬂ]'+] pk—j—]r
j=1

which gives

r— 1)\ " k=2 /1
(B0 1, - Db ggac = per+ L (I

(a—1)\"
> D@iv1(d,b,N,q) aj1 pr—j-1.
=1

Accordingly, we obtain
1 k—1 U]q‘f'(“—l) n
= [Kg+(a—1) <Z(u¢> @;(d,b,N,q) aj pr—j |,

for some calculation implies that

aj =

1 g+ -1\ NG-DLB)
(7["“*(“*1))"([k]q — 1)®(d, b, N, ) ];( o ) NO)T,(d(j— 1) +b) 1 Per

o

In view of Lemma 1, since |pi| < |71/, we obtain

lag| < 71| = U]q"‘("‘_l) ! N(j_l)rq(b) lai]
U D g, - D@, A« | NOL@G- 5
For k = 2, we have
71 LIl +@=1)"  N(G—1)Ty(0b)

lag| <

Nt @b N =l e NG -1 +5) Y

_ 7l
g1+ 1" @y(d, b, N,q)’
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while if k = 3, and using the above inequality, then

lag| < m”}ﬂ <1+ m‘q ,1)
al2le| 1+ e " s, b ) \ Al

For k > 3, the following inequality is valid by mathematical induction

k=2
T B T
gl =11+ L5 "y (4,6, A, ) =T\ g1+ 22|

lag| <

which completes our proof. O

For special cases of Theorem 2, we obtain the following corollaries
Corollary 1 ([18], Theorem 2). Ifu € S;'é(l, d,b), then we have

|71
217 ([2]g —1)@2(d, b, N, q)’

lag| < and

|’71| |P1\
9 < T (, — D@, b, A, ) H( ]+11q—1>"‘23

with 1 given by (8).
Corollary 2 ([22], Theorem 8). Ifu € S;'é(l, d,b) and N'(k) =1 forall k > 1, then

|71]
2]1®2(d,b,1,9) ([2]; — 1)

|71] — |71
9 < (@, 6, 1, 9) ([, 1) H(”wu 1) k=3

with vy, given by (8).

lag| < and

Corollary 3 ([53], Theorem 3.2). Ifu € S;’é(l, 0,1) and N'(k) = 1 forall k > 1, then

|’Yl|

[2]3%(0, 1,1,9) ([2] — 1) ,and

lag| <

|11 |11
S 0,1, 1, ) |y — 1) H( ]+1]q—1)"‘23'

where 7y is given by (8).

3. Fekete-Szegt Problem Associated with Class S;lé (a,d,b)

In the following theorem, we will give estimation for the Fekete-Szegé problem for
the class S 5(a,d,b).

nj
Theorem 3. Ifu € qu(oc, d,b), then

_wal| < 71l
|03 = pa3| < o7 ®5(d, b, N, q)

max{1; [2¥ — 1|},
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where € C, and

(10)

2Td5(d, b, N, q) u v
T = ‘Ij d, b,N, = - 12
( 7 M <T<I>3(d, bNg) (14 1) ®2(d,b, N, q)
ith
“ 8y~ (1-)\"
T= (=) (P )
and

where 7y, and 7y, defined by (8).

Proof. From the condition u € S;’é(vc, d,b), we have

lX(E;Hrl(N,d,b,DC)M(U))
Eg(/\f/ d,b, “)u(ﬂ)

where w is a Schwarz function (w(0) = 0, w(n)| < 1).
Let p € P be defined as follows

_ 1+w(y)

+1-a=05(w(y)),

_ 2
PO =g 5qy = 1Pt €D,

which implies

1 %
w(;y)zglrerZ(pz—Zl)anr..., nebh

and

2 2
_ T1P1 TPy 1 p1

Therefore, we obtain

a(ﬁg“(/\/,d,b,a)u(iy))
i 4 6,00u00)

144

+ 3]g—1 " 2
( (Blg — 1) (B 1) "@s(d,b, N, )as — (a1 + D' 93,0, N, ) ) 3 )
thus, the following coefficients can be determined as follows:

Y1P1
g[(1+ 1)@, (d, b, N, q)

ay =

+l1—a=1+ (qaz(1+ q)n ¢2(d,b,/\/',q))17

2

ne+...,n €D.

”?+...,neD,

1 Y1p2 5 ’Y% 71 ’Y%
= - T + T 4
3 T®3(d, b, N,q)([3]; — 1) ( 2 +P1< 44

1 Y1p2
T _ 2
o = P Tcp3(d,b,/\/,q)< 3o+

— T1P1 2.
q[(1+ 1) ®2(d,b, N, q)
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1
¥i=¥(ab M) = 5|1~ Z

A simple computation yields

o2 s w2
as IP‘ZZ - 2T CI>3(d, b,N,q) (pZ Tpl)’

where 1 € C and Y is defined by (10). Therefore, by using Lemma 2, we obtain the
desired result. [

Theorem 3 generalizes some of the previous results, e.g.,

nj
Corollary 4 ([18], Theorem 3). Ifu € Sq,%(l, d,b), then

an — az S |p1| maX{1,|2\IJ*1|}/
a5 = a3 2[3]1d3(a, b, M, q)([3]; — 1)

where € C, and

. , an
01 2], -1 2®;(a,b, M, q) ([2}5’([% - 1)>2

with py and py defined by (8).

Corollary 5 ([22], Theorem 10). Ifu € S;'(i\(l, d,b) with N'(k) =1 forall k > 1, then

|ag — ya3| < ol

= 23] ds(d, b, 1,q) (18], — 1) max{1; [2¥ — 1]},

where p € C, and

‘T’::‘I’(d,b,l,q)zl TR Bl (Bl — 1)
2 2CI>2(d,b,1,q)<[2]g([2]q — 1))2

g4 2] —
with 1 and vy, given by (8).

nj ; —
Corollary 6 ([53], Theorem 3.3). Ifu € Sq,%(l, 0,1) with N'(k) =1 for all k > 1, then

lag — pa3| < il max{1; [2¥ — 1},

~ 2[3]503(0,1,1,9)([3]; - 1)

where p € C, and

‘?::\P(O;l;l;‘ﬂ:% -2, . 1_1_¢ 817 ([3]s — 1) i
2], zq>2(0,1,1,q)<[2]g([2]q—1))

T

with 1 and vy, defined by (8).

The following result is related to the sufficient condition of the functions belonging to
the class S‘;’] (w,d,b).

R
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Theorem 4. Let u € A be of the form (1). If

S : kg =1 \"

(K = )G +1) +13]) el b, Al (L 1) ol <191,
k=2

then u € S;’é.(zx, d,n).

Proof. Obviously, we have

g (L3 (v, b, )u(i))
mﬁg(d,b u(n)

)
g (@, b)uln)) = L300, db,a)uly)
B Ly (@, B)u(r)

-1

5 (K~ 1) (S5 1) 00, b, N, ey
_ k=2
+ % (M 1) @y (d, b, N gt
k=2
2| (K~ 1) (B 1) 00, b, N, ) o
s [klg—1 g el
1= & (Fa +1) @@, b, N, 9)llax)
k=2
and from the assumption of the theorem
| (kg —1 )"
1- L 4+ 1) O d,bN,qg)|lag] > 0.
r (M 40,0, A )l
Since
(L dbut) N[ (1 (a( e dbautn)
i PR R _
S\ Li(v.d b,a)u(n) S L (w,d, b a)u(y)
j | (ma(ntq@butn) +‘ ’ﬂbq(mﬁl,’(d,b)u(n)) 1
R En(/\frdrb/“)u(ﬂ) S Cg(N/d/b/“)u(ﬂ)
| (malutg@piucn) | |re(£hd boutn) - £ dbeuty)
ST\ Loy d, b a)u(y) IR] L, d, b, a)u(r)
i —1) (B +1) 0cd b N ) a]
< T3] = <1 n7eD,
zr( Bt 1) @uld, b, N g) o

. n,j
we obtain u € Sq/%(a, dnb). O
We can see Theorem 4 generalizes other previously obtained results, e.g.,

Corollary 7 ([18], Theorem 4). Let u € A be in the form (1). If

[eo)

k;(([k]q = 1) (+1) + lol) [@e(a,b, M, g)|[n]glax| < |pl,
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References

then h € S} (1,d,b).

Corollary 8 ([22], Theorem 12). Let u € A be of the form (1). If

ki(([k}q —1)(+1) + [S])|0(d, b, 1,9)|[k]g |ax| < [S],
=2

T

DT A

then

That is, u € S‘:’é(rx, d,b), when N'(k) =1 forall k > 1.

Corollary 9 ([53], Theorem 3.4). Let u € A be of the form (1). If
> (g = 1) G+ 1) + IS |2x(0, 1,1, q) | (K] lax| <133,
k=2

then
g (L3(0,)u(y))
£3(0,Du(y)

That is, u € S;’é(O,l), when N (k) =1 forall k > 1.

< Q;5(n)-

4. Conclusions
By using a Jackson differential operator and generalized Mittag-Leffler function, we in-
troduced the class S "’é («,d, b) of analytic functions in the unit disk. The coefficient bounds

and the Fekete-Szeg6 problem have been obtained by using differential subordination in
the geometric function theorem. A sufficient condition for the coefficients of the functions

belonging to S 5(«,d, b) has been considered. Furthermore, we highlighted some special
results of cases for the class S;]g(zx, d,b), which have been studied before. In the future
work, using other classes of analytic functions which are associated with operators in Geo-

metric Function Theory (GFT), the authors may study various new geometric properties
and their applications in GFT.
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