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Abstract: Determining the sharp bounds for coefficient-related problems that appear in the Taylor–
Maclaurin series of univalent functions is one of the most difficult aspects of studying geometric
function theory. The purpose of this article is to establish the sharp bounds for a variety of problems,
such as the first three initial coefficient problems, the Zalcman inequalities, the Fekete–Szegö type
results, and the second-order Hankel determinant for families of Sakaguchi-type functions related to
the cardioid-shaped domain. Further, we study the logarithmic coefficients for both of these classes.
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1. Preliminary Concepts

In order to effectively comprehend the core principle that underlies our important
findings, we must analyze some essential function theory literature. For this, we use the
symbols Ud and A, which represent, respectively, the open unit disc and the analytic (or
holomorphic) functions’ family normalized by f (0) = f ′(0)− 1 = 0. Particularly, if f ∈ A,
then it can be written in terms of the series expansion:

f (z) = z +
∞

∑
l=2

alzl , (z ∈ Ud). (1)

Moreover, remember that by notation S , we denote the family of univalent functions
with series expansion (1). This family was first taken into account by Köebe in 1907.
Aleman and Constantin [1] recently reported on a stunning relationship between fluid
dynamics and univalent function theory. In fact, they presented a straightforward technique
that demonstrates how to employ a univalent harmonic map to find explicit solutions to
incompressible two-dimensional Euler equations. It has many applications in differents
fields of applied sciences such as fluid dynamics, modern mathematical physics, nonlinear
integrable system theory, and the theory of partial differential equations.

The “Bieberbach conjecture”, which is the most well-known outcome of function
theory, was contributed by Bieberbach [2] in 1916. This hypothesis states that if f in S ,
then |an| ≤ n for every n ≥ 2. Furthermore, he demonstrated this result for n = 2. It is
evident that a lot of well-regarded researchers have employed a range of techniques to
address this issue. This hypothesis was settled for n = 3 by Schaeffer and Spencer [3] and
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also by Löwner [4] utilizing the variational method and the Löwner differential equation,
respectively. Later, Jenkins [5] proved the same coefficient inequality |a3| ≤ 3 with the
use of quadratic differentials. Garabedian and Schiffer [6] used the variational technique
to determine that |a4| ≤ 4. Pederson and Schiffer [7] calculated that |a5| ≤ 5 by using
the Garabedian–Schiffer inequality ([8], p. 108). Moreover, by using Ozawa [9] and the
Grunsky inequality ([8], p. 60), Pederson [10] proved that |a6| ≤ 6. Numerous scholars
have tried for a long time to prove this conjecture for n ≥ 7, but no one has succeeded.
Utilizing hypergeometric functions, de-Branges [11] finally proved this conjecture for every
n ≥ 2 in 1985. Zalcman proposed the inequality

∣∣a2
n − a2n−1

∣∣ ≤ (n− 1)2 with n ≥ 2
for f ∈ S , in 1960, as a way of establishing the Bieberbach conjecture. Consequently,
there have been several works [12–14] on the Zalcman conjecture and its generalized
version

∣∣λa2
n − a2n−1

∣∣ ≤ λn2 − 2n + 1 (λ ≥ 0) for various subfamilies of the set S , but
this conjecture was open for many years. Finally, utilizing the holomorphic homotopy of
univalent functions, Krushkal first proved this conjecture in [15] for n ≤ 6 and then settled
it in an unpublished article [16] for all n ≥ 2. Later in 1999, Ma [17] presented a generalized
Zalcman conjecture for f ∈ S that

|anam − an+m−1| ≤ (n− 1)(m− 1) for n ≥ 2, m ≥ 2,

and he showed it for the family S∗, but for the class S , it is still an unsolved problem.
The following determinant Dλ,n( f ) with n, λ ∈ N = {1, 2, . . .}, known as the Hankel

determinant, was studied by Pommerenke [18,19] for the function f ∈ S

Dλ,n( f ) =

∣∣∣∣∣∣∣∣∣
an an+1 . . . an+λ−1
an+1 an+2 . . . an+λ
...

... . . .
...

an+λ−1 an+λ . . . an+2λ−2

∣∣∣∣∣∣∣∣∣.
This determinant is important for many different studies, including those of power

series with integral coefficients by Polya ([20], p. 323) and Cantor [21] and singularities by
Hadamard ([20], 329) and Edrei [22], among many others.

Specifically, the following notations are used to identify the first- and second-order
Hankel determinants, respectively:

D2,1( f ) =

∣∣∣∣ 1 a2
a2 a3

∣∣∣∣ = a3 − a2
2,

D2,2( f ) =

∣∣∣∣ a2 a3
a3 a4

∣∣∣∣ = a2a4 − a2
3. (2)

In the literature, there are few articles in which the bounds of the Hankel determinant
were studied for the function f belonging to the family S . The best-known sharp inequality
for the function f ∈ S is given by |D2,n( f )| ≤ η, where η is an absolute constant, which
was proven by Hayman [23]. Furthermore, for the same family S , it was found in [24]
that |D2,2( f )| ≤ η for 1 ≤ η ≤ 11/3. After these results, it was and still is a challenging
problem for researchers to obtain the sharp bounds of the Hankel determinants for a specific
class of functions. The first article [25] in which the authors successfully determined the
sharp estimates of |D2,2( f )| for the two fundemental subfamilies of the set S of univalent
functions by using the concepts of the Caratheodory functions was published in 2007.
These two determinants are well-studied in the literature [26–29] for diverse subfamilies
of univalent functions; however, there are very few published papers [30,31], where the
determinant’s sharp bounds are determined. The interested readers may also appreciate
the work of authors [32–36] in which they proved sharp bounds of the third-order Hankel
determinant for some novel subfamilies of univalent functions.
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Between 1916 and 1985, researchers have tried to solve this problem, and as a re-
sult, several interesting subfamilies of the class S have been introduced. Some of the
fundamental families are defined as follows:

S∗ =

{
f ∈ S : Re

(
z f ′(z)

f (z)

)
> 0, (z ∈ Ud)

}
,

K =

{
f ∈ S : Re

(
(z f ′(z))′

f ′(z)

)
> 0, (z ∈ Ud)

}
,

C =

{
f ∈ S : Re

(
z f ′(z)
h(z)

)
> 0 with h ∈ S∗ (z ∈ Ud)

}
.

Using the familiar idea of subordination, Ma [37] contributed the unified subclass
of the family S , shown below, by assuming that the function φ in Ud is univalent with
φ′(0) > 0 and Reφ > 0. Moreover, he claimed that the area φ(Ud) is symmetric along the
real line axis and has a star-shaped form about the point φ(0) = 1.

S∗(φ) =
{

f ∈ S :
z f ′(z)

f (z)
≺ φ(z), (z ∈ Ud)

}
.

He concentrated on some results, such as the theorem of covering, growth, and
distortion. Several subfamilies of the collection S have been looked at as specific options for
the class S∗(φ) throughout the past few years. In the study described above, the following
families are particularly noteworthy.

(i). S∗L ≡ S∗(
√

1 + z) [38], S∗exp ≡ S∗(exp(z)) [39], S∗tanh ≡ S
∗(1 + tanh(z)) [40],

(ii). S∗cos ≡ S∗(cos(z)) [41], S∗pet ≡ S∗
(

1 + sinh−1 z
)

[42], S∗cosh ≡ S
∗(cosh(z)) [43],

(iii). S∗sin ≡ S∗(1 + sin(z)) [44], S∗car ≡ S∗
(

1 + z + 1
2 z2
)

[45],

(iv). S∗(n−1)L ≡ S
∗(Ψn−1(z)) [46] with Ψn−1(z) = 1 + n

n+1 z + 1
n+1 zn for n ≥ 2.

By proposing the family S∗s of starlike functions concerning symmetric points in 1959,
Sakaguchi [47] generalized the family S∗ of starlike functions. This idea was then exploited
by Das and Singh [48] to develop the family Ks of convex functions with symmetric points
in 1977. In both of these papers, they gave the following analytic descriptions of these
classes:

S∗s =

{
g ∈ S : Re

2z f ′(z)
f (z)− f (−z)

> 0, (z ∈ Ud)

}
,

Ks =

{
g ∈ S : Re

2(z f ′(z))′

( f (z)− f (−z))′
> 0, (z ∈ Ud)

}
.

In the same paper, Sakaguchi also claimed that the class S∗s is a subfamily of the set C
of close-to-convex functions and that it contains the families of convex and odd starlike
functions with regard to the origin. Following that, several mathematicians introduced
numerous new univalent function subfamilies with respect to symmetric points and studied
coefficient-type problems; see a few of them in [49–52].

Now, with the use of the above facts, we now define the families SS∗car and SKcar by
the following representations:

SS∗car =

{
f ∈ S :

2z f ′(z)
f (z)− f (−z)

≺ ψcar(z) (z ∈ Ud)

}
, (3)

and

SKcar =

{
f ∈ S :

2(z f ′(z))′

( f (z)− f (−z))′
≺ ψcar(z) (z ∈ Ud)

}
, (4)
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with
ψcar(z) = 1 + z +

1
2

z2.

The objective of this article is to calculate the sharp limits of the initial coefficients
an with n = 2, 3, 4, the Zalcman, Fekete–Szegö, and Krushkal inequalities, as well as the
determinant |D2,2( f )| for the families SS∗car and SKcar using a novel technique. The sharp
bounds of the logarithmic coefficients for these newly established classes are also a subject
of investigation in the current paper.

2. Set of Lemmas

Let B0 be the family of Schwarz functions. Then, the function w ∈ B0 may be
expressed as a power series

w(z) =
∞

∑
n=1

wnzn. (5)

The subsequent Schwarz function lemmas are required to prove our primary findings.

Lemma 1 ([53]). Let w ∈ B0 have the series expansion form (5). Then, we have∣∣∣w3 + σw1w2 + ςw3
1

∣∣∣ ≤ 1,

where (σ, ς) ∈ D1 ∪D2, with

D1 =

{
|σ| ≤ 1

2
, − 1 ≤ ς ≤ 1

}
,

D2 =

{
1
2
≤ |σ| ≤ 2,

4
27

(1 + |σ|)3 − (1 + |σ|) ≤ ς ≤ 1
}

.

Lemma 2 ([54]). If w ∈ B0 is in the form (5), then

|w2| ≤ 1− |w1|2, (6)

|wn| ≤ 1, n ≥ 1. (7)

Additionally, inequality (6) may be made better by∣∣∣w2 + ηw2
1

∣∣∣ ≤ max{1, |η|}, η ∈ C. (8)

Lemma 3 ([55]). If w ∈ B0 is in the form (5), then

|w3| ≤ 1− |w1|2 −
|w2|2

1 + |w1|
, (9)

|w4| ≤ 1− |w1|2 − |w2|2. (10)

Lemma 4 ([56]). If w ∈ B0 is in the form (5), then∣∣∣w1w3 − w2
2

∣∣∣ ≤ 1− |w1|2.

Lemma 5 ([57]). If w ∈ B0 is in the form (5) and γ ∈ C, then∣∣∣w4 + 2w1w3 + ηw2
2 + (1 + 2η)w2

1w2 + ηw4
1

∣∣∣ ≤ max{1, |η|}, (11)

and ∣∣∣w4 + (1 + η)w1w3 + w2
2 + (1 + 2η)w2

1w2 + ηw4
1

∣∣∣ ≤ max{1, |η|}. (12)
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3. Coefficient Bounds for SS∗car

We start with the coefficient bounds of f ∈ SS∗car.

Theorem 1. Let f ∈ SS∗car have the series expansion form (1). Then,

|a2| ≤
1
2

, |a3| ≤
1
2

, |a4| ≤
1
4

.

All these bounds are sharp.

Proof. Assume that f ∈ SS∗car. From the definition, it follows that there exists a Schwarz
function w, such that

2z f ′(z)
f (z)− f (−z)

= ψcar(w(z)). (13)

Using (1), we achieve

2z f ′(z)
f (z)− f (−z)

:= 1 + 2a2z + 2a3z2 + (4a4 − 2a2a3)z3 +
(

4a5 − 2a2
3

)
z4 + · · · . (14)

Let
w(z) = w1z + w2z2 + w3z3 + w4z4 + · · · . (15)

By simple calculation and applying the series representation of (15), we obtain

ψcar(w(z)) = 1 + w1z +
(

w2 +
1
2

w2
1

)
z2 + (w3 + w1w2)z3

+

(
w1w3 + w4 +

1
2

w2
2

)
z4 + · · · . (16)

Now, by comparing (14) and (16), we achieve

a2 =
1
2

w1, (17)

a3 =
1
2

w2 +
1
4

w2
1, (18)

a4 =
1
4

w3 +
3
8

w1w2 +
1

16
w3

1, (19)

a5 =
1
4

w1w3 +
1
4

w4 +
1
4

w2
2 +

1
32

w4
1 +

1
8

w2
1w2. (20)

Applying Lemma 2 to both (17) and (18), we obtain

|a2| ≤
1
2

and |a3| ≤
1
2

.

Rearranging (19), we have

|a4| =
1
4

∣∣∣∣w3 +
3
2

w1w2 +
1
4

w3
1

∣∣∣∣.
By using the triangle inequality and Lemma 1 with σ = 3

2 and ς = 1
4 , we obtain

|a4| ≤
1
4

.
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The bounds on the estimation of |a2|, |a3|, and |a4| are the best possible by using,
respectively, the following extremal functions

2z f ′(z)
f (z)− f (−z)

= 1 + z +
1
2

z2, (21)

2z f ′(z)
f (z)− f (−z)

= 1 + z2 +
1
2

z4, (22)

2z f ′(z)
f (z)− f (−z)

= 1 + z3 +
1
2

z6. (23)

Theorem 2. Let f ∈ SS∗car. Then,∣∣∣a3 − λa2
2

∣∣∣ ≤ max
{

1
2

,
∣∣∣∣1− λ

4

∣∣∣∣}.

The above-stated result is the best one.

Proof. From (17) and (18), we have∣∣∣a3 − λa2
2

∣∣∣ =
1
2

∣∣∣∣w2 +
1
2

w2
1 −

1
2

λw2
1

∣∣∣∣,
=

1
2

∣∣∣∣w2 +

(
1− λ

2

)
w2

1

∣∣∣∣.
Applying the triangle inequality and Lemma 2, we obtain∣∣∣a3 − λa2

2

∣∣∣ ≤ max
{

1
2

,
∣∣∣∣1− λ

4

∣∣∣∣}.

The obtained bound is sharp by considering w(z) = z2.

After putting λ = 1 into Theorem 2, we obtain the following corollary.

Corollary 1. Let f ∈ SS∗car. Then, ∣∣∣a3 − a2
2

∣∣∣ ≤ 1
2

.

The equality is obtained by the extremal function provided by (22).

Next, we provide the bounds of the Zalcman inequalities for f ∈ SS∗car.

Theorem 3. Let f ∈ SS∗car have the series expansion form (1). Then,

|a4 − a2a3| ≤
1
4

, (24)

and ∣∣∣a5 − a2
3

∣∣∣ ≤ 1
4

. (25)

Both the inequalities (24) and (25) are sharp.

Proof. Utilizing (17)–(19), we obtain

|a4 − a2a3| =
1
4

∣∣∣∣w3 +
1
2

w1w2 −
1
4

w3
1

∣∣∣∣;
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so, by taking σ = 1
2 and ς = − 1

4 in Lemma 1, it yields

|a4 − a2a3| ≤
1
4

.

To estimate d5 − d2
3, we write this expression as follows:∣∣∣a5 − a2

3

∣∣∣ =
1
4

∣∣∣∣w4 + w1w3 −
1
2

w2
1w2 −

1
8

w4
1

∣∣∣∣
=

1
4

∣∣∣∣12
(

w4 + 2w1w3 −
1
2

w2
2 −

1
2

w4
1

)
+

1
2

(
w4 +

1
4

w4
1 − w2

1w2 +
1
2

w2
2

)∣∣∣∣
≤ 1

8

∣∣∣∣w4 + 2w1w3 −
1
2

w2
2 −

1
2

w4
1

∣∣∣∣+ 1
8

∣∣∣∣w4 +
1
4

w4
1 − w2

1w2 +
1
2

w2
2

∣∣∣∣
=

1
8

U1 +
1
8

U2,

where

U1 =

∣∣∣∣w4 + 2w1w3 −
1
2

w2
2 −

1
2

w4
1

∣∣∣∣,
U2 =

∣∣∣∣w4 +
1
4

w4
1 − w2

1w2 +
1
2

w2
2

∣∣∣∣.
Taking η = − 1

2 in (11), we obtain U1 ≤ 1. For U2, using Lemma 3, we have

U2 ≤ |w4|+
1
4
|w1|4 +

∣∣∣w2
1

∣∣∣|w2|+
1
2
|w2|2

≤ 1− |w1|2 − |w2|2 +
1
4
|w1|4 + |w1|2|w2|+

1
2
|w2|2

≤ 1− |w1|2 −
1
2
|w2|2 + |w1|2|w2|+

1
4
|w1|4.

After some simple calculations, we obtain U2 ≤ 1. Hence, we obtain∣∣∣a5 − a2
3

∣∣∣ ≤ 1
8

U1 +
1
8

U2 ≤
1
4

.

Thus, the proof of Theorem 3 is complete.
Equalities are obtained in both the inequalities by choosing the functions

2z f ′(z)
f (z)− f (−z)

= 1 + z3 +
1
2

z6

2z f ′(z)
f (z)− f (−z)

= 1 + z4 +
1
2

z8. (26)

Now, our focus turns to studying the second-order Hankel determinant for SS∗car.

Theorem 4. If f ∈ SS∗car has the series form (1), then

|D2,2( f )| ≤ 1
4

.

The above-stated result is the best possible by using the extremal function provided in (22).
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Proof. From (17)–(19), we easily obtain

|D2,2( f )| =
1
4

∣∣∣∣12(w2
2 − w1w3

)
+

1
2

(
w2

2 +
1
4

w4
1 +

1
2

w2
1w2

)∣∣∣∣
≤ 1

8

∣∣∣w2
2 − w1w3

∣∣∣+ 1
8

∣∣∣∣w2
2 +

1
4

w4
1 +

1
2

w2
1w2

∣∣∣∣
=

1
8

T1 +
1
8

T2,

where
T1 =

∣∣∣w2
2 − w1w3

∣∣∣,
and

T2 =

∣∣∣∣w2
2 +

1
4

w4
1 +

1
2

w2
1w2

∣∣∣∣.
Using Lemma 4, we obtain T1 ≤ 1, since∣∣∣∣w2

2 +
1
4

w4
1 +

1
2

w2
1w2

∣∣∣∣ ≤ (
1− |w1|2

)2
+

1
4
|w1|4 +

1
2
|w1|2

(
1− |w1|2

)
= 1− 3

2
|w1|2 +

3
4
|w1|4 = χ

(
|w1|2

)
,

where
χ(t) = 1− 3

2
t +

3
4

t2.

It is easy to observe that χ is a decreasing function on t ∈ [0, 1]; thus, we have
χ(t) ≤ χ(0) = 1. As |w1|2 ∈ [0, 1], we obtain T1 ≤ 1. Hence, we obtain

|D2,2( f )| ≤ 1
8

T1 +
1
8

T2 ≤
1
4

.

The assertion of Theorem 4 is thus proved.

Theorem 5. Let f ∈ SS∗car. Then,

|D2,3( f )| =
∣∣∣a3a5 − a2

4

∣∣∣ ≤ 1
8

.

This above-stated result is the best possible with the extremal function given by (22).

Proof. From (18)–(20), we have

|D2,3( f )| =
1
8

∣∣∣∣(w2 +
1
2

w2
1

)
w4 −

1
8

w2
1w2

2 −
1
2

w1w3

(
w2 −

1
2

w2
1

)
−1

2
w2

3 +
1

32
w6

1 + w3
2

∣∣∣∣.
Applying the triangle inequality and Lemma 3, we have

|D2,3( f )| ≤ 1
8

[(
|w2|+

1
2
|w1|2

)(
1− |w1|2 − |w2|2

)
+

1
8
|w1|2|w2|2 +

1
32
|w1|6 + |w2|3

+
1
2
|w1|

(
1− |w1|2 −

|w2|2

1 + |w1|

)(
|w2|+

1
2
|w1|2

)
+

1
2

(
1− |w1|2 −

|w2|2

1 + |w1|

)2
.
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In the inequality above, let h(|w1|, |w2|) denote the right hand side and let x = |w1|,
y = |w2|. Since

∂h
∂d

=
1

4(1 + x)2

[
8y3 − (1 + x)6xy2 −

(
5x3 − 5x2 + 8

)
(1 + x)y

−2(x− 1)(1 + x)3(x + 2)
]
,

replacing y2 by y, we achieve
∂h
∂y
≥ k(x, y)

4(1 + x)2 ,

with

k(x, y) = 8y3 − (1 + x)
(

5x3 − 5x2 + 6x + 8
)

y + 2(1− x)(1 + x)3(x + 2).

A simple algebraic calculation demonstrates that the critical points of f justify{ (
14 + 2x + 20x3)y− 2

(
5− 6x− 5x2)(1 + x)2 = 0

24y2 − (1 + x)
(
5x3 − 5x2 + 6x + 8

)
= 0

.

So, in ∆ =
{
(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1− x2}, there is only one critical point (x0, y0)

where x0 = 0.2336... and y0 = 0.6874 · · · . For this point,

k(x0, y0) = 1.2305 · · · .

On the boundary of ∆, we obtain

k(x, 0) = 2(1− x)(x + 2)(1 + x)3 ≥ k(1, 0) = 0,

k(0, y) = 4
(

1− 2y + 2y3
)
≥ k

(
0,

√
3

3

)
= 4− 16

√
3

9
,

k
(

x, 1− x2
)

= (1− x)(1 + x)2
(

4− 8x− x2 + 3x3
)

.

It is simple task to show that 4− 8x− x2 + 3x3 > 0 in [0, 1]; so,

k(x, 0) ≥ 0 for (x, y) ∈ ∆.

This means that
∂h
∂y
≥ 0 for (x, y) ∈ ∆.

Consequently,

h(x, y) ≤ h
(

x, 1− x2
)
= 1 +

13
32

x6 − 1
2

x4 − 7
8

x2.

Therefore, h
(

x, 1− x2) is decreasing for x ∈ [0, 1]; so, h(x, y) ≤ h
(
x, 1− x2) ≤ 1.

Hence,

|D2,3( f )| ≤ 1
8

.

Thus, the result is proved.

4. Coefficient Bounds for SKcar

We start with the estimates of some initial coefficients of f ∈ SKcar.
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Theorem 6. If f ∈ SKcar is of the form (1), then

|a2| ≤
1
4

,

|a3| ≤
1
6

,

|a4| ≤
1

16
.

All these bounds are sharp.

Proof. Using the Alexander-type relation along with the obtained coefficient estimates of
the class SS car, we easily obtain the above bounds. The bounds on the estimation of |a2|,
|a3|, and |a4| are sharp using the extremal functions provided, respectively, by

2(z f ′(z))′

( f (z)− f (−z))′
= 1 + z +

1
2

z2, (27)

2(z f ′(z))′

( f (z)− f (−z))′
= 1 + z2 +

1
2

z4, (28)

2(z f ′(z))′

( f (z)− f (−z))′
= 1 + z3 +

1
2

z6. (29)

Theorem 7. Let f ∈ SKcar have the series expansion (1). Then,∣∣∣a3 − λa2
2

∣∣∣ ≤ max
{

1
6

,
∣∣∣∣4− 3λ

48

∣∣∣∣}.

This result is sharp.

Proof. Utilizing the definition of the class SKcar, we easily have

a2 =
1
4

w1, (30)

a3 =
1
6

w2 +
1

12
w2

1, (31)

a4 =
1
16

w3 +
3
32

w1w2 +
1

64
w3

1, (32)

a5 =
1
20

w1w3 +
1
20

w4 +
1

20
w2

2 +
1

160
w4

1 +
1
40

w2
1w2. (33)

From (30) and (31), we obtain∣∣∣a3 − λa2
2

∣∣∣ =
1
6

∣∣∣∣w2 +
1
2

w2
1 −

3
8

λw2
1

∣∣∣∣,
=

1
6

∣∣∣∣w2 +

(
4− 3λ

8

)
w2

1

∣∣∣∣.
Applying the triangle inequality and Lemma 2, we obtain∣∣∣a3 − λa2

2

∣∣∣ ≤ max
{

1
6

,
∣∣∣∣4− 3λ

48

∣∣∣∣}.

Putting λ = 1, we achieve the following corollary.
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Corollary 2. Let f ∈ SKcar be the series form (1). Then,∣∣∣a3 − a2
2

∣∣∣ ≤ 1
6

.

The equality is obtained by using (28).

Now, we discuss the Zalcman functionals for f ∈ SKcar.

Theorem 8. Let f ∈ SKcar be the series form (1). Then,

|a4 − a2a3| ≤
1

16
. (34)

The above-stated result is the best possible using the extremal function provided in (29).

Proof. From (30)–(32), we obtain

|a4 − a2a3| =
1

16

∣∣∣∣w3 +
5
6

w1w2 −
1

12
w3

1

∣∣∣∣;
so, taking σ = 5

6 and ς = − 1
12 in Lemma 1 yields

|a4 − a2a3| ≤
1

16
.

The assertion of Theorem 8 is thus proved.

The Hankel determinants for the class SKcar are now our focus.

Theorem 9. If f ∈ SKcar is of the form (1), then

|D2,2( f )| ≤ 1
36

.

The above-stated result is the best possible using the extremal function provided by (28).

Proof. From (30)–(32), we have∣∣∣a2a4 − a2
3

∣∣∣ =
1

36

∣∣∣∣w2
2 +

7
64

w4
1 −

9
16

w1w3 +
5

32
w2

1w2

∣∣∣∣,
=

1
36

∣∣∣∣12(w2
2 − w1w3

)
+

1
2

(
7

32
w4

1 −
1
8

w1w3 +
5

16
w2

1w2 + w2
2

)∣∣∣∣,
≤ 1

72

∣∣∣w2
2 − w1w3

∣∣∣+ 1
72

∣∣∣∣ 7
32

w4
1 −

1
8

w1w3 +
5

16
w2

1w2 + w2
2

∣∣∣∣,
=

1
72

Q1 +
1

72
Q2.

Using Lemma 4, it is clear that Q1 ≤ 1. For Q2, using Lemma 3, we have

|Q2| ≤
7
32
|w1|4 +

1
8
|w1|

(
1− |w1|2 −

|w2|2

1 + |w1|

)
+

5
16
|w1|2|w2|+ |w2|2,

≤ 7
32
|w1|4 +

1
8
|w1| −

1
8
|w1|3 −

|w1||w2|2

8(1 + |w1|)
+

5
16
|w1|2|w2|+ |w2|2,

≤ 7
32
|w1|4 +

1
8
|w1| −

1
8
|w1|3 + |w2|2

(
1− |w1|

8(1 + |w1|)

)
+

5
16
|w1|2|w2|. (35)
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Since
(

1− |w1|
8(1+|w1|)

)
> 0, we can put |w2| ≤ 1− |w1|2 in (35), and we have

|Q2| ≤
7

32
|w1|4 +

1
8
|w1|−

1
8
|w1|3 +

(
1− |w1|2

)2
(

1− |w1|
8(1 + |w1|)

)
+

5
16
|w1|2

(
1− |w1|2

)
.

Let us put |w1| = x and x ∈ (0, 1], and we obtain

|Q2| ≤ 1− 25
16

x2 +
25
32

x4 = z(x).

As z′(x) 5 0, z(x) is the decreasing function of x, and it gives the maximum value at
x = 0

|Q2| ≤ 1.

Hence, we obtain that ∣∣∣a2a4 − a2
3

∣∣∣ ≤ 1
72

Q1 +
1

72
Q2 ≤

1
36

.

The assertion of Theorem 9 is thus proved.

Theorem 10. If f ∈ SKcar is of the form (1), then

|D2,3( f )| ≤ 1
120

.

This result is the best possible using the extremal function defined by (28).

Proof. From (31)–(33), we have∣∣∣a3a5 − a2
4

∣∣∣ =
1

120

∣∣∣∣(w2 +
1
2

w2
1

)
w4 −

7
128

w2
1w2

2 +
17
512

w6
1 −

13
32

w1w3

(
w2 −

17
26

w2
1

)
+

3
128

w4
1w2 + w3

2 −
15
32

w2
3

∣∣∣∣.
Using Lemma 3 and the triangle inequality, we obtain∣∣∣a3a5 − a2

4

∣∣∣ ≤ 1
120

[(
|w2|+

1
2
|w1|2

)(
1− |w1|2 − |w2|2

)
+

17
512
|w1|6 +

3
128
|w1|4|w2|

+
7

128
|w1|2|w2|2 +

13
32
|w1|

(
1− |w1|2 −

|w2|2

1 + |w1|

)(
|w2|+

17
26
|w1|2

)

+|w2|3 +
15
32

(
1− |w1|2 −

|w2|2

1 + |w1|

)2
.

Let h(|w1|, |w2|) represent the right hand side of the above inequality and let x = |w1|,
y = |w2|. Since

∂h
∂y

=
1

128(1 + x)2

[
240y3 − 156x(1 + x)y2 − 2(1 + x)

(
91x3 − 63x2 + 120

)
y

+
(

3x4 − 52x3 − 128x2 + 52x + 128
)
(1 + x)2

]
,

omitting x4 in the last component and replacing y2 by y, we obtain

∂h
∂y
≥ k(x, y)

128(1 + x)2 ,
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with

k(x, y) = 240y3 − 2(1 + x)
(

91x3 − 63x2 + 78x + 120
)

y + 4(13x + 32)(1− x)(1 + x)3.

A simple algebraic calculation demonstrates that the critical points of f justify{ (
783x3 + 168x2 + 60x + 396

)
y− 4

(
77− 65x2 − 102x

)
(1 + x)2 = 0

720y2 − 2(1 + x)
(
91x3 − 63x2 + 78x + 120

)
= 0

.

So, in Ξ =
{
(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1− x2}, there is only one critical point (x0, y0),

where x0 = 0.2472... and y0 = 0.6884 · · · . For this point,

k(x0, y0) = 49.0898 · · · .

On the boundary of Ξ, we have

k(x, 0) = (52x + 128)(1− x)(1 + x)3 ≥ k(1, 0) = 0,

k(0, y) = 240y3 − 240y + 128 ≥ k

(
0,

√
3

3

)
= 128− 160

√
3

3
,

k
(

x, 1− x2
)

= 2(1− x)(1 + x)2
(

29x3 − 31x2 − 108x + 64
)

.

It is a simple task to show that 29x3 − 31x2 − 108x + 64 > 0 in [0, 1]; so,

k(x, 0) ≥ 0 for (x, y) ∈ Ξ.

This means that
∂h
∂x
≥ 0 for (x, y) ∈ Ξ.

Consequently,

h(x, y) ≤ h
(

x, 1− x2
)
= 1− 137

128
x2 − 9

128
x4 +

89
512

x6.

Therefore, h
(

x, 1− x2) is decreasing for x ∈ [0, 1]; so, h(x, y) ≤ h
(
x, 1− x2) ≤ 1.

Therefore,

|D2,3( f )| ≤ 1
120

.

Thus, the proof is complete.

5. Logarithmic Coefficients for SS∗car and SKcar

The logarithmic coefficients of a given function f , denoted by γn := γn( f ), are
defined as

1
2

log
(

f (z)
z

)
=

∞

∑
n=1

γnzn. (36)

The theory of Schlicht functions is significantly impacted by these coefficients in
various estimations. In 1985, de-Branges [11] determined that

n

∑
k=1

k(n− k + 1)|γn|2 ≤
n

∑
k=1

n− k + 1
k

, for n ≥ 1,

and for the particular function f (z) = z/
(
1− eiθz

)
with θ ∈ R, equality is attained. Evi-

dently, this inequality gives rise to the broadest formulation of the well-known Bieberbach–
Robertson–Milin conjectures involving the Taylor coefficients of f that belong to S . For
more information on how de-Brange’s claim was explained, see [58–60]. Brennan’s con-
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jecture for conformal mappings was answered by Kayumov [61] in 2005 by taking the
logarithmic coefficients into account. Several works [62–64] that have significantly ad-
vanced the study of logarithmic coefficients are included in this article.

It is easy to determine from the definition given above that the logarithmic coefficients
for f belonging to S are given by

γ1 =
1
2

a2 (37)

γ2 =
1
2

(
a3 −

1
2

a2
2

)
(38)

γ3 =
1
2

(
a4 − a2a3 +

1
3

a3
2

)
. (39)

The Hankel determinant Dq,n

(
Ff /2

)
with logarithmic coefficients was initially devel-

oped by Kowalczyk and Lecko in [65,66] and is given by

Dq,n

(
Ff /2

)
:=

∣∣∣∣∣∣∣∣∣
γn γn+1 . . . γn+q−1
γn+1 γn+2 . . . γn+q
...

... . . .
...

γn+q−1 γn+q . . . γn+2q−2

∣∣∣∣∣∣∣∣∣. (40)

In particular, it is noted that

D2,1

(
Ff /2

)
=

∣∣∣∣ γ1 γ2
γ2 γ3

∣∣∣∣ = ∣∣∣γ1γ3 − γ2
2

∣∣∣.
For more details on the investigation of logarithmic coefficients, see the articles [67–71].

Theorem 11. Let f ∈ SS∗car be the series form (1). Then,

|γ1| ≤
1
4

,

|γ2| ≤
1
4

,

|γ3| ≤
1
8

.

All these bounds are sharp.

Proof. Applying (17)–(19) in (37)–(39), we obtain

γ1 =
1
4

w1, (41)

γ2 =
1
4

w2 +
1

16
w2

1, (42)

γ3 =
1
8

w3 +
1

16
w1w2 −

1
96

w3
1. (43)

The bounds of γ1 and γ2 are clear.
For γ3 rearranging (43), we obtain

|γ3| =
1
8

∣∣∣∣w3 +
1
2

w1w2 −
1
12

w3
1

∣∣∣∣.
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Using Lemma 1 with σ = 1
2 , ς = − 1

12 , and the triangle inequality, we obtain

|γ3| =
1
8

.

The equalities hold for the function given by (21)–(23) and using (37)–(39).

Theorem 12. Let f ∈ SS∗car have the series representation (1). Then,∣∣∣γ2 − λγ2
1

∣∣∣ ≤ max
{

1
4

,
∣∣∣∣1− λ

16

∣∣∣∣}.

The above-stated result is the best possible.

Proof. From (41) and (42), we have∣∣∣γ2 − λγ2
1

∣∣∣ =
1
4

∣∣∣∣w2 +
1
4

w2
1 −

λ

4
w2

1

∣∣∣∣,
=

1
4

∣∣∣∣w2 +

(
1− λ

4

)
w2

1

∣∣∣∣.
Using Lemma 2 and the triangle inequality, we have∣∣∣γ2 − λ2

1

∣∣∣ ≤ max
{

1
4

,
∣∣∣∣1− λ

16

∣∣∣∣}.

Putting λ = 1, we obtain the following consequence.

Corollary 3. Let f ∈ SS∗car be the series form (1). Then,∣∣∣γ2 − γ2
1

∣∣∣ ≤ 1
4

.

The equality is determined by using (37), (38), and (22).

Theorem 13. If f ∈ SS∗car has the expansion form (1), then

|γ3 − γ1γ2| ≤
1
8

.

The equality is determined by using (37)–(39) and (23).

Proof. From (41)–(43), we obtain

|γ3 − γ1γ2| =
1
8

∣∣∣∣w3 −
5

24
w3

1

∣∣∣∣.
Applying the triangle inequality and Lemma 3, we have∣∣∣∣w3 −

5
24

w3
1

∣∣∣∣ ≤ 1− |w1|2 −
|w2|2

1 + |w1|
+

5
24
|w1|3.

After some simple calculations, we obtain∣∣∣∣w3 −
5

24
w3

1

∣∣∣∣ ≤ 1.
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Hence, we obtain

|γ3 − γ1γ2| ≤
1
8

.

Thus, the result is complete.

Theorem 14. If f ∈ SS∗car is given by (1), then∣∣∣D2,1

(
Ff /2

)∣∣∣ ≤ 1
16

.

The equality is determined by using (37)–(39) and (22).

Proof. From (41)–(43), we have∣∣∣γ1γ3 − γ2
2

∣∣∣ =
1

16

∣∣∣∣12(w2
2 − w1w3

)
+

1
2

(
w2

2 +
5
24

w4
1 +

1
2

w2
1w2

)∣∣∣∣
≤ 1

32

∣∣∣w2
2 − w1w3

∣∣∣+ 1
32

∣∣∣∣w2
2 +

5
24

w4
1 +

1
2

w2
1w2

∣∣∣∣
=

1
32

R1 +
1
32

R2,

where

R1 =
∣∣∣w2

2 − w1w3

∣∣∣
R2 =

∣∣∣∣w2
2 +

5
24

w4
1 +

1
2

w2
1w2

∣∣∣∣.
Using Lemma 4, we obtain R1 ≤ 1, since∣∣∣∣w2

2 +
1
4

w4
1 +

1
2

w2
1w2

∣∣∣∣ ≤ (
1− |w1|2

)2
+

5
24
|w1|4 +

1
2
|w1|2

(
1− |w1|2

)
= 1− 3

2
|w1|2 +

17
24
|w1|4 = ξ

(
|w1|2

)
,

where
ξ(t) = 1− 3

2
t +

17
24

t2.

It is easy to observe that ξ is a decreasing function on t ∈ [0, 1]; thus, we have
ξ(t) ≤ ξ(0) = 1. As |w1|2 ∈ [0, 1], we obtain R2 ≤ 1. Hence, we obtain∣∣∣D2,1

(
Ff /2

)∣∣∣ ≤ 1
32

R1 +
1

32
R2 ≤

1
16

.

Thus, the assertion of Theorem 14 is proved.

Now, we study the logarithmic coefficients for the family f ∈ SKcar.

Theorem 15. If f ∈ SKcar is given by (1), then

|γ1| ≤
1
8

,

|γ2| ≤
1

12
,

|γ3| ≤
1

32
.

The bounds are sharp.
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Proof. Applying (30)–(32) in (37)–(39), we obtain

γ1 =
1
8

w1, (44)

γ2 =
1

12
w2 +

5
192

w2
1, (45)

γ3 =
1

32
w3 +

5
192

w1w2. (46)

The bounds of γ1 and γ2 are clear.
Rearranging γ3, we obtain

|γ3| =
1
32

∣∣∣∣w3 +
5
6

w1w2

∣∣∣∣.
Using the triangle inequality and Lemma 3, we have∣∣∣∣w3 +

5
6

w1w2

∣∣∣∣ ≤ 1− |w1|2 −
|w2|2

1 + |w1|
+

5
6
|w1||w2|.

After some simple calculations, we obtain∣∣∣∣w3 +
5
6

w1w2

∣∣∣∣ ≤ 1.

Hence,

|γ3| ≤
1

32
.

The equalities holds for the function given (27)–(29) and using (37)–(39).

Theorem 16. If f ∈ SKcar is of the form (1), then∣∣∣γ2 − λγ2
1

∣∣∣ ≤ max
{

1
12

,
∣∣∣∣5− 3λ

192

∣∣∣∣}.

The above-stated result is the best possible.

Proof. From (44) and (45), we obtain∣∣∣γ2 − λγ2
1

∣∣∣ =
1

12

∣∣∣∣w2 −
3λ

16
w2

1 +
5

16
w2

1

∣∣∣∣
=

1
12

∣∣∣∣w2 +

(
5− 3λ

16

)
w2

1

∣∣∣∣.
Using (8) and the triangle inequality, we obtain∣∣∣γ2 − λγ2

1

∣∣∣ ≤ max
{

1
12

,
∣∣∣∣5− 3λ

192

∣∣∣∣}.

Putting λ = 1, we achieve the following corollary.

Corollary 4. If f ∈ SKcar is given by (1), then∣∣∣γ2 − γ2
1

∣∣∣ ≤ 1
12

.

The equality is determined by using (37), (38) and (28).
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Theorem 17. If f ∈ SKcar is of the form (1), then

|γ3 − γ1γ2| ≤
1

32
.

The equality is determined by using (37)–(39), and (29).

Proof. From (44)–(46), we obtain

|γ3 − γ1γ2| =
1
32

∣∣∣∣w3 +
1
2

w1w2 −
5

48
w3

1

∣∣∣∣;
so, taking σ = 1

2 and ς = − 5
48 in Lemma 1 yields

|γ3 − γ1γ2| ≤
1

32
.

Thus, the proof is complete.

Theorem 18. If f ∈ SKcar is of the form (1), then∣∣∣D2,1

(
Ff /2

)∣∣∣ ≤ 1
144

.

The equality is determined by using (37)–(39) and (28).

Proof. From (44)–(46), we have∣∣∣γ1γ3 − γ2
2

∣∣∣ =
1

144

∣∣∣∣w2
2 +

25
256

w4
1 −

9
16

w1w3 +
5

32
w2

1w2

∣∣∣∣
=

1
144

∣∣∣∣12(w2
2 − w1w3

)
+

1
2

(
25

128
w4

1 −
1
8

w1w3 +
5
16

w2
1w2 + w2

2

)∣∣∣∣
≤ 1

288

∣∣∣w2
2 − w1w3

∣∣∣+ 1
288

∣∣∣∣ 25
128

w4
1 −

1
8

w1w3 +
5

16
w2

1w2 + w2
2

∣∣∣∣
=

1
288

M1 +
1

288
M2,

where
M1 =

∣∣∣w2
2 − w1w3

∣∣∣,
and

M2 =

∣∣∣∣ 25
128

w4
1 −

1
8

w1w3 +
5

16
w2

1w2 + w2
2

∣∣∣∣.
Using Lemma 4, it is clear that M1 ≤ 1. For M2, using Lemma 3, we have

|M2| ≤
25

128
|w1|4 +

1
8
|w1|

(
1− |w1|2 −

|w2|2

1 + |w1|

)
+

5
16
|w1|2|w2|+ |w2|2,

≤ 25
128
|w1|4 +

1
8
|w1| −

1
8
|w1|3 −

|w1||w2|2

8(1 + |w1|)
+

5
16
|w1|2|w2|+ |w2|2,

≤ 25
128
|w1|4 +

1
8
|w1| −

1
8
|w1|3 + |w2|2

(
1− |w1|

8(1 + |w1|)

)
+

5
16
|w1|2|w2|. (47)

Since
(

1− |w1|
8(1+|w1|)

)
> 0, we can put |w2| ≤ 1− |w1|2 in (47), and we have

|M2| ≤
25

128
|w1|4 +

1
8
|w1| −

1
8
|w1|3 +

(
1− |w1|2

)2
(

1− |w1|
8(1 + |w1|)

)
+

5
16
|w1|2

(
1− |w1|2

)
.
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After simple computation of maxima and minima, we obtain

|M2| ≤ 1.

Hence, we obtain that∣∣∣γ1γ3 − γ2
2

∣∣∣ ≤ 1
288

M1 +
1

288
M2 ≤

1
144

.

The assertion of Theorem 18 is thus proved.

6. Conclusions

Obtaining estimates of the coefficients appearing in analytic univalent functions is
one of the major problems in the field of function theory. The basic idea behind finding
the bounds of the coefficients in different families of univalent functions is to express their
coefficients in the coefficients of Carathéodory functions. In order to study the coefficient
functionals, one can use inequalities that are known for the class of Carathéodory functions.
In our present investigation, we applied a novel approach to determine the bounds of
various coefficient-related problems, including the Zalcman inequalities, the Feketo–Szegö
inequalities, and the Hankel determinant of second order. The families for which we studied
such coefficient-type problems were the families SS∗car and SKcar of functions, which are
starlike and convex with respect to symmetric points associated with a cardioid-shaped
domain. All bounds were shown to be sharp. More research on the precise bounds of
analytical functions defined by the convolution operator may be motivated by this work.
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