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Abstract: This article studies the effects of fractional time derivatives on thermo-mechanical in-
teraction in living tissue during hyperthermia treatment by using the eigenvalues approach. A
comprehensive understanding of the heat transfer mechanism and the related thermo-mechanical
interactions with the patient’s living tissues is crucial for the effective implementation of thermal
treatment procedures. The surface of living tissues is traction-free and is exposed to a pulse boundary
heat flux that decays exponentially. The Laplace transforms and their associated techniques are
applied to the generalized bio-thermo-elastic model, and analytical procedures are then implemented.
The eigenvalue approach is utilized to obtain the solution of governing equations. Graphical represen-
tations are given for the temperature, the displacement, and the thermal stress results. Afterward, a
parametric study was carried out to determine the best method for selecting crucial design parameters
that can improve the precision of hyperthermia therapies.

Keywords: living tissue; fractional time derivatives; analytical solutions; thermo-mechanical interactions;
Laplace transform; thermal relaxation time

1. Introduction

The temperature behavior of living tissue is still not fully understood due to the
difficulty in accurately measuring it in vivo. This is because necropsy can alter tissue
temperature characteristics and examining tissue outside of the body lacks perfusion effects.
Various in vivo techniques exist to measure thermal behavior, but they yield varying results,
and precise measurement of tissue temperature in vivo remains elusive. For effective
treatment, it is critical to control the body’s heat transmission pathways. Thermal therapies
aim to freeze or heat tumors without damaging surrounding healthy tissue. If doctors
could predict how tissue would react thermally, they could plan therapy dosages and
durations before surgery. Tissue and blood perfusion’s temperature response is associated
with a range of diseases and injuries, including diabetes, skin grafts, and frostbites. The
severity of these diseases is influenced by the extent to which blood can reach a certain
location. If the thermal characteristics of damaged tissue can be precisely monitored before
problems arise, appropriate and efficient therapy can be provided immediately. Heat
transport analysis in living tissue is challenging due to its diverse internal structure, which
includes perfusion via capillary tubes, convection between blood and tissues, thermal
conduction between solid tissues and blood arteries, and heating generation through
metabolism, evaporation, and other factors. Pennes’ [1] bioheat model, which is based on
Fourier’s law of thermal conduction, is used to represent heat transmission in living tissues.
Various thermotherapy procedures, such as laser tissue welding [2], laser operations [3],
and hyperthermia [4], are frequently utilized in modern medicine. Skin tissue temperature
distributions are influenced by complex factors such as metabolic heating generation and
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blood circulation, so researchers have expanded on basic relationships by incorporating
a wide range of phenomenological mechanisms, such as metabolic heating production,
thermal conduction, blood perfusions, radiation, and phase change. Biological tissues
undergo diverse stages of change, which can take many different forms. Modified versions
of Pennes’ bioheat models, which employ various numerical methods, are available in the
relevant literature. Several techniques have been used to study heat transmission in living
tissues, including the homotopy perturbation technique [5], Legendre wavelets Galerkin
approaches [6,7], and the finite element approach [8]. When a person’s body temperature
was unusually low, Esneault and Dillenseger [9] used finite difference approaches to
investigate the time-dependent increase in temperature. During thermal therapy, Ghanmi
and Abbas [10] performed an analytical investigation of the fractional time derivative in
skin tissue. Marin et al. [11] utilized finite element analysis to study the nonlinear bio-heat
model in skin tissue caused by external heating sources, while Hobiny and Abbas [12]
explored the analytical solution for the fractional bioheat model in tissues with a spherical
shape. On the other hand, Keangin and Phadungsak [13] conducted an analysis on the
heat transport in porous liver during microwave ablation, specifically focusing on local
thermal non-equilibrium. In their research, Keangin et al. [14] investigated the analysis of
heat transfer in a deformed liver cancer model treated with a microwave coaxial antenna.
Andreozzi et al. [15] studied the effects of a pulsating heat source on interstitial fluid
transport in tumor tissues in which the effects of modulating-heat strategies to influence
interstitial fluid transport in tissues were analyzed.

Different methods can be used to solve the time-dependent heat transfer equation and
model infinite thermal propagations based on classical Fourier heat conduction. Fractional
computation has recently proved to be a successful method for modifying many physical
models. Fractional derivatives have received significant attention, and various definitions
and methods have been developed. The use of fractional time derivatives has enabled
the successful modification of many physical models’ processes. Ezzat and colleagues
introduced a novel bio-heat model based on the fractional heat conduction formulation, as
described in their publications [16,17], while the investigation of transient heating in skin
tissues caused by time-dependent thermal therapy, utilizing a heat transport law that incor-
porates memory, was carried out by Mondal and colleagues in reference [18]. Researchers
have conducted several studies on the use of thermal transfer on living tissue [19] to im-
prove treatment methods, develop more accurate temperature prediction technologies, and
ultimately, find a cure for cancer. Over the past forty years, a wide range of researchers from
various fields, including high-energy particle accelerators, continuum mechanics, acoustics,
nuclear engineering, and aeronautics have expressed significant interest in generalized
thermo-elastic models from both a technical and mathematical standpoint. The concepts of
heat transfer and elasticity are linked in this model. Lord and Shulman [20] developed the
thermo-elasticity hypothesis with multiple generalizations. Mondal et al. [21] employed
the memory-dependent derivatives on a sliding interval within the framework of the Lord–
Shulman model to investigate the heat transfer equation for this problem. Diaz et al. [22]
used the finite element method to obtain the solutions of thermo-diffusion types present
in living tissue to develop thermal damage. Zhu et al. [22] used the diffusion theory to
consider rate process models for the results of thermal damages and the sedimentation of
lighting energy in the tissue. When studying the actual phenomena of thermal transfer in
finite media, the nonlinear and linear models of heating transfer are extended, and many
authors have sought numerical or analytical solutions to the problems posed by these mod-
els [23–33]. Despite the growing popularity of laser, microwave, and other forms of thermal
therapy in dermatology, thermo-mechanical interactions are seldom considered in current
research, despite being central to the thermo-mechanically linked nature of these therapies.
Generalized thermo-elastic models govern tissue thermo-elastic behaviors, which include
the G-N model, the G-NII model, the DPL, the fractional model, and Li et al. [34–36], who
further investigated the effects of heat-induced mechanical responses in skin tissues under
temperature-dependent properties.
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This research aims to create an analytical approach to examine the thermo-mechanical
interactions with fractional time derivatives in living tissue that experiences instantaneous
heating and has varying thermal and mechanical properties. A generalized thermo-elastic
model is constructed that takes into account the tissue structure and variable thermal and
mechanical characteristics within the bioheat transfer equation framework. The effect of
fractional parameter in temperature, displacement, and thermal stress variations are shown
in the graphics.

2. Materials and Methods

The field of bio-thermo-elasticity merges the principles of elasticity and bioheat con-
duction. The basic equations under fractional time derivatives in the living tissues can be
given by [20,37,38]:

(λ + µ)uj,ij + µui,jj − γT,i = ρ
∂2ui
∂t2 , (1)

k∇2T =

(
1 +

τ
β
o

Γ(β + 1)
∂β

∂tβ

)(
ρce

∂T
∂t

+ ωbρbcb(T − Tb) + γTo
∂2u
∂t∂x

−Qm

)
, 0 < β ≤ 1, (2)

σij = µ
(
ui,j + uj,i

)
+ (λuk,k − γ(T − To))δij, (3)

where t is the time, τo is the thermal relaxation time, Tb is the blood temperature, ce refers
to the specific heat at constant strain, ρ is the tissue mass density, γ = (3λ + 2µ)αt, αt refers
to the linear thermal expansion coefficient, λ, µ refer to the Lame’s constants, T is the tissue
temperature, k is the tissue thermal conductivity, ωb is the blood perfusion rate, Qm is the
metabolic heat generation in skin tissues, eij are the strain components, σij are the stress
components, ui are the displacement components, δij is the Kronecker symbol and cb is the
blood specific heat. The definition of the fractional order derivative is as follows:

∂βh(r, t)
∂tβ

=


h(r, t)− h(r, 0), β→ 0,

Iβ−1 ∂h(r,t)
∂t , 0 < β < 1,

∂h(r,t)
∂t , β = 1,

, (4)

Iνh(r, t) =
∫ t

0

(t− s)ν

Γ(ν)
h(r, s)ds, ν > 0, (5)

lim
ν→1

∂νh(r, t)
∂tν

=
∂h(r, t)

∂t
, (6)

Equation (4) illustrates how the range of local thermal conduction can be characterized
by two types of conductivity: standard thermal conduction and heat ballistic conduction.
The fractional parameter is β, where 0 < β ≤ 1 is used to define these conductivities. For
normal conductivity, β = 1, while for low conductivity 0 < β < 1. Here, we assume that
the surface and the bottom boundary of a limited domain of tissues with thickness L. As a
result, the displacement components can be expressed as follows:

ux = u(x, t), uy = 0, uz = 0. (7)

So that the model has the following form

(λ + 2µ)
∂2u
∂x2 − γ

∂T
∂x

= ρ
∂2u
∂t2 , (8)

k
∂2T
∂x2 =

(
1 +

τ
β
o

Γ(β + 1)
∂β

∂tβ

)(
ρc

∂T
∂t

+ ωbρbcb(T − Tb) + γTo
∂2u
∂t∂x

−Qm

)
, (9)

σxx = (λ + 2µ)
∂u
∂x
− γ(T − To). (10)
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To obtain a solution for the equations, it is necessary to have two sets of initial and
boundary conditions that align with the physical model description:

T(x, 0) = Tb,
∂T(x, 0)

∂t
= 0, u(x, 0) = 0,

∂u(x, 0)
∂t

= 0, (11)

σxx(0, t) = 0, σxx(L, t) = 0,−k
∂T(x, t)

∂x

∣∣∣∣
x=0

= qo
t2e
− t

tp

16t2
p

,−k
∂T(x, t)

∂x

∣∣∣∣
x=L

= 0, (12)

where tp points to the characteristic time of pulsing heat flux and qo is constant. Now, the
dimensionless quantities may be utilized for ease by employing:

T′ =
T − To

To
,
(

t′, τ′o, t′p
)
= ηc2(t, τo, tp

)
,
(
x′, u′

)
= ηc(x, u),

σ′xx =
σxx

λ + 2µ
, q′o =

qo

ηcToK
, Q′m =

Qm

ToKη2c2 , (13)

where η = ρce
K and c2 = λ+2µ

ρ .
The primary equations can be expressed in a non-dimensional form by removing the

dashes and introducing appropriate parameters, as shown in Equation (13):

∂2u
∂x2 − ε1

∂T
∂x

=
∂2u
∂t2 , (14)

∂2T
∂x2 =

(
1 +

τ
β
o

Γ(β + 1)
∂β

∂tβ

)(
∂T
∂t

+ ε2T + ε3
∂2u
∂t∂x

−Qm

)
, (15)

σxx =
∂u
∂x
− ε1T, (16)

u(x, 0) = 0,
∂u(x, 0)

∂t
= 0, T(x, 0) = 0,

∂T(x, 0)
∂t

= 0, (17)

σxx(0, t) = 0, σxx(L, t) = 0,
∂T(x, t)

∂x

∣∣∣∣
x=0

= −qo
t2e
− t

tp

16t2
p

,
∂T(x, t)

∂x

∣∣∣∣
x=L

= 0, (18)

where ε1 = Toγe
(λe+2µe)

, ε2 = ρbcbωb
Kη2c2 , ε3 = γe

ρce
.

3. Analytical Solutions in the Transform Domain

Equations (14)–(18) can be transformed using Laplace transforms, as in

f (x, s) = L[ f (x, t)] =
∫ ∞

0
f (x, t)e−stdt. (19)

Therefore, the following equations can be obtained

d2u
dx2 = s2u + ε1

dT
dx

, (20)

d2T
dx2 =

(
1 +

sβτ
β
o

Γ(β + 1)

)(
(s + ε2)T + sε3

du
dx

)
− Qm

s
, (21)

σxx =
du
dx
− ε1T, (22)

σxx(0, s) = 0, σxx(L, s) = 0,
dT(x, s)

dx

∣∣∣∣
x=0

=
−qotp

8
(
stp + 1

)3 ,
dT(x, s)

dx

∣∣∣∣
x=L

= 0. (23)
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Equations (20) and (21) can be used to represent the vector–matrix differential equation
as follows:

dM
dx

= BM− f , (24)

where M =


u
T
du
dx
dT
dx

, B =


0 0 1 0
0 0 0 1
s2 0 0 ε1

0
(

1 + sβτ
β
o

Γ(β+1)

)
(s + ε2)

(
1 + sβτ

β
o

Γ(β+1)

)
sε3 0

, f =


0
0
0

Qm
s

.

To solve Equation (24) using the eigenvalue techniques described in [39–48], Matrix
B’s characteristic equation is expressed as:

α4 −
(

s2 +

(
1 +

sβτ
β
o

Γ(β + 1)

)
(s + ε2) +

(
1 +

sβτ
β
o

Γ(β + 1)

)
sε3ε1

)
α2 +

(
1 +

sβτ
β
o

Γ(β + 1)

)
(s + ε2)s2 = 0, (25)

Relation (25) has four roots, which are the eigenvalues of matrix B, which are defined
by ±α1, ±α2. The general solutions to the nonhomogeneous system (24) can be obtained
by adding the complementary solution of the corresponding homogeneous system to a
particular solution of the nonhomogeneous system. To find the particular solution to the
nonhomogeneous Equation (24), we need to consider that the inhomogeneous terms in (24)
contain functions of the Laplace parameter s. As a result, the particular solution can be
expressed as:

M(x, s) = A1X1e−α1x + A2X2eα1x + A3X3e−α2x + A4X4eα2x +


0
R
0
0

. (26)

where R = Qm

s(s+ε2)

(
1+ sβτ

β
o

Γ(β+1)

) . Hence, in the Laplace domain, the general solutions of

displacement, temperature, and stress can be given by:

u(x, s) = A1U1e−α1x + A2U2eα1x + A3U3e−α2x + A4U4eα2x. (27)

T(x, s) = A1T1e−α1x + A2T2eα1x + A3T3e−α2x + A4T4eα2x + R. (28)

σxx = A1(−α1U1 − ε1T1)e−α1x + A2(α1U2 − ε1T2)eα1x + A3(−α2U3−
ε1T3)e−α2x + A4(α2U4 − ε1T4)eα2x + R,

(29)

where Ui, Ti refer to the eigenvectors of displacement and temperature, respectively. The
problem boundary conditions can be utilized to determine the values of A1, A2, A3, and
A4. To obtain the final solutions for the displacement, temperature, and stress distributions,
the Stehfest approach [49] can be used, which has an inverse function f (x, t) defined by a
specific formulation:

f (x, t) =
ln2

t ∑M
j=1 Vj f

(
x, j

ln2
t

)
, (30)

where Vj can be given by

Vj = (−1)
M
2 +1 ∑min(i, M

2 )

k= i+1
2

k
M
2 +1(2k)!(

M
2 − k

)
!k!(i− k)!(2k− 1)!
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4. Numerical Outcomes and Discussion

To demonstrate the theoretical results discussed in the above sections, the numerical
values of the physical parameters are presented. The material parameters for living tissues
at the reference temperature, used in the following calculation, are denoted as follows [35]:

λ = 8.27× 108(N)
(

m−2
)

, αt = 1× 10−4
(

k−1
)

, To = 310(k), tp = 0.15,

µ = 3.446× 107(N)
(

m−2
)

, cb = 3770 (J)
(

kg−1
)(

k−1
)

, ρb = 1060(kg)
(

m−3
)

,

τo = 0.05, K = 0.235 (W)
(
m−1)(k−1), Qm = 1.19× 103(W)

(
m−3), ρ =

1190(kg)
(
m−3), ce = 3600 (J)

(
kg−1)(k−1)

The numerical values of the calculated physical quantities under the fractional biothermo-
elastic model, considering one thermal relaxation time and using the previous parameters,
are displayed in Figures 1–12. Numerical calculations have been performed at time t = 0.2
to determine the temperature variations, the variation of displacement, and stress variation
along the distance x under different values of the studied parameters as in Figures 1–12.
Figures 1, 4, 7 and 10 display the temperature variation along the distance x. It can be
observed from the figures that the temperature initially peaks at the tissue surface (x = 0)
due to the exponentially decaying pulse boundary heat flux. As the distance x increases, the
temperature steadily decreases. Figures 2, 5, 8 and 11 display the variations of displacement
along the distance x. Observing the figures, it can be noted that the displacement reaches its
highest negative values at the tissue surface (x = 0). Subsequently, it progressively increases
towards peak values near the surface before decreasing back to zero. Figures 3, 6, 9 and 12
show the variation of stress σxx along the distance x. It can be observed that the stress σxx
starts from zero and ends at zero to comply with the boundary condition of the problem.
Figures 1–12 can be classified into four distinct groups.

In the first group, Figures 1–3 show the variations of temperature, displacement, and
stress under various models. In Figures 1–3, the solid line (—) refers to the Pennes model
(Pennes model) without thermal relaxation time (τo = 0) and without fractional time
derivative (β = 1), the dashed line (—) points to the single-phase lag model (SPL model)
with one thermal relaxation time (τo = 0.02) and without fractional time derivative (β = 1),
while the dotted line ( . . . ) refers to the single-phase lag model under fractional time
derivative (FSPL model) with one thermal relaxation time (τo = 0.02) and with fractional
time derivative (β = 0.5). The significant effects on the quantities under consideration are
evident due to the various models.

In the second group, Figures 4–6 display the variation of temperature, displace-
ment, and stress under different values of the fractional parameter (β = 1, 0.5, 0.1) when
(τo = 0.02). It is evident that the fractional time derivatives are responsible for the evi-
dent significant impacts on the quantities under consideration. A decrease in fractional
time derivatives weakens the effect of thermo-mechanical propagation, as evidenced by a
decrease in the maximum amplitude of temperature, displacement, and stress.

In the third group, Figures 7–9 show the variation of temperature, displacement, and
stress under various values of thermal relaxation time (τo = 0, 0.02, 0.2) under fractional
time derivative when (β = 0.5). It is evident that the thermal relaxation time has significant
effects on the quantities under consideration. The maximum amplitude of the temperature,
displacement, and stress decreases with the increase the thermal relaxation time, which
means that the thermal relaxation time is apt to weaken the effect of thermo-mechanical
propagation.

In the fourth group, Figures 10–12 show the variations of temperature, displacement,
and stress under various of the characteristic time of pulsing heat flux (tp = 0.1, 0.15, 0.2)
with one thermal relaxation time (τo = 0.02) under fractional time derivative when (β = 0.5).
It is observed that the characteristic time of pulsing heat flux has a significant effect on the
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quantities under consideration. An increase in the characteristic time of pulsing heat flux
weakens the effect of thermo-mechanical propagation, as evidenced by a decrease in the
maximum amplitude of temperature, displacement, and stress.
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5. Conclusions

The aim of this research paper was to examine how biological tissues react to a sudden
pulsing heat flux load by employing generalized thermo-elasticity under the fractional time
derivatives framework, which incorporates one thermal relaxation time.
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• This study specifically focused on the impacts of fractional parameter, thermal re-
laxation time, and the pulsing heat flux characteristic time on bio-thermo-elastic
behaviors.

• A comparative analysis was conducted between the fractional single-phase lag model
(FSPL model) and previous single-phase lag (SPL model) and Pennes (Pennes model)
models.

• The findings of this study, which presented a modified thermo-elasticity approach,
offered a fresh perspective on the propagation of thermal waves, representing the first
attempts in this area.

• These results significantly contribute to enhancing our understanding of thermo-elastic
behavior in living tissue.
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