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Abstract: In this paper, the discrete octonion linear canonical transform (DOCLCT) is defined.
According to the definition of the DOCLCT, some properties associated with the DOCLCT are
explored, such as linearity, scaling, boundedness, Plancherel theorem, inversion transform and shift
transform. Then, the relationship between the DOCLCT and the three-dimensional (3-D) discrete
linear canonical transform (DLCT) is obtained. Moreover, based on a new convolution operator, we
derive the convolution theorem of the DOCLCT. Finally, the correlation theorem of the DOCLCT
is established.
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1. Introduction

The linear canonical transform (LCT) [1–3] is a generalized form of the fractional
Fourier transform (FrFT). As a linear integral transform with three parameter class, the LCT
is more flexible than the FrFT and is a widely used analytical and processing tool in applied
mathematics and engineering [4–8]. For analyzing and processing the non-stationary
spectrum of finite-duration signals, Pei and Ding [9] proposed the discrete linear canonical
transform (DLCT). The DLCT is a very important tool for processing discrete data with
a digital camera. Wei et al. [10] studied image encryption using the the random discrete
linear canonical transform, which demonstrated that the proposed encryption method
is a security-enhanced image encryption scheme. Sun and Li [11] proposed the sliding
discrete linear canonical transform and obtained an adaptive method for the computation
of the DLCT. Zhang and Li [12] proposed and designed the definition of the DLCT in graph
settings. Based on different kinds of DLCTs, several scholars studied many properties and
applications [13–17].

Recently, hypercomplex algebras [18,19] are increasingly receiving research interest
from scholars. Quaternion algebras are hypercomplex algebras of order 4 and have been
widely applied in optical and signal processing [20–22]. Urynbassarova et al. [23] extended
the DLCT to the quaternion linear canonical transform domain, and proposed the discrete
quaternion linear canonical transform (DQLCT). Some properties of the two-dimensional
(2-D) DQLCT were derived, such as the shift, modulation, inversion formula and Plancherel
theorem. Moreover, they studied the convolution theorem and fast algorithm for the 2-D
DQLCT. Based on the 2-D DQLCT, some applications were illustrated by the simula-
tions. Srivastava et al. [24] presented the discrete quadratic-phase Fourier transform. The
convolution and correlation theorems for the discrete quadratic-phase Fourier transform
were studied.

Octonion algebras [25] are another hypercomplex algebra with order 8 which is the
generalized form of the quaternion algebra. Hahn and Snopek [26] proposed the octonion
Fourier transform (OFT) and studied the properties. Several applications of the OFT in
signal processing were studied in [27,28]. In order to analyze and process the octonion
spectrum of finite-duration signals, Błaszczyk [29] exploited the discrete form for the OFT
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and obtained the discrete octonion Fourier transform (DOFT). According to the DOFT, the
analysis of solutions for difference equations and 3-D discrete linear time invariant systems
were discussed. Researchers have considered that the linear canonical transform is a general
form of the Fourier transform and has good analytical and processing properties [30,31].
We [32] substituted the octonion Fourier kernel function with the octonion linear canonical
kernel function and obtained the octonion linear canonical transform (OCLCT). Next,
some papers [32,33] discussed many properties and uncertainty principles associated
with the OCLCT. Moreover, many scholars [34,35] proposed different transform forms of
the OCLCT.

So far, the OCLCT is mainly studied regarding the integral transform of non-stationary
continuous signals. As far as we know, the discrete form of the OCLCT has never been
published to date. In this paper, in order to study octonion finite-length signals, we propose
the discrete octonion linear canonical transform (DOCLCT). The DOCLCT is obtained by
replacing the Fourier transform kernel function with the linear canonical transform kernel
function based on the octonion algebra setting. Then, several important properties of the
DOCLCT are derived, such as linearity, scaling, boundedness, Plancherel theorem inversion
transform and shift transform. Moreover, the relation between the DOCLCT and the 3-D
DLCT is obtained. The convolution theorem associated with the DOCLCT is presented by
a new convolution operator. Finally, the correlation theorem of the DOCLCT is exploited.

This paper is organized as follows: In Section 2, several basic properties of octonion
algebra are presented. The definition and the properties of the DOCLCT are obtained in
Section 3. In Section 4, the convolution theorem for the DOCLCT is derived. The correlation
theorem of the DOCLCT is discussed in Section 5. In Section 6, the conclusions and potential
applications are drawn.

2. Preliminaries

This section presents knowledge of octonion algebra [36]. This is the research founda-
tion of this paper.

2.1. Octonion Algebra

Octonion algebra is defined by O [36]. An arbitrary o ∈ O can be given by

o = o0 + o1e1 + o2e2 + o3e3 + o4e4 + o5e5 + o6e6 + o7e7

where o0, o1, · · · , o7 ∈ R. Octonion algebra is a non-associative and non-commutative
algebra. Figure 1 presents the multiplication rules of octonion algebra.
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The norm of octonion algebra is defined by |o| =
√

oo =
√

oo and |o|2 = ∑7
r=0 o2

r . It
satisfies |ϵε|=|ϵ||ε| for all ϵ, ε ∈ O.

For any octonion algebra, o ∈ O can be represented as

o = ȷ + ıe4,

where ȷ = o0 + o1e1 + o2e2 + o3e3 and ı = o4 + o5e1 + o6e2 + o7e3 are quaternion algebras.
That is to say, any octonion algebra can be composed of the sum of two quaternion algebras.

Property 1 ([25]). Let ȷ, ı ∈ H. Then, any octonion algebra satisfies the following properties:

(1) e4 ȷ = ȷe4; (2) e4(ȷe4) = −ȷ; (3) (ȷe4)e4 = −ȷ,

(4) ȷ(ıe4) = (ıȷ)e4; (5) (ȷe4)ı = (ȷı)e4; (6) (ȷe4)(ıe4) = −ıȷ.

Property 2 ([25]). For any octonion algebras ȷ + ıe4, ȷ, ı ∈ H in the quaternionic form, then the
following formulas are right:

ȷ + ıe4 = ȷ − ıe4,

|ȷ + ı e4|2 = |ȷ|2 + |ı|2.

According to octonion algebra, we provide the definition of an octonion-valued func-
tion. For any octonion-valued function, x(n) is defined by

x(n) = x0(n) + x1(n)e1 + · · ·+ x7(n)e7 = x̃(n) + x̂(n)e4, (1)

where x̃(n) = x0(n)+ x1(n)e1 + x2(n)e2 + x3(n)e3 and x̂(n) = x4(n)+ x5(n)e1 + x6(n)e2 +
x7(n)e3 are quaternion valued functions. n = (n1, n2, n3) ∈ R3.

For 1 ≤ p < ∞, the norm for the 3-D octonion-valued signal x(n) is given by

∥ x ∥p
p =

N1−1
∑

n1=0

N2−1
∑

n2=0

N3−1
∑

n3=0
|x(n)|p.

If p = 2, then the norm for the 3-D octonion-valued signal x(n) is

∥ x ∥2
2 =

N1−1
∑

n1=0

N2−1
∑

n2=0

N3−1
∑

n3=0
|x(n)|2.

2.2. Discrete Linear Canonical Transform

Next, we present the definition of the 3-D DLCT.

Definition 1 ([9]). Let Ak =

[
ak bk
ck dk

]
∈ R2×2 be a matrix parameter satisfying det(Ak) = 1

(k = 1, 2, 3). For any function x : [N1]× [N2]× [N3] → O , the 3-D DLCT is defined by

DA1,A2,A3{x}(m)=
N1−1

∑
n1=0

N2−1

∑
n2=0

N3−1

∑
n3=0

x(n)De1
A1
(n1, m1)De1

A2
(n2, m2)De1

A3
(n3, m3), (2)

where the discrete linear canonical transform kernel signal is

De1
Ak
(nk, mk) =

1√
Nk

e
e1(

ak
2bk

n2
k ∆s2

k− 2π
Nk

nkmk+
dk
2bk

m2
k ∆y2

k− π
2 ), (3)

where ∆sk is the periodic sampling interval in the space domain sk and ∆yk is the periodic sampling
interval in the DLCT domain yk.
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2.3. Discrete Quaternion Linear Canonical Transform

In paper [23], the authors proposed the DQLCT and exploited knowledge about
the DQLCT. The DQLCT expands the research scope of the discrete quaternion Fourier
transform, and provides a way to solve problems about quaternion non-stationary finite-
length signals. Due to the non-commutativity and non-associative properties of quaternion,
there are three kinds of DQLCT. The authors of [23] proposed the two-sided DQLCT.

Definition 2 ([23]). Let Ak =

[
ak bk
ck dk

]
∈ R2×2 be a matrix parameter satisfying det(Ak) = 1

(k = 1, 2). The DQLCT of a function x : [N1]× [N2]× [N3] → O is defined by

LA1,A2{x}(m) =
N1−1

∑
n1=0

N2−1
∑

n2=0
Ke1

L,A1
(n1, m1)x(n)Ke2

L,A2
(n2, m2), (4)

where the discrete quaternion linear canonical transform kernel signal is

Kek
L,Ak

(nk, mk) =
1√
Nk

e
ek(

ak
2bk

n2
k ∆s2

k− 2π
Nk

nkmk+
dk
2bk

m2
k ∆y2

k), (5)

where ∆sk is the periodic sampling interval in the space domain sk and ∆yk is the periodic sampling
interval in the DQLCT domain yk.

The inverse transform of the DQLCT is displayed by

x(n) =
N1−1

∑
m1=0

N2−1
∑

m2=0
Ke1

L,A−1
1
(m1, n1)LA1,A2{x}(m)Ke2

L,A−1
2
(m2, n2), (6)

where A−1
k =

[
dk −bk
−ck ak

]
∈ R2×2 are inverse matrices.

2.4. Discrete Octonion Fourier Transform

In paper [29], the DOFT of 3-D octonion finite-length signals was given. The DOFT is
a very good tool for studying octonion finite-length signals. In the following description, a
3-D octonion finite-length function is equivalent to a 3-D octonion finite-length signal.

Definition 3. Let a 3-D octonion-valued function x(n) be a 3-D finite-length signal and x : [N1]×
[N2]× [N3] → O. The DOFT is defined as follows:

Fo(x)(m) =
N1−1

∑
n1=0

N2−1
∑

n2=0

N3−1
∑

n3=0
x(n)e−e1

2πn1m1
N1 e−e2

2πn2m2
N2 e−e4

2πn3m3
N3 , (7)

where n = (n1, n2, n3) ∈ [N1]× [N2]× [N3], m = (m1, m2, m3) ∈ [N1]× [N2]× [N3], [Nk] =
{0, 1, · · · , Nk − 1} and (k = 1, 2, 3).

The inverse transform of the DOFT is presented by the following formula [29]:

x(n) = 1
N1 N2 N3

N1−1
∑

m1=0

N2−1
∑

m2=0

N3−1
∑

m3=0
Fo(x)(m)ee4

2πn3m3
N3 ee2

2πn2m2
N2 ee1

2πn1m1
N1 . (8)

3. Discrete Octonion Linear Canonical Transform

In this section, based on the DOFT, we extend the 2-D DQLCT to the 3-D discrete
octonion linear canonical transform domain. A new transform, the discrete octonion
linear canonical transform, is proposed. We can use DOCLCT to solve the problem of
non-stationary 3-D octonion finite-length signals.
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Definition 4. The DOCLCT of an octonion-valued signal x : [N1]× [N2]× [N3] → O is defined by

Do
A1,A2,A3

{x}(m) =
N1−1

∑
n1=0

N2−1
∑

n2=0

N3−1
∑

n3=0
x(n)De1

A1
(n1, m1)De2

A2
(n2, m2)De4

A3
(n3, m3), (9)

where the kernel signals of the DOCLCT are

De1
A1
(n1, m1) =

1√
N1

ee1(
a1

2b1
n2

1∆s2
1− 2π

N1
n1m1+

d1
2b1

m2
1∆y2

1− π
2 ), (10)

De2
A2
(n2, m2) =

1√
N2

ee2(
a2

2b2
n2

2∆s2
2− 2π

N2
n2m2+

d2
2b2

m2
2∆y2

2− π
2 ), (11)

and

De4
A3
(n3, m3) =

1√
N3

ee4(
a3

2b3
n2

3∆s2
3− 2π

N3
n3m3+

d3
2b3

m2
3∆y2

3− π
2 ). (12)

When Ak =

[
0 1
−1 0

]
(k = 1, 2, 3), the DOCLCT reduces to the DOFT.

Properties of the DOCLCT

Next, we present several properties of the DOCLCT.

Theorem 1 (Linearity). For any octonion-valued signals x, y : [N1]× [N2]× [N3] → O , ♮, ♯ ∈
R. Then, the linearity of the DOCLCT is

Do
A1,A2,A3

{♮x + ♯y}(m) = ♮Do
A1,A2,A3

{x}(m) + ♯Do
A1,A2,A3

{y}(m). (13)

Proof. This proof step can be directly obtained by the definition of the DOCLCT. □

Theorem 2 (Scaling). For an octonion-valued signal x : [N1]× [N2]× [N3] → O , t = (t1, t2, t3)
̸= 0 ∈ [N1]× [N2]× [N3]. Then, the scaling of the DOCLCT is

Do
A1,A2,A3

{x(tn)}(m) = Do
Ω1,Ω2,Ω3

{x}
(m

t
)
, (14)

where Ωk =

[ ak
t2
k

bk

ck t2
kdk

]
∈ R2×2 and (k = 1, 2, 3).

Proof. According to the definition of the DOCLCT, we have

Do
A1,A2,A3

{x(tn)}(m) =
N1−1

∑
n1=0

N2−1
∑

n2=0

N3−1
∑

n3=0
x(tn)De1

A1
(n1, m1)De2

A2
(n2, m2)De4

A3
(n3, m3). (15)

Let u = tn = (u1, u2, u3). Then, the above formula becomes

Do
A1,A2,A3

{x(tn)}(m)

=
N1−1

∑
n1=0

N2−1
∑

n2=0

N3−1
∑

n3=0
x(u) 1√

N1
ee1(

a1
2b1

(
u1
t1
)

2
∆s2

1− 2π
N1

u1
t1

m1+
d1
2b1

m2
1∆y2

1− π
2 )

× 1√
N2

ee2(
a2

2b2
(

u2
t2
)

2
∆s2

2− 2π
N2

u2
t2

m2+
d2
2b2

m2
2∆y2

2− π
2 ) 1√

N3
ee4(

a3
2b3

(
u3
t3
)

2
∆s2

3− 2π
N3

u3
t3

m3+
d3
2b3

m2
3∆y2

3− π
2 )

=
N1−1

∑
n1=0

N2−1
∑

n2=0

N3−1
∑

n3=0
x(u)De1

Ω1

(
u1, m1

t1

)
De2

Ω2

(
u2, m2

t2

)
De4

Ω3

(
u3, m3

t3

)
= Do

Ω1,Ω2,Ω3
{x(u)}

(m
t
)
.

□
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Theorem 3. [Boundedness] Assume that xe(n) = x(n1,n2,n3)+x(n1,n2,−n3)
2 is the even part and

xo(n) =
x(n1,n2,n3)−x(n1,n2,−n3)

2 is the odd part of a function x(n) in the third variable n3, respec-
tively. Then,∣∣∣Do

A1,A2,A3
{x}(m)

∣∣∣= [ 1
N3

(∣∣∣Do
A1,A2

{x̃e}(m)
∣∣∣2 + ∣∣∣Do

A1,A2
{x̂o}(m)

∣∣∣2
+
∣∣∣Do

A1,A2
{x̂e}(m)

∣∣∣2 + ∣∣∣Do
A1,A2

{x̃o}(m)
∣∣∣2)] 1

2
.

(16)

Proof. According to the Formula (1), the DOCLCT of the function x(n) becomes

Do
A1,A2,A3

{x(n)}(m)

=
N1−1

∑
n1=0

N2−1
∑

n2=0

N3−1
∑

n3=0
(x̃ + x̂e4)(n)De1

A1
(n1, m1)De2

A2
(n2, m2)De4

A3
(n3, m3)

=
N1−1

∑
n1=0

N2−1
∑

n2=0

N3−1
∑

n3=0
x̃(n)De1

A1
(n1, m1)De2

A2
(n2, m2)De4

A3
(n3, m3)

+
N1−1

∑
n1=0

N2−1
∑

n2=0

N3−1
∑

n3=0
x̂(n)D−e1

A1
(n1, m1)D−e2

A2
(n2, m2)De4

A3
(n3, m3)e4.

(17)

From the Euler formula, then

Do
A1,A2,A3

{x(n)}(m)

=
N1−1

∑
n1=0

N2−1
∑

n2=0

N3−1
∑

n3=0
x̃e(n)De1

A1
(n1, m1)De2

A2
(n2, m2)

1√
N3

cos α3

−
N1−1

∑
n1=0

N2−1
∑

n2=0

N3−1
∑

n3=0
x̂o(n)D−e1

A1
(n1, m1)D−e2

A2
(n2, m2)

1√
N3

sin α3

+

(
N1−1

∑
n1=0

N2−1
∑

n2=0

N3−1
∑

n3=0
x̃o(n)De1

A1
(n1, m1)De2

A2
(n2, m2)

1√
N3

sin α3

+
N1−1

∑
n1=0

N2−1
∑

n2=0

N3−1
∑

n3=0
x̂e(n)D−e1

A1
(n1, m1)D−e2

A2
(n2, m2)

1√
N3

cos α3

)
e4,

(18)

where α3 = a3
2b3

n2
3∆s2

3 − 2π
N3

n3m3 +
d3
2b3

m2
3∆y2

3 − π
2 .

Hence, we have the result. □

Theorem 4. (Plancherel theorem) The Plancherel theorem of the DOCLCT is

∥ x ∥2
2 = N1N2N3∥ Do

A1,A2,A3
{x} ∥2

2
. (19)

Proof. According to Theorem 3, then

∥Do
A1,A2,A3

{x}∥2
2 =

N1−1
∑

n1=0

N2−1
∑

n2=0

N3−1
∑

n3=0

∣∣∣Do
A1,A2,A3

{x}(m)
∣∣∣2

= 1
N3

N1−1
∑

n1=0

N2−1
∑

n2=0

N3−1
∑

n3=0

(∣∣∣Do
A1,A2

{x̃e}(m)
∣∣∣2 + ∣∣∣Do

A1,A2
{x̂o}(m)

∣∣∣2
+
∣∣∣Do

A1,A2
{x̂e}(m)

∣∣∣2 + ∣∣∣Do
A1,A2

{x̃o}(m)
∣∣∣2)

= 1
N3

(
∥Do

A1,A2
{x̃e} ∥2

2 +∥ Do
A1,A2

{x̂o} ∥2
2

+ ∥Do
A1,A2

{x̂e} ∥2
2 +∥ Do

A1,A2
{x̃o} ∥2

2

)
.

(20)
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By the Plancherel theorem for the DQLCT [23], we have

∥Do
A1,A2,A3

{x}∥2
2 = 1

N1 N2 N3

(
∥x̃e ∥2

2 + ∥x̂o ∥2
2 + ∥x̂e ∥2

2 +∥ x̃o ∥2
2

)
. (21)

In addition, based on the formula

∥ x ∥2
2=∥x̃e ∥2

2 + ∥x̃o ∥2
2 + ∥x̂e ∥2

2 +∥ x̂o ∥2
2, (22)

then we have
∥Do

A1,A2,A3
{x}∥2

2 = 1
N1 N2 N3

∥ x ∥2
2,

that is to say
N1N2N3∥Do

A1,A2,A3
{x}∥2

2 = ∥ x ∥2
2.

□

Theorem 5 (Inversion transform). The inversion transform of the DOCLCT is obtained as follows:

x(n) =
N1−1

∑
u1=0

N2−1
∑

u2=0

N3−1
∑

u3=0
Do

A1,A2,A3
{x}(m)De4

A−1
3
(u3, m3)De2

A−1
2
(u2, m2)De1

A−1
1
(u1, m1), (23)

where A−1
k =

[
dk −bk
−ck ak

]
∈ R2×2 and (k = 1, 2, 3).

Proof. According to the definition of the DOCLCT, we have

N1−1
∑

u1=0

N2−1
∑

u2=0

N3−1
∑

u3=0
Do

A1,A2,A3
{x}(m)De4

A−1
3
(u3, m3)De2

A−1
2
(u2, m2)De1

A−1
1
(u1, m1)

=
N1−1

∑
u1=0

N2−1
∑

u2=0

N3−1
∑

u3=0

(
N1−1

∑
n1=0

N2−1
∑

n2=0

N3−1
∑

n3=0
x(n)De1

A1
(n1, m1)De2

A2
(n2, m2)De4

A3
(n3, m3)

)
× De4

A−1
3
(u3, m3)De2

A−1
2
(u2, m2)De1

A−1
1
(u1, m1).

(24)

In addition, by the kernel signals of the DOCLCT, the following formulas hold:

N3−1
∑

u3=0

N3−1
∑

n3=0
De4

A3
(n3, m3)De4

A−1
3
(u3, m3)

= 1
N3

N3−1
∑

u3=0

N2−1
∑

n3=0
ee4(

a3
2b3

(n2
3−u2

3)∆s2
3− 2π

N3
(n3−u3)m3)

=

{
1, n3 = u3

0, n3 ̸= u3

(25)

By these three formulas (25), the inverse transform of the DOCLCT can be established.
□

The following lemma shows that the DOCLCT can be disassembled by the Euler formula.

Lemma 1. The DOCLCT can be expressed in another formula:

Do
A1,A2,A3

{x}(m)

= ℜeee +ℜoeee1 +ℜeoee2 +ℜooee3 +ℜeeoe4 +ℜoeoe5 +ℜeooe6 +ℜoooe7,
(26)

where

ℜeee(m) = 1√
N1 N2 N3

N1−1
∑

n1=0

N2−1
∑

n2=0

N3−1
∑

n3=0
xeee(n) cos α1 cos α2 cos α3,
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ℜoee(m) = 1√
N1 N2 N3

N1−1
∑

n1=0

N2−1
∑

n2=0

N3−1
∑

n3=0
xoee(n) sin α1 cos α2 cos α3,

ℜeoe(m) = 1√
N1 N2 N3

N1−1
∑

n1=0

N2−1
∑

n2=0

N3−1
∑

n3=0
xeoe(n) cos α1 sin α2 cos α3,

ℜooe(m) = 1√
N1 N2 N3

N1−1
∑

n1=0

N2−1
∑

n2=0

N3−1
∑

n3=0
xooe(n) sin α1 sin α2 cos α3,

ℜeeo(m) = 1√
N1 N2 N3

N1−1
∑

n1=0

N2−1
∑

n2=0

N3−1
∑

n3=0
xeeo(n) cos α1 cos α2 sin α3,

ℜoeo(m) = 1√
N1 N2 N3

N1−1
∑

n1=0

N2−1
∑

n2=0

N3−1
∑

n3=0
xoeo(n) sin α1 cos α2 sin α3,

ℜeoo(m) = 1√
N1 N2 N3

N1−1
∑

n1=0

N2−1
∑

n2=0

N3−1
∑

n3=0
xeoo(n) cos α1 sin α2 sin α3,

ℜooo(m) = 1√
N1 N2 N3

N1−1
∑

n1=0

N2−1
∑

n2=0

N3−1
∑

n3=0
xooo(n) sin α1 sin α2 sin α3,

and αk = ak
2bk

n2
k∆s2

k − 2π
Nk

nkmk +
dk
2bk

m2
k∆y2

k − π
2 , (k = 1, 2, 3). The subscripts e and o indicate a

function is either even (e) or odd (o) for an appropriate variable, i.e., xooe(n) is odd for n1 and n2,
and even for n3.

Proof. The kernel function of the DOCLCT can be expanded as follows:(
De1

A1
(n1, m1)De2

A2
(n2, m2)

)
De4

A3
(n3, m3)

= 1√
N1 N2 N3

(ee1α1ee2α2)ee4α3

= 1√
N1 N2 N3

((cos α1 + e1 sin α1)(cos α2 + e2 sin α2))(cos α3 + e4 sin α3)

= 1√
N1 N2 N3

(cos α1 cos α2 cos α3 + sin α1 cos α2 cos α3e1

+ cos α1 sin α2 cos α3e2 + sin α1 sin α2 cos α3e3 + cos α1 cos α2 sin α3e4
+ sin α1 cos α2 sin α3e5 + cos α1 sin α2 sin α3e6 + sin α1 sin α2 sin α3e7).

(27)

By the definition of the DOCLCT, we have the result. □

This lemma eliminates the obstacle caused by the non-commutative and non-associative
properties of the DOCLCT.

Next, we give the shift transform of the DOCLCT. There are three forms of the shift
function based on three variables, xT1(n1, n2, n3) = x(n1 − l1, n2, n3), xT2(n1, n2, n3) =
x(n1, n2 − l2, n3), and xT3(n1, n2, n3) = x(n1, n2, n3 − l3). These three shift functions are
independent of each other and are not affected by other remaining variables.

Theorem 6 (Shift transform of the DOCLCT). Let ℘T1 , ℘T2 and ℘T3 denote the DOCLCT of the
three shift functions x(n1 − l1, n2, n3), x(n1, n2 − l2, n3) and x(n1, n2, n3 − l3), respectively. Then,

℘T1(m) = cos γ1Do
A1,A2,A3

{x}(m′)− sin γ1Φ1(m′), (28)

℘T1(m) = cos γ1Do
A1,A2,A3

{x}(m′′ )− sin γ1Φ2(m′′ ), (29)

℘T1(m) = cos γ1Do
A1,A2,A3

{x}(m′′′ )− sin γ1Φ3(m′′′ ), (30)

where m′ =
(
m′

1, m2, m3
)
; m′′ = (m1, m′

2, m3); m′′′ = (m1, m2, m′
3); m′

k = mk − Nkak
2πbk

∆s2
k lk;

γk =
ak

2bk
l2
k ∆s2

k − 2π
Nk

lkmk − Nkakdk
4πb2

k
∆y2

k∆s2
k lk
(

Nkak
2πbk

∆s2
k lk + 2mk

)
, (k = 1, 2, 3); and Φ1 = ℜsee −

ℜceee1 +ℜsoee2 −ℜcoee3 +ℜseoe4 −ℜceoe5 +ℜsooe6 −ℜcooe7, Φ2 = ℜese +ℜosee1 −ℜecee2 −
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ℜocee3 +ℜesoe4 +ℜosoe5 −ℜecoe6 −ℜocoe7, Φ3 = ℜees +ℜoese1 +ℜeose2 +ℜoose3 −ℜeece4 −
ℜoece5 −ℜeoce6 −ℜooce7.

Proof. We present the proof process for the DOCLCT of the function xT1 , and the other
two types are obtained according to the same steps.

According to Lemma 1, we have

℘T1 = Do
A1,A2,A3

{
xT1
}
(m)

= ℜT1
eee +ℜT1

oeee1 +ℜT1
eoee2 +ℜT1

ooee3 +ℜT1
eeoe4 +ℜT1

oeoe5 +ℜT1
eooe6 +ℜT1

oooe7.
(31)

Then, we can compute the formula:

ℜT1
eee(m) = 1√

N1 N2 N3

N1−1
∑

n1=0

N2−1
∑

n2=0

N3−1
∑

n3=0
xT1

eee(n) cos α1 cos α2 cos α3

= 1√
N1 N2 N3

N1−1
∑

n1=0

N2−1
∑

n2=0

N3−1
∑

n3=0
xeee(n1 − l1, n2, n3) cos α1 cos α2 cos α3.

Let h1 = n1 − l1, h2 = n2, h3 = n3 (h = (h1, h2, h3) ∈ R3), hence

ℜT1
eee(m) = 1√

N1 N2 N3

N1−1
∑

n1=0

N2−1
∑

n2=0

N3−1
∑

n3=0
xeee(n1 − l1, n2, n3) cos α1 cos α2 cos α3

= 1√
N1 N2 N3

N1−1
∑

h1=0

N2−1
∑

h2=0

N3−1
∑

h3=0
xeee(h) cos(β1 + γ1) cos β2 cos β3

= cos(γ1)√
N1 N2 N3

N1−1
∑

h1=0

N2−1
∑

h2=0

N3−1
∑

h3=0
xeee(h) cos β1 cos β2 cos β3

− sin(γ1)√
N1 N2 N3

N1−1
∑

h1=0

N2−1
∑

h2=0

N3−1
∑

h3=0
xeee(h) sin β1 cos β2 cos β3,

(32)

where β1 = a1
2b1

h2
1∆s2

1 − 2π
N1

h1

(
m1 − N1a1

2πb1
∆s2

1l1
)

+ d1
2b1

(
m1 − N1a1

2πb1
∆s2

1l1
)2

∆y2
1 − π

2 ,

γ1 = a1
2b1

l2
1∆s2

1 − 2π
N1

l1m1 − N1a1d1
4πb2

1
∆y2

1∆s2
1l1
(

N1a1
2πb1

∆s2
1l1 + 2m1

)
, and βk =

ak
2bk

n2
k∆s2

k − 2π
Nk

nkmk

+ dk
2bk

m2
k∆y2

k − π
2 , (k = 2, 3).

Let m′ =
(
m′

1, m2, m3
)
, m′

1 = m1 − N1a1
2πb1

∆s2
1l1 and

ℜsee(m′) = 1√
N1 N2 N3

N1−1
∑

h1=0

N2−1
∑

h2=0

N3−1
∑

h3=0
xeee(h) sin β1 cos β2 cos β3,

ℜcee(m′) = 1√
N1 N2 N3

N1−1
∑

h1=0

N2−1
∑

h2=0

N3−1
∑

h3=0
xoee(h) cos β1 cos β2 cos β3,

ℜsoe(m′) = 1√
N1 N2 N3

N1−1
∑

h1=0

N2−1
∑

h2=0

N3−1
∑

h3=0
xeoe(h) cos β1 cos β2 cos β3,

ℜcoe(m′) = 1√
N1 N2 N3

N1−1
∑

h1=0

N2−1
∑

h2=0

N3−1
∑

h3=0
xooe(h) cos β1 cos β2 cos β3,

ℜseo(m′) = 1√
N1 N2 N3

N1−1
∑

h1=0

N2−1
∑

h2=0

N3−1
∑

h3=0
xeeo(h) cos β1 cos β2 cos β3,

ℜceo(m′) = 1√
N1 N2 N3

N1−1
∑

h1=0

N2−1
∑

h2=0

N3−1
∑

h3=0
xoeo(h) cos β1 cos β2 cos β3,

ℜsoo(m′) = 1√
N1 N2 N3

N1−1
∑

h1=0

N2−1
∑

h2=0

N3−1
∑

h3=0
xeoo(h) cos β1 cos β2 cos β3,
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ℜcoo(m′) = 1√
N1 N2 N3

N1−1
∑

h1=0

N2−1
∑

h2=0

N3−1
∑

h3=0
xooo(h) cos β1 cos β2 cos β3.

Then, Formula (32) becomes

ℜT1
eee(m) = cos γ1ℜeee(m′)− sin γ1ℜsee(m′),

In addition, we can prove other formulas, such as

ℜT1
oee(m) = 1√

N1 N2 N3

N1−1
∑

h1=0

N2−1
∑

h2=0

N3−1
∑

h3=0
xoee(h) sin(β1 + γ1) cos β2 cos β3

= cos(γ1)√
N1 N2 N3

N1−1
∑

h1=0

N2−1
∑

h2=0

N3−1
∑

h3=0
xoee(h) sin β1 cos β2 cos β3

+ sin(γ1)√
N1 N2 N3

N1−1
∑

h1=0

N2−1
∑

h2=0

N3−1
∑

h3=0
xoee(h) cos β1 cos β2 cos β3,

By continuing in this way, we have

ℜT1
eee(m) = cos γ1ℜeee(m′)− sin γ1ℜsee(m′),

ℜT1
oee(m) = cos γ1ℜoee(m′) + sin γ1ℜcee(m′),

ℜT1
eoe(m) = cos γ1ℜeoe(m′)− sin γ1ℜsoe(m′),

ℜT1
ooe(m) = cos γ1ℜooe(m′) + sin γ1ℜcoe(m′),

ℜT1
eeo(m) = cos γ1ℜeeo(m′)− sin γ1ℜseo(m′),

ℜT1
oeo(m) = cos γ1ℜoeo(m′) + sin γ1ℜceo(m′),

ℜT1
eoo(m) = cos γ1ℜeoo(m′)− sin γ1ℜsoo(m′),

ℜT1
oo (m) = cos γ1ℜooo(m′) + sin γ1ℜcoo(m′).

According to Lemma 1, the first conclusion can be inferred:

℘T1(m) = cos γ1Do
A1,A2,A3

{x}(m′)− sin γ1Φ1(m′). (33)

where Φ1 = ℜsee −ℜceee1 +ℜsoee2 −ℜcoee3 +ℜseoe4 −ℜceoe5 +ℜsooe6 −ℜcooe7.
Using the same steps, the other two formulas, (29) and (30), can be obtained. □

4. Convolution Theorem of the DOCLCT

In this section, we first give the definition of the convolution operator associated
with the DOCLCT. Then, we obtain the convolution theorem of the DOCLCT by the
convolution operator.

Definition 5. Suppose the real functions x(n) and f (n) are given; the convolution operator ⋇∧ is
defined by

(x ⋇∧ f )(n) =
U1−1

∑
u1=0

U2−1
∑

u2=0

U3−1
∑

u3=0

1√
U1

1√
U2

1√
U3

x(u) f (n − u)

× e−e1
a1
b1

u1(n1−u1)∆s2
1 e−e1

a2
b2

u2(n2−u2)∆s2
2 e−e1

a3
b3

u3(n3−u3)∆s2
3 ,

(34)

where Uk denotes the intervals [0, 1, 2, · · · , Uk − 1], (k = 1, 2, 3).
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Lemma 2. The convolution theorem for the 3-D DLCT is obtained:

DA1,A2,A3{x ⋇∧ f }(m) = DA1,A2,A3{x}(m)DA1,A2,A3{ f }(m)

× e−e1(
d1
2b1

m2
1∆y2

1+
d2
2b2

m2
2∆y2

2+
d3
2b3

m2
3∆y2

3− 3π
2 )

.
(35)

Proof. According to the definition of the 3-D DLCT and the convolution operator, then

DA1,A2,A3{x ⋇∧ f }(m)

=
N1−1

∑
n1=0

N2−1
∑

n2=0

N3−1
∑

n3=0

(
U1−1

∑
u1=0

U2−1
∑

u2=0

U3−1
∑

u3=0

1√
U1

1√
U2

1√
U3

x(u) f (n − u)

× e
−e1

a1
b1

u1(n1−u1)∆s2
1e−e1

a2
b2

u2(n2−u2)∆s2
2e−e1

a3
b3

u3(n3−u3)∆s2
3

)
× De1

A1
(n1, m1)De1

A2
(n2, m2)De1

A3
(n3, m3).

(36)

Let r = n − u = (r1, r2, r3). Then, the above formula becomes

DA1,A2,A3{x ⋇∧ f }(m)

=
N1−U1−1

∑
r1=−u1

N2−U2−1
∑

r2=−u2

N3−U3−1
∑

r3=−u3

(
U1−1

∑
u1=0

U2−1
∑

u2=0

U3−1
∑

u3=0

1√
U1

1√
U2

1√
U3

x(u) f (r)

× e
−e1

a1
b1

u1r1∆s2
1e−e1

a2
b2

u2r2∆s2
2e−e1

a3
b3

u3r3∆s2
3

)
× 1√

N1
ee1(

a1
2b1

(r1+u1)
2∆s2

1− 2π
N1

(r1+u1)m1+
d1
2b1

m2
1∆y2

1− π
2 )

× 1√
N2

ee1(
a2

2b2
(r2+u2)

2∆s2
2− 2π

N2
(r2+u2)m2+

d2
2b2

m2
2∆y2

2− π
2 )

× 1√
N3

ee1(
a3

2b3
(r3+u3)

2∆s2
3− 2π

N3
(r3+u3)m3+

d3
2b3

m2
3∆y2

3− π
2 ).

(37)

Since e
−e1

a1
b1

u1r1∆s2
1e

e1
a1
b1

u1r1∆s2
1 = 1, e−e1

a2
b2

u2r2∆s2
2 ee1

a2
b2

u2r2∆s2
2 = 1 , e−e1

a3
b3

u3r3∆s2
3 ee1

a3
b3

u3r3∆s2
3 = 1.

Then, we have

DA1,A2,A3{x ⋇∧ f }(m)

=

(
U1−1

∑
u1=0

U2−1
∑

u2=0

U3−1
∑

u3=0

1√
U1U2U3

x(u)e
e1(

a1
2b1

u2
1∆s2

1− 2π
N1

u1m1+
d1
2b1

m2
1∆y2

1− π
2 )

× ee1(
a2

2b2
u2

2∆s2
2− 2π

N2
u2m2+

d2
2b2

m2
2∆y2

2− π
2 )ee1(

a3
2b3

u2
3∆s2

3− 2π
N3

u3m3+
d3
2b3

m2
3∆y2

3− π
2 )

×
N1−U1−1

∑
r1=−u1

N2−U2−1
∑

r2=−u2

N3−U3−1
∑

r3=−u3

f (r)e
e1(

a1
2b1

r2
1∆s2

1−
2π
N1

r1m1+
d1
2b1

m2
1∆y2

1−
π
2 )

√
N1 N2 N3

× ee1(
a2

2b2
r2

2∆s2
2− 2π

N2
r2m2+

d2
2b2

m2
2∆y2

2− π
2 )ee1(

a3
2b3

r2
3∆s2

3− 2π
N3

r3m3+
d3
2b3

m2
3∆y2

3− π
2 )

× e−e1(
d1
2b1

m2
1∆y2

1+
d2
2b2

m2
2∆y2

2+
d3
2b3

m2
3∆y2

3− 3π
2 )

.

(38)

Based on the definition of the 3-D DLCT, we can obtain the proof. □

Next, we obtain the relation between the DOCLCT and the 3-D DLCT. Then, we derive
a convolution theorem for the DOCLCT.

Lemma 3. The relation between the DOCLCT and the 3-D DLCT is given as follows:

Do
A1,A2,A3

{x}(m)

= 1
4
{(

DA1,A2,A3{x}(m)−DA1,A2,B3{x}(ς)
)
(1 − e3)

+
(
DA1,B2,B3{x}(ϱ)−DA1,B2,A3{x}(τ)

)
(1 + e3)

}
+ 1

4
{(

DA1,A2,A3{x}(m) +DA1,A2,B3{x}(ς)
)
(1 + e3)

−
(
DA1,B2,B3{x}(ϱ) +DA1,B2,A3{x}(τ)

)
(1 − e3)

}
·e5,

(39)
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where Bk =

[
ak −bk
−ck dk

]
, (k = 1, 2, 3), τ = (m1,−m2, m3), ς = (m1, m2,−m3) and

ϱ = (m1,−m2,−m3).

Proof. According to Definition 1, then

DA1,B2,A3{x}(τ) =
N1−1

∑
n1=0

N2−1
∑

n2=0

N3−1
∑

n3=0
x(n)De1

A1
(n1, m1)

1√
N2

ee1
a2

−2b2
n2

2∆s2
2+

2π
N2

n2m2+
d2

−2b2
m2

2∆y2
2− π

2

× De1
A3
(n3, m3)

=
N1−1

∑
n1=0

N2−1
∑

n2=0

N3−1
∑

n3=0
x(n)De1

A1
(n1, m1)

1√
N2

e−e1(
a2

2b2
n2

2∆s2
2− 2π

N2
n2m2+

d2
2b2

m2
2∆y2

2+
π
2 )

× De1
A3
(n3, m3)

= −
N1−1

∑
n1=0

N2−1
∑

n2=0

N3−1
∑

n3=0
x(n)De1

A1
(n1, m1)

1√
N2

e−e1α2 De1
A3
(n3, m3).

(40)

The third equation is based on this fact: e−e1
π
2 = −ee1

π
2 .

According to the same method, we can obtain the following two equations:

DA1,A2,B3{x}(ς)= −
N1−1

∑
n1=0

N2−1

∑
n2=0

N3−1

∑
n3=0

x(n)De1
A1
(n1, m1)De1

A2
(n2, m2)

1√
N3

e−e1α3 , (41)

DA1,B2,B3{x}(ϱ)=
N1−1

∑
n1=0

N2−1

∑
n2=0

N3−1

∑
n3=0

x(n)De1
A1
(n1, m1)

1√
N2

e−e1α2
1√
N3

e−e1α3 , (42)

where αk =
ak

2bk
n2

k∆s2
k − 2π

Nk
nkmk +

dk
2bk

m2
k∆y2

k − π
2 , (k = 2, 3). By the sine and cosine functions,

we write the second kernel function De1
A2
(n2, m2) of the 3-D DLCT in the cosine and sine

forms, respectively.

1
2
(
DA1,A2,A3{x}(m)−DA1,B2,A3{x}(τ)

)
=

1√
N2

N1−1

∑
n1=0

N2−1

∑
n2=0

N3−1

∑
n3=0

x(n)De1
A1
(n1, m1) cos α2De1

A3
(n3, m3),

(43)

1
2
(
DA1,B2,B3{x}(ϱ) +DA1,A2,B3{x}(ς)

)
=

1√
N2N3

N1−1

∑
n1=0

N2−1

∑
n2=0

N3−1

∑
n3=0

x(n)De1
A1
(n1, m1)(−e1 sin α2)e−e1α3 .

(44)

In Formula (44), if e1 sin α2 becomes e2 sin α2, this multiplies Formula (44) from the
right by e3 and according to Figure 1. Hence,

1
2
(
DA1,B2,B3{x}(ϱ) +DA1,A2,B3{x}(ς)

)
e3

=
1√

N2N3

N1−1

∑
n1=0

N2−1

∑
n2=0

N3−1

∑
n3=0

x(n)De1
A1
(n1, m1)e2 sin α2ee1α3 .

(45)

Adding Formulas (43) and (45), then

1
2
(
DA1,A2,A3{x}(m)−DA1,B2,A3{x}(τ)

)
+ 1

2
(
DA1,B2,B3{x}(ϱ) +DA1,A2,B3{x}(ς)

)
e3

=
N1−1

∑
n1=0

N2−1
∑

n2=0

N3−1
∑

n3=0
x(n)De1

A1
(n1, m1)De2

A2
(n2, m2)De1

A3
(n3, m3).

(46)
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For the convenience of calculation, assume that

ΘA1,A2,A3{x}(m) = 1
2
(
DA1,A2,A3{x}(m)−DA1,B2,A3{x}(τ)

)
+ 1

2
(
DA1,B2,B3{x}(ϱ) +DA1,A2,B3{x}(ς)

)
e3

=
N1−1

∑
n1=0

N2−1
∑

n2=0

N3−1
∑

n3=0
x(n)De1

A1
(n1, m1)De2

A2
(n2, m2)De1

A3
(n3, m3).

(47)

By the same steps, we can write De1
A3
(n3, m3) in the form

1
2
(
ΘA1,A2,A3{x}(m)− ΘA1,A2,B3{x}(ς)

)
=

N1−1

∑
n1=0

N2−1

∑
n2=0

N3−1

∑
n3=0

x(n)De1
A1
(n1, m1)De2

A2
(n2, m2)

1√
N3

cos α3,
(48)

−1
2
(
ΘA1,A2,A3{x}(m) + ΘA1,A2,B3{x}(ς)

)
e5

=
N1−1

∑
n1=0

N2−1

∑
n2=0

N3−1

∑
n3=0

x(n)De1
A1
(n1, m1)De2

A2
(n2, m2)

1√
N3

e4 sin α3,
(49)

Adding the above two formulas, the following formula is obtained:

1
2
(
ΘA1,A2,A3{x}(m)− ΘA1,A2,B3{x}(ς)

)
− 1

2
(
ΘA1,A2,A3{x}(m) + ΘA1,A2,B3{x}(ς)

)
e5

=
N1−1

∑
n1=0

N2−1
∑

n2=0

N3−1
∑

n3=0
x(n)De1

A1
(n1, m1)De2

A2
(n2, m2)De3

A3
(n3, m3).

(50)

Finally, the result can be proven. □

Theorem 7. The convolution theorem for the DOCLCT is obtained as follows:

Do
A1,A2,A3

{x ⋇∧ f }(m)

= 1
4
{(

ΞA1,A2,A3{x}(m)ΠA1,A2,A3{ f }(m)− ΞA1,A2,B3{x}(ς)ΠA1,A2,B3{ f }(ς)
)
(1 − e3)

+
(
ΞA1,B2,B3{x}(ϱ)ΠA1,B2,B3{ f }(ϱ)− ΞA1,B2,A3{x}(τ)ΠA1,B2,A3{ f }(τ)

)
(1 + e3)

}
+ 1

4
{(

ΞA1,A2,A3{x}(m)ΠA1,A2,A3{ f }(m) + ΞA1,A2,B3{x}(ς)ΠA1,A2,B3{ f }(ς)
)
(1 + e3)

−
(
ΞA1,B2,B3{x}(ϱ)ΠA1,B2,B3{ f }(ϱ) + ΞA1,B2,A3{x}(τ)ΠA1,B2,A3{ f }(τ)

)
(1 − e3)

}
·e5,

(51)

where

ΞA1,A2,A3{x}(m)ΠA1,A2,A3{ f }(m) = DA1,A2,A3{x}(m)DA1,A2,A3{ f }(m)

× e−e1(
d1
2b1

m2
1∆y2

1+
d2
2b2

m2
2∆y2

2+
d3
2b3

m2
3∆y2

3− 3π
2 )

,
(52)

ΞA1,A2,B3{x}(ς)ΠA1,A2,B3{ f }(ς) = DA1,A2,B3{x}(ς)DA1,A2,B3{ f }(ς)
× e−e1(

d1
2b1

m2
1∆y2

1+
d2
2b2

m2
2∆y2

2−
d3
2b3

m2
3∆y2

3− 3π
2 )

,
(53)

ΞA1,B2,B3{x}(ϱ)ΠA1,B2,B3{ f }(ϱ) = DA1,B2,B3{x}(ϱ)DA1,B2,B3{ f }(ϱ)
× e−e1(

d1
2b1

m2
1∆y2

1−
d2
2b2

m2
2∆y2

2−
d3
2b3

m2
3∆y2

3− 3π
2 )

,
(54)

ΞA1,B2,A3{x}(τ)ΠA1,B2,A3{ f }(τ) = DA1,B2,A3{x}(τ)DA1,B2,A3{ f }(τ)
× e−e1(

d1
2b1

m2
1∆y2

1−
d2
2b2

m2
2∆y2

2+
d3
2b3

m2
3∆y2

3− 3π
2 )

.
(55)
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Proof. Using Lemma 3, then we have

Do
A1,A2,A3

{x ⋇∧ f }(m)

= 1
4
{(

DA1,A2,A3{x ⋇∧ f }(m)−DA1,A2,B3{x ⋇∧ f }(ς)
)
(1 − e3)

+
(
DA1,B2,B3{x ⋇∧ f }(ϱ)−DA1,B2,A3{x ⋇∧ f }(τ)

)
(1 + e3)

}
+ 1

4
{(

DA1,A2,A3{x ⋇∧ f }(m) +DA1,A2,B3{x ⋇∧ f }(ς)
)
(1 + e3)

−
(
DA1,B2,B3{x ⋇∧ f }(ϱ) +DA1,B2,A3{x ⋇∧ f }(τ)

)
(1 − e3)}·e5.

(56)

According to Lemma 2, we obtain

DA1,A2,A3{x ⋇∧ f }(m) = DA1,A2,A3{x}(m)DA1,A2,A3{ f }(m)

× e−e1(
d1
2b1

m2
1∆y2

1+
d2
2b2

m2
2∆y2

2+
d3
2b3

m2
3∆y2

3− 3π
2 )

,
(57)

DA1,A2,B3{x ⋇∧ f }(ς) = DA1,A2,B3{x}(ς)DA1,A2,B3{ f }(ς)
× e−e1(

d1
2b1

m2
1∆y2

1+
d2
2b2

m2
2∆y2

2−
d3
2b3

m2
3∆y2

3− 3π
2 )

,
(58)

DA1,B2,B3{x ⋇∧ f }(ϱ) = DA1,B2,B3{x}(ϱ)DA1,B2,B3{ f }(ϱ)
× e−e1(

d1
2b1

m2
1∆y2

1−
d2
2b2

m2
2∆y2

2−
d3
2b3

m2
3∆y2

3− 3π
2 )

,
(59)

DA1,B2,A3{x ⋇∧ f }(τ) = DA1,B2,A3{x}(τ)DA1,B2,A3{ f }(τ)
× e−e1(

d1
2b1

m2
1∆y2

1−
d2
2b2

m2
2∆y2

2+
d3
2b3

m2
3∆y2

3− 3π
2 )

.
(60)

Hence, the result can be obtained. □

5. Correlation Theorem of the DOCLCT

In this section, the correlation operator is presented; then, we obtain the correlation
theorem of the DOCLCT.

Definition 6. Given the real functions x(n) and f (n), the correlation operator ⋉ is defined by

(x ⋉ f )(n) =
U1−1

∑
u1=0

U2−1
∑

u2=0

U3−1
∑

u3=0

1√
U1

1√
U2

1√
U3

x(u) f (u − n)

× e−e1
a1
b1

u1(n1−u1)∆s2
1e−e1

a2
b2

u2(n2−u2)∆s2
2e−e1

a3
b3

u3(n3−u3)∆s2
3

= x(n)⋇∧ f (−n).

(61)

Lemma 4. The correlation theorem for the 3-D DLCT is obtained as follows:

DA1,A2,A3{x ⋉ f }(m) = DA1,A2,A3{x}(m)DB1,B2,B3{ f }(m)

× e−e1(
d1
2b1

m2
1∆y2

1+
d2
2b2

m2
2∆y2

2+
d3
2b3

m2
3∆y2

3)·e1.
(62)

Proof. The proof process is similar to Lemma 2, so it is omitted. □

According to Lemma 4, we obtain the following theorem:

Theorem 8. The correlation theorem for the DOCLCT is obtained as follows:
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Do
A1,A2,A3

{x ⋉ f }(m)

= 1
4

{(
ΞA1,A2,A3{x}(m)ΠB1,B2,B3{ f }(m)− ΞA1,A2,B3{x}(ς)ΠB1,B2,A3{ f }(ς)

)
(1 − e3)

+
(

ΞA1,B2,B3{x}(ϱ)ΠB1,A2,A3{ f }(ϱ)− ΞA1,B2,A3{x}(τ)ΠB1,A2,B3{ f }(τ)
)
(1 + e3)

}
+ 1

4

{(
ΞA1,A2,A3{x}(m)ΠB1,B2,B3{ f }(m) + ΞA1,A2,B3{x}(ς)ΠB1,B2,A3{ f }(ς)

)
(1 + e3)

−
(

ΞA1,B2,B3{x}(ϱ)ΠB1,A2,A3{ f }(ϱ) + ΞA1,B2,A3{x}(τ)ΠB1,A2,B3{ f }(τ)
)
(1 − e3)

}
·e5,

(63)

where

ΞA1,A2,A3{x}(m)ΠB1,B2,B3{ f }(m) = DA1,A2,A3{x}(m)DB1,B2,B3{ f }(m)

× e−e1(
d1
2b1

m2
1∆y2

1+
d2
2b2

m2
2∆y2

2+
d3
2b3

m2
3∆y2

3)·e1,
(64)

ΞA1,A2,B3{x}(ς)ΠB1,B2,A3{ f }(ς) = DA1,A2,B3{x}(ς)DB1,B2,A3{ f }(ς)
× e−e1(

d1
2b1

m2
1∆y2

1+
d2
2b2

m2
2∆y2

2−
d3
2b3

m2
3∆y2

3)·e1,
(65)

ΞA1,B2,B3{x}(ϱ)ΠB1,A2,A3{ f }(ϱ) = DA1,B2,B3{x}(ϱ)DB1,A2,A3{ f }(ϱ)
× e−e1(

d1
2b1

m2
1∆y2

1−
d2
2b2

m2
2∆y2

2−
d3
2b3

m2
3∆y2

3)·e1,
(66)

ΞA1,B2,A3{x}(τ)ΠB1,A2,B3{ f }(τ) = DA1,B2,A3{x}(τ)DB1,A2,B3{ f }(τ)
× e−e1(

d1
2b1

m2
1∆y2

1+
d2
2b2

m2
2∆y2

2+
d3
2b3

m2
3∆y2

3)·e1.
(67)

Proof. The proof process is similar to Theorem 7, so it is omitted. □

6. Conclusions

In the present work, the results presented show that the DLCT can be generalized to
the case of octonion algebras. We proposed the DOCLCT and studied some basic properties
associated with the DOCLCT. Then, according to a new convolution operate, we obtained
the convolution theorem of the DOCLCT by the relationship between the DOCLCT and the
3-D DLCT. Finally, the correlation theorem of the DOCLCT was exploited. The properties
of the DOCLCT show that they can be used for the analysis of the convolution theorem.
The most important contribution of this article is that it provides basic tools for the time–
frequency analysis of non-stationary 3-D octonion finite-length signals. The presented
results form the foundation of octonion-based signals and system theory.

For applications, the proposed convolution theorem can be used to solve integral
equations with special kernels [37]. We can also discuss the design of multiplicative filters
with the convolution theorem of the DOCLCT.

We can use the convolution theorem of the DOCLCT in the analysis of some 3-D
linear time-invariant systems described in [28]. This hypercomplex generalization of the
DOCLCT provides an excellent tool for the analysis of 3-D discrete linear time-invariant
systems and 3-D discrete data.

The authors of [38] show how some interesting properties of 1-D complex Gabor
filters are extended to 2-D by quaternionic Gabor filters. In parallel, they introduce the
corresponding quaternionic Gabor filter-based approach to disparity estimation and texture
segmentation. Thus, if one is interested in the development of Gabor filters with values in
octonion algebras it is possible to define octonion Gabor filters based on the DOCLCT and
to introduce the local octonion phase. This is a theoretical necessity to develop and analyze
the DOCLCT.

The DOCLCT is a new concept which allows for the processing of a few gray-scale or
color images, as well as images with their local information as one octonion 8-D image in
the spectral domain. This concept generalizes the traditional complex and quaternion 2-D
DLCTs and can be effectively used for parallel processing up to eight gray-scale images or
two color images [39,40]. Surely, the methods presented here are only a first step in using
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hypercomplex methods in image processing. Detailed work in this area remains in the plan
for further action, as well as the further development of this theory.

As a theoretical basis of the frequency-domain definitions of high-dimensional analytic
signals, the DOCLCT can be applied in the domain of analytic signals. Other potential
applications can be found in noise analysis and image processing, such as the methods
presented in [41,42].

Future research will be concerned with extensions of the applications sketched in
this paper. Thus, we hope to open a door for future research on high-dimensional signal
processing using representations in hypercomplex algebras.
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