
Citation: He, X.; Wang, Y.; Li, T.;

Kang, R.; Zhao, Y. Novel Controller

Design for Finite-Time Synchronization

of Fractional-Order Nonidentical

Complex Dynamical Networks under

Uncertain Parameters. Fractal Fract.

2024, 8, 155. https://doi.org/

10.3390/fractalfract8030155

Academic Editor: António Lopes

Received: 20 January 2024

Revised: 2 March 2024

Accepted: 8 March 2024

Published: 10 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fractal and fractional

Article

Novel Controller Design for Finite-Time Synchronization
of Fractional-Order Nonidentical Complex Dynamical
Networks under Uncertain Parameters
Xiliang He, Yu Wang *, Tianzeng Li, Rong Kang and Yu Zhao

School of Mathematics and Statistics, Sichuan University of Science and Engineering, Zigong 643000, China;
litianzeng@suse.edu.cn (T.L.); 322070108104@stu.suse.edu.cn (R.K.); 322070108111@stu.suse.edu.cn (Y.Z.)
* Correspondence: jdwangyu@suse.edu.cn

Abstract: The synchronization of complex networks, as an important and captivating dynamic phe-
nomenon, has been investigated across diverse domains ranging from social activities to ecosystems
and power systems. Furthermore, the synchronization of networks proves instrumental in solving en-
gineering quandaries, such as cryptography and image encryption. And finite-time synchronization
(FTS) controls exhibit substantial resistance to interference, accelerating network convergence speed
and heightening control efficiency. In this paper, finite-time synchronization (FTS) is investigated for
a class of fractional-order nonidentical complex networks under uncertain parameters (FONCNUPs).
Firstly, some new FTS criteria for FONCNUPs are proposed based on Lyapunov theory and fractional
calculus theory. Then, the new controller is designed based on inequality theory. Compared to the
general controller, it controls all nodes and adds additional control to some of them. When compared
to other controllers, it has lower control costs and higher efficiency. Finally, a numerical example is
presented to validate the effectiveness and rationality of the obtained results.

Keywords: finite-time synchronization; uncertain parameters; nonidentical networks

1. Introduction

Nowadays, complex networks are almost everywhere, and the study of complex net-
works has wide applications in various disciplines. For example, in sociology, it includes
human relationships [1], information dissemination [2], collective behavior [3], etc. In biol-
ogy, it includes the structure and function of biological systems [4,5]. In physics, it involves
the reliability and stability of power systems [6], transportation networks [7], etc. Therefore,
complex networks have attracted a large number of researchers from many fields.

Fractional calculus is an important branch of calculus. It is a mathematical concept
that lies between integer-order differentiation and integration. In traditional integer-order
calculus, the order of differentiation can only be a positive integer. However, in fractional
calculus, the order can be any real or complex number, including decimals and fractions [8].
Fractional derivatives provide scientists with a new mathematical tool for solving prob-
lems with non-local characteristics and complex dynamical behavior. They can be used
to describe phenomena with non-locality, such as long-term memory and non-stationary
processes [9]. Fractional calculus has wide applications in various scientific fields, including
chemistry, biology, and engineering [10–12]. Additionally, the study of fractional calculus
is of great significance in uncovering many phenomena in nature, such as diffusion pro-
cesses [13], circuits [14], and chaotic systems [15]. Therefore, fractional calculus has a broad
and important prospect of applications in scientific research and engineering.

With the utilization of fractional calculus, researchers have commenced applying it to
the realm of complex networks. An extension of traditional complex networks, fractional-
order complex networks (FOCNs) integrate fractional derivatives and fractional differential
equations to depict the dynamic behavior within networks. FOCNs prove more adept
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in capturing the complexity of real-world complex systems, including secure communi-
cations [16], mathematical biology [17], heat conduction [18], and hydrodynamics [19].
Relative to traditional complex networks, FOCNs excel in illustrating features, such as
long-range dependence, non-stationarity, and network evolution. Nonlinear and non-local
behavioral patterns persist in numerous complex systems, such as the brain and financial
markets. Traditional integer-order calculus falls short in accurately characterizing these be-
haviors. Consequently, the study of FOCNs offers partial compensation for the limitations
of integer-order models. Stemming from the investigation of real system behavior and
advances in computational science, FOCNs have emerged as a thriving field of research
within the domain of complex networks.

Nevertheless, real networks typically exhibit high nonidenticality, whereby the roles
of distinct nodes and paths in the network evolution process deviate significantly. Conse-
quently, nonidentical complex networks embrace heightened complexity and realism when
compared to identical complex networks [20]. Within fractional-order nonidentical complex
dynamic networks, the presence of parameter uncertainty renders network synchronization
a formidable challenge. In such networks, both the connections between network nodes and
dynamic behaviors of nodes fall under the influence of uncertain parameters [21]. Conse-
quently, achieving synchronization necessitates consideration of these uncertain parameters
as well.

Synchronization, as an important and captivating dynamic phenomenon, has been
investigated across diverse domains ranging from social activities to ecosystems and power
systems. Furthermore, synchronization proves instrumental in solving engineering quan-
daries, such as cryptography [22] and image encryption [23]. Extensive research has
been dedicated to synchronization, encompassing phenomena like asymptotic synchro-
nization [24], quasi synchronization [25], exponential synchronization, and others [26,27].
Depending on the desired synchronization time frame, synchronization can be categorized
into infinite-time synchronization and FTS. Traditional approaches primarily focus on the
behavior of error systems over an infinite-time interval. However, practical applications
occasionally necessitate the attainment of synchronization within a finite convergence
time. In comparison to infinite-time synchronization, FTS offers optimal convergence time,
enhanced robustness, and superior interference attenuation performance. Additionally,
FTS controls exhibit substantial resistance to interference, accelerating network convergence
speed and heightening control efficiency [28,29]. Such traits have garnered considerable
attention in practical applications, including transportation.

In the literature [30], Li proposed a new lemma based on fractional calculus theory
to study the FTS problem, and a new feedback controller was designed based on the
new lemma. In [31], Xiao established FTS conditions based on Lyapunov techniques and
fractional calculus theory and designed different types of controllers according to the char-
acteristics of neural networks to achieve FTS. In [32], Li utilized the fundamental theory
of fractional calculus and Lyapunov theory to establish the fractional-order finite-time
convergence principle. They also designed two novel adaptive nonlinear controllers and
discontinuous nonlinear controllers to solve the complete synchronization and FTS prob-
lems of fractional-order fuzzy neural networks. In [33], Li designed quaternion feedback
controllers and quaternion adaptive controllers to solve the robust FTS problem of the
uncertain fractional-order quaternion neural networks. In [34], Xu combined the Lyapunov
method with graph theory and established FTS criteria for fractional-order multi-weight
complex dynamic networks using feedback control and adaptive control. In [35], using
Lyapunov theory, differential inclusion theory, and fractional calculus theory, the FTS con-
ditions and upper bounds of stable time for fractional-order memory complex-valued BAM
neural networks were obtained. In [36], by using the Young inequality and the fractional
derivative rule of composite functions, a new finite-time convergence principle related to
time delays was derived. However, in previous studies, few researchers have simultane-
ously considered the FTS problem of fractional-order nonidentical complex networks under
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uncertain parameters. There is a lack of relevant research, and our research will enrich the
existing research conclusions. So, it is important to investigate the FTS of FONCNUPs.

Motivated by the above discussions, we will study the FTS of FONCNUPs. The main
contributions are as follows:

(1) A new criterion for FOCNUP synchronization is proposed using fractional-order
theory and inequality theory.

(2) A new controller is designed to achieve the FTS of FOCNUPs.
(3) Two general controllers are proposed and compared with the new controller proposed,

and corresponding numerical simulations are performed to highlight the advantages
of our proposed new controller.

The following passages present the remaining sections of this paper: Section 2 is the
preliminaries. Some sufficient conditions for the FTS of FOCNUPs are given in Section 3.
The rationality of the acquired results are verified by two numerical examples in Section 4.
Ultimately, Section 5 shows the conclusion of this paper.

Notations: Rn represents the n-dimensional Euclidean space. Rn×n denotes n × n
matrices in the real field. N⊤ represents the transpose matrix of N. α is the derivative order.
For any e = (e1, e2, · · · , en) ∈ Rn, ∥e∥ = ∑n

i=1 |ei| is the Euclidean norm. Cm([t,+∞),R)
represent the space consisting of m-order continuous differentiable functions from [t,+∞)
into R.

2. Preliminaries

Definition 1 ([8]). The α-order fractional integral of function ψ(t) is defined as

Iα
t ψ(t) =

1
Γ(α)

∫ t

t0

(t − s)α−1ψ(s)ds, α > 0, (1)

where t0 is the initial time, t ≥ t0, and Γ(·) is the Gamma function.

Definition 2 ([8]). The α-order Caputo fractional derivative of ψ(t) is defined as

C
t0

Dα
t ψ(t) =

1
Γ(η − α)

∫ t

t0

(t − ϑ)η−α−1ψ(t)(η)(ϑ)dϑ, (2)

where η − 1 < α < η, η ∈ Z+. When 0 < α < 1,

C
t0

Dα
t ψ(t) =

1
Γ(1 − α)

∫ t

t0

(t − ϑ)−αψ′(t)(ϑ)dϑ. (3)

Lemma 1 ([37]). If 0 < α < 1, and ψ(t) ∈ C1([t,+∞),R), one has

C
t0

Dα
t |ψ(t)| ≤ sign(ψ(t))C

t0
Dα

t ψ(t), (4)

where t ≥ t0, and t0 is the initial time.

Lemma 2 ([38]). For all vectors ω, s ∈ Rn, and P is a positive-definite matrix, which satisfies

ω⊤s ≤ 1
2

ω⊤Pω +
1
2

s⊤P−1s, P ∈ Rn×n. (5)

Lemma 3 ([33]). Suppose V(t) : [t0,+∞) is a continuous and differentiable function, which satisfies

C
t0

Dα
t V(t) ≤ −ρV−µ(t)− δ̂, (6)

where 0 < α < 1, ρ > 0, and µ ≥ 1, δ̂ > 0. Then, V(t) = 0 for all t ≥ t∗, where
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t∗ = t0 +

[
Γ(1 + α)

ρ(1 + µ)
(V(t0) + (

ρ

δ̂
))1+µ − Γ(1 + α)

ρ(1 + µ)
(

ρ

δ̂
)

1+µ
µ

] 1
α

. (7)

Assumption 1. ψi(·) are activation functions, and it satisfies the Lipschitz conditions, if there exists
L = diag(l1, l2, · · · , ln), L is a positive matrix, and for all i = 1, 2, · · ·, n, we have

|ψi(t, ϕ)− ψp(t, φ)| ≤ Li|ϕ − φ|, (8)

for any φ, ϕ ∈ Rn.

3. Main Results

In this section, the FONCDNUP network model is constructed and then the Lyapunov
theorem and differential control theory are utilized to achieve the synchronization of
system (9) and system (10) under a new controller. Next, the following FONCDNUP will
be taken into account: the FONCDNUP’s drive system is described as

c
t0Dα

t ϕi(t) = G0ϕi(t) + B0h̄(ϕi(t)) + c
N

∑
j=1

dijΛϕj(t), (9)

and the FONCDNUP’s response system is defined as

c
t0Dα

t φi(t) = (A0 + ∆A(t))φi(t) + (D0 + ∆D(t))h̄(φi(t)) + c
N

∑
j=1

dijΛφj(t) + ui(t), (10)

where 0 < α < 1, i = 1, 2, · · · , n, G0 = (gij)n×n and A0 = (aij)n×n represent the constant
matrices, and ϕi(t) and φi(t) are the state variables. h̄(ϕi(t)) and h̄(φi(t)) are the time-
varying nonlinear vector functions. B0 and D0 are the weight matrices. And c is the
coefficient of the coupling strength in the system. Then, (dij)n×n represent the outer
coupling matrix, and if they are connected between nodes i and j, dij ̸= 0; or else, dij = 0.
Λ = diag(ε1, ε2, · · · , εn) > 0 represent the internal coupling matrix. ∆A(t) and ∆D(t) are
the unknown matrices with norm bounded parameter uncertainty.

Consider that the synchronization error (Sync-error) of FONCDNUPs is defined as

ei(t) = φi(t)− ϕi(t).

By utilizing (9) and (10), the Sync-error system is described by

c
t0Dα

t ei(t) =c
t0Dα

t φi(t)−c
t0 Dα

t ϕi(t)

=(A0 + ∆A(t))φi(t) + (D0 + ∆D(t))h̄(φi(t))

− B0h̄(ϕi(t))− G0ϕi(t) + c
N

∑
j=1

dijΛei(t) + ui(t),

Assumption 2. The parametric uncertainties ∆A(t),∆D(t) are defined as

∆A(t) = MaΦ(t)Ha,

∆D(t) = MdΦ(t)Hd,

where Ma,Md,Ha,Hd are known constant matrices. The uncertain matrix Φ(t) satisfies the follow-
ing condition:

Φ⊤(t)Φ(t) ≤ I,

where I is the identity matrix.
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Theorem 1. Suppose Assumptions 1 and 2 hold; if the scalar 0 < α < 1 and the below inequalities
(i)–(iii) can be holds, then the FONCDNUPs will achieve FTS under the controller ui1:

(i) δ̂1 = ∑n
i=1 Ω1∥ei(t)∥ > 0;

(ii) ui1(t) = −(A0 + ∆A(t)− G0)ϕi(t)− (D0 + ∆D(t))h̄(ϕi(t)) + B0h̄(ϕi(t))− ϖ
ei(t)

∥ei(t)∥ϱ ;

(iii) Ω1 = −A0 − 1
2 Ma M⊤

a − 1
2 H⊤

a Ha − LD0 − L 1
2 Md M⊤

d − L 1
2 H⊤

d Hd − ∑N
j=1 dijΛ > 0, in

which the estimate setting time (EST) t∗1 can be estimated as:

t∗1 = t0 +

[
Γ(1 + α)

ρϱ
(V(t0) + (

ρ

δ̂1
))ϱ − Γ(1 + α)

ρϱ
(

ρ

δ̂1
)

ϱ
ϱ−1

] 1
α

.

Proof. Construct the following Lyapunov function:

V(t) =
n

∑
i=1

∥ei(t)∥,

Using Lemma 1 and taking the Caputo fractional derivative of V(t), one can obtain

c
toDα

t V(t) =c
toDα

t

n

∑
i=1

∥ei(t)∥

=
n

∑
i=1

m

∑
i=1

c
t0

Dα
t |ei1(t)|

≤
n

∑
k=1

m

∑
l=1

sign(ei1(t))
c
t0

Dα
t ei1(t)

≤
n

∑
i=1

sign⊤(ei(t))c
t0

Dα
t ei(t)

≤
n

∑
i=1

sign⊤(ei(t))[(A0 + ∆A(t))φi(t)− G0ϕi(t)− B0h̄(ϕi(t))

+ (D0 + ∆D(t))h̄(φi(t) + c
N

∑
j=1

dijΛei(t) + ui(t)]

≤
n

∑
i=1

sign⊤(ei(t))[(A0 + ∆A(t))φi(t)− G0ϕi(t)]

+
n

∑
i=1

sign⊤(ei(t)[(D0 + ∆D(t))h̄(φi(t))− B0h̄(ϕi(t))]

+
n

∑
i=1

sign⊤(ei(t))c
N

∑
j=1

dijΛei(t) +
n

∑
i=1

sign⊤(ei(t))ui(t).

(11)
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From Lemma 2 and Assumption 2, we have

V̄1 =
n

∑
i=1

sign⊤(ei(t)(A0 + ∆A(t))φi(t)− G0ϕi(t)

≤
n

∑
F=1

∥(A0 + ∆A(t))φi(t) + (A0 + ∆A(t)))ϕi(t)

− (A0 + ∆A(t))ϕi(t)− G0ϕi(t)∥

≤
n

∑
i=1

∥(A0 + ∆A(t))ei(t) + (A0 − G0 + ∆A(t))ϕi(t)∥

≤
n

∑
i=1

∥(A0 + MaF(t)Ha)ei(t) + (A0 + MaF(t)Ha − G0)ϕi(t)∥

≤
n

∑
i=1

∥(A0 +
1
2

Ma M⊤
a +

1
2

H⊤
a Ha)ei(t)

+ (A0 +
1
2

Ma M⊤
a +

1
2

H⊤
a Ha − G0)ϕi(t)∥.

(12)

From Assumption 1, we obtain

V̄2 =
n

∑
i=1

sign⊤(ei(t)[(D0 + ∆D(t))h̄(φi(t))− B0h̄(ϕi(t))]

≤
n

∑
i=1

∥(D0 + ∆D(t))h̄(φi(t))− B0h̄(ϕi(t))∥

≤
n

∑
i=1

∥(D0 + ∆D(t))h̄(φi(t)) + (D0 + ∆D(t))h̄(ϕi(t)

− (D0 + ∆D(t))h̄(ϕi(t))− B0h̄(ϕi(t)∥

≤
n

∑
i=1

∥(D0 + ∆D(t))Lei(t) + (D0 + ∆D(t))h̄(ϕi(t))− B0h̄(ϕi(t))∥

≤
n

∑
i=1

∥(D0 + MdF(t)Hd)Lei(t) + (D0 + MdF(t)Hd)h̄(ϕi(t))− B0h̄(ϕi(t)∥

≤
n

∑
i=1

∥(D0 +
1
2

Md M⊤
d +

1
2

H⊤
d Hd)Lei(t)− B0h̄(ϕi(t)

+ (D0 +
1
2

Md M⊤
d +

1
2

H⊤
d Hd)h̄(ϕi(t))∥.

(13)

Similarly,

V̄3 =
n

∑
i=1

sign⊤(ei(t))c
N

∑
j=1

dijΛei(t)

≤
n

∑
i=1

∥c
N

∑
j=1

dijΛei(t)∥

≤ c
n

∑
i=1

N

∑
j=1

dijΛ∥ei(t)∥.

(14)
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Substituting controller ui1(t) in (11), we obtain

V̄4 =
n

∑
i=1

sign⊤(ei(t))ui(t)

≤
n

∑
i=1

sign⊤(ei(t))[−(A0 + ∆A(t)− G0)ϕi(t)

− (D0 + ∆D(t))h̄(ϕi(t)) + B0h̄(ϕi(t))− ϖ
ei(t)

∥ei(t)∥ϱ ]

≤
n

∑
i=1

∥ − (A0 + ∆A(t)− G0)ϕi(t)

− (D0 + ∆D(t))h̄(ϕi(t)) + B0h̄(ϕi(t))− ϖ
ei(t)

∥ei(t)∥ϱ ∥

≤
n

∑
i=1

∥ − (A0 +
1
2

Ma M⊤
a +

1
2

H⊤
a Ha)ϕi(t) + B0h̄(ϕi(t))

− (D0 +
1
2

Md M⊤
d +

1
2

H⊤
d Hd)h̄(ϕi(t)) + G0ϕi(t)∥ −

n

∑
i=1

ϖ∥ei(t)∥1−ϱ.

(15)

Substituting (12)–(15) into (11), one obtains

c
toDα

t V(t) ≤V̄1 + V̄2 + V̄3 + V̄4

≤
n

∑
i=1

∥(A0 +
1
2

Ma M⊤
a +

1
2

H⊤
a Ha)ei(t)A0ϕi(t)− G0ϕi(t)

+ (
1
2

Ma M⊤
a +

1
2

H⊤
a Ha)ϕi(t) +

1
2

Md M⊤
d Lei(t)

+ D0Lei(t) +
1
2

H⊤
d HdLei(t) +

1
2

H⊤
d Hd h̄(ϕi(t))

+ (D0 +
1
2

Md M⊤
d )h̄(ϕi(t))− B0h̄(ϕi(t)) + G0ϕi(t)

− (A0 +
1
2

Ma M⊤
a +

1
2

H⊤
a Ha)ϕi(t) +

N

∑
j=1

dijΛei(t)

− (D0 +
1
2

Md M⊤
d +

1
2

H⊤
d Hd)h̄(ϕi(t)) + B0h̄(ϕi(t)∥ −

n

∑
i=1

ϖ∥ei(t)∥1−ϱ∥

≤
n

∑
i=1

[A0 +
1
2

Ma M⊤
a +

1
2

H⊤
a Ha + LD0 + L

1
2

Md M⊤
d

+ L
1
2

H⊤
d Hd +

N

∑
j=1

dijΛ]∥ei(t)∥ −
n

∑
i=1

ϖ∥ei(t)∥1−ϱ

≤−
n

∑
i=1

[−A0 −
1
2

Ma M⊤
a − 1

2
H⊤

a Ha − LD0 − L
1
2

Md M⊤
d

− L
1
2

H⊤
d Hd −

N

∑
j=1

dijΛ]∥ei(t)∥ −
n

∑
i=1

ϖ∥ei(t)∥1−ϱ

≤−
n

∑
i=1

Ω1∥ei(t)∥ −
n

∑
i=1

ϖ∥ei(t)∥1−ϱ

≤− δ̂1 −
n

∑
i=1

ϖ∥ei(t)∥−(ϱ−1),

where µ = ϱ − 1. Then, according to Lemma 3, one has that the FONCDNUP can be
synchronized with ui1(t) in finite time.
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Remark 1. In Theorem 1, a general controller ui1 is designed, and the FTS of the FONCDNUP
is implemented. However, the control effect of ui1 cannot be better. In order to achieve a better
control effect and lower control cost, a new controller ui2 for the FONCDNUP is designed. This
new controller has the advantages of being a pinning controller, which makes the control efficiency
and control cost lower by applying an additional control to some nodes.

The new controller ui2 can be expressed as follows:

ui2(t) = ui1(t)− λ̂ui3(t),

ui3(t) = δiei(t),

λ̂ =

{
λ, i = 1, 2, · · · , m

0, i = m + 1, m + 2, · · · , n.

Theorem 2. Under the Assumptions 1 and 2, if the scalar 0 < α < 1 and the below inequalities
(i)–(ii) can be satisfied, then the FONCDNUPs will achieve FTS under the controller ui2:

(i) δ̂2 = ∑n
i=1 Ω2∥ei(t)∥ > 0;

(ii) Ω2 = λ̂δi − A0 − 1
2 Ma M⊤

a − 1
2 H⊤

a Ha − LD0 − L 1
2 Md M⊤

d − L 1
2 H⊤

d Hd − ∑N
j=1 dijΛ > 0,

in which the EST t∗2 can be estimated as:

t∗2 = t0 +

[
Γ(1 + α)

ρϱ
(V(t0) + (

ρ

δ̂2
))ϱ − Γ(1 + α)

ρϱ
(

ρ

δ̂2
)

ϱ
ϱ−1

] 1
α

.

Proof. Construct the following Lyapunov function:

V(t) =
n

∑
i=1

∥ei(t)∥,

Using Lemma 1 and taking the Caputo fractional derivative of V(t), one can obtain

c
toDα

t V(t) =c
toDα

t

n

∑
i=1

∥ei(t)∥

=
n

∑
i=1

m

∑
i=1

c
t0

Dα
t |eil(t)|

≤
n

∑
k=1

m

∑
l=1

sign(eil(t))
c
t0

Dα
t eil(t)

≤
n

∑
i=1

sign⊤(ei(t))c
t0

Dα
t ei(t)

≤
n

∑
i=1

sign⊤(ei(t))[(A0 + ∆A(t))φi(t)− G0ϕi(t)− B0h̄(ϕi(t))

+ (D0 + ∆D(t))h̄(φi(t) + c
N

∑
j=1

dijΛei(t) + ui(t)]

≤
n

∑
i=1

sign⊤(ei(t))[(A0 + ∆A(t))φi(t)− G0ϕi(t)]

+
n

∑
i=1

sign⊤(ei(t)[(D0 + ∆D(t))h̄(φi(t))− B0h̄(ϕi(t))]

+
n

∑
i=1

sign⊤(ei(t))c
N

∑
j=1

dijΛei(t) +
n

∑
i=1

sign⊤(ei(t))ui(t).

(16)
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From Lemma 2 and Assumption 2, we obtain

V̄1 =
n

∑
i=1

sign⊤(ei(t)(A0 + ∆A(t))φi(t)− G0ϕi(t)

≤
n

∑
F=1

∥(A0 + ∆A(t))φi(t) + (A0 + ∆A(t)))ϕi(t)

− (A0 + ∆A(t))ϕi(t)− G0ϕi(t)∥

≤
n

∑
i=1

∥(A0 + ∆A(t))ei(t) + (A0 − G0 + ∆A(t))ϕi(t)∥

≤
n

∑
i=1

∥(A0 + MaF(t)Ha)ei(t) + (A0 + MaF(t)Ha − G0)ϕi(t)∥

≤
n

∑
i=1

∥(A0 +
1
2

Ma M⊤
a +

1
2

H⊤
a Ha)ei(t)

+ (A0 +
1
2

Ma M⊤
a +

1
2

H⊤
a Ha − G0)ϕi(t)∥.

(17)

From Assumption 1, we have

V̄2 =
n

∑
i=1

sign⊤(ei(t)[(D0 + ∆D(t))h̄(φi(t))− B0h̄(ϕi(t))]

≤
n

∑
i=1

∥(D0 + ∆D(t))h̄(φi(t))− B0h̄(ϕi(t))∥

≤
n

∑
i=1

∥(D0 + ∆D(t))h̄(φi(t)) + (D0 + ∆D(t))h̄(ϕi(t)

− (D0 + ∆D(t))h̄(ϕi(t))− B0h̄(ϕi(t)∥

≤
n

∑
i=1

∥(D0 + ∆D(t))Lei(t) + (D0 + ∆D(t))h̄(ϕi(t))− B0h̄(ϕi(t))∥

≤
n

∑
i=1

∥(D0 + MdF(t)Hd)Lei(t) + (D0 + MdF(t)Hd)h̄(ϕi(t))− B0h̄(ϕi(t)∥

≤
n

∑
i=1

∥(D0 +
1
2

Md M⊤
d +

1
2

H⊤
d Hd)Lei(t)− B0h̄(ϕi(t)

+ (D0 +
1
2

Md M⊤
d +

1
2

H⊤
d Hd)h̄(ϕi(t))∥.

(18)

Similarly,

V̄3 =
n

∑
i=1

sign⊤(ei(t))c
N

∑
j=1

dijΛei(t)

≤
n

∑
i=1

∥c
N

∑
j=1

dijΛei(t)∥

≤ c
n

∑
i=1

N

∑
j=1

dijΛ∥ei(t)∥.

(19)

Substituting the controller ui2(t) into (16), we obtain
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V̄4 =
n

∑
i=1

sign⊤(ei(t))ui(t)

≤
n

∑
i=1

sign⊤(ei(t))[−(A0 + ∆A(t)− G0)ϕi(t)

− (D0 + ∆D(t))h̄(ϕi(t)) + B0h̄(ϕi(t))− ϖ
ei(t)

∥ei(t)∥ϱ ]−
m

∑
i=1

sign⊤(ei(t))(λδiei(t))

≤
n

∑
i=1

∥ − (A0 + ∆A(t)− G0)ϕi(t)

− (D0 + ∆D(t))h̄(ϕi(t)) + B0h̄(ϕi(t))− ϖ
ei(t)

∥ei(t)∥ϱ ∥ −
m

∑
i=1

λδi∥ei(t)∥

≤
n

∑
i=1

∥ − (A0 +
1
2

Ma M⊤
a +

1
2

H⊤
a Ha)ϕi(t) + B0h̄(ϕi(t))

− (D0 +
1
2

Md M⊤
d +

1
2

H⊤
d Hd)h̄(ϕi(t)) + G0ϕi(t)∥ −

n

∑
i=1

ϖ∥ei(t)∥1−ϱ −
m

∑
i=1

λδi∥ei(t)∥.

(20)

Substituting (17)–(20) into (16), one obtains

c
toDα

t V(t) ≤V̄1 + V̄2 + V̄3 + V̄4

≤
n

∑
i=1

∥(A0 +
1
2

Ma M⊤
a +

1
2

H⊤
a Ha)ei(t)A0ϕi(t)− G0ϕi(t)

+ (
1
2

Ma M⊤
a +

1
2

H⊤
a Ha)ϕi(t) +

1
2

Md M⊤
d Lei(t)

+ D0Lei(t) +
1
2

H⊤
d HdLei(t) +

1
2

H⊤
d Hd h̄(ϕi(t))

+ (D0 +
1
2

Md M⊤
d )h̄(ϕi(t))− B0h̄(ϕi(t)) + G0ϕi(t)

− (A0 +
1
2

Ma M⊤
a +

1
2

H⊤
a Ha)ϕi(t) +

N

∑
j=1

dijΛei(t) + B0h̄(ϕi(t)

− (D0 +
1
2

Md M⊤
d +

1
2

H⊤
d Hd)h̄(ϕi(t))∥ −

n

∑
i=1

ϖ∥ei(t)∥1−ϱ −
m

∑
i=1

λδi∥ei(t)∥

≤
n

∑
i=1

[A0 +
1
2

Ma M⊤
a +

1
2

H⊤
a Ha + LD0 + L

1
2

Md M⊤
d

+ L
1
2

H⊤
d Hd +

N

∑
j=1

dijΛ − λ̂δi]∥ei(t)∥ −
n

∑
i=1

ϖ∥ei(t)∥1−ϱ

≤−
n

∑
i=1

[λ̂δi − A0 −
1
2

Ma M⊤
a − 1

2
H⊤

a Ha − LD0 − L
1
2

Md M⊤
d

− L
1
2

H⊤
d Hd −

N

∑
j=1

dijΛ]∥ei(t)∥ −
n

∑
i=1

ϖ∥ei(t)∥1−ϱ

≤−
n

∑
i=1

Ω2∥ei(t)∥ −
n

∑
i=1

ϖ∥ei(t)∥1−ϱ

≤− δ̂2 −
n

∑
i=1

ϖ∥ei(t)∥−(ϱ−1),

where µ = ϱ − 1. Then, according to Lemma 3, one has that the FONCDNUP can be
synchronized with ui2(t) in finite time.
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Remark 2. In Theorem 2, a new controller ui2 is designed and the FTS of the FONCDNUPs is
implemented. Compared with ui1, ui2 adds additional control to some nodes but not to all nodes.

Theorem 3. Suppose Assumptions 1 and 2 hold; the FONCDNUP can realize FTS under ui4, if
the scalar 0 < α < 1 and the below inequalities can be satisfied:

(i) δ̂3 = ∑n
i=1 Ω3∥ei(t)∥ > 0;

(ii) ui4(t) = ui1 − λui3;
(iii) Ω3 = λδi − A0 − 1

2 Ma M⊤
a − 1

2 H⊤
a Ha − LD0 − L 1

2 Md M⊤
d − L 1

2 H⊤
d Hd − ∑N

j=1 dijΛ > 0,

in which the EST t∗3 can be estimated as:

t∗3 = t0 +

[
Γ(1 + α)

ρϱ
(V(t0) + (

ρ

δ̂3
))ϱ − Γ(1 + α)

ρϱ
(

ρ

δ̂3
)

ϱ
ϱ−1

] 1
α

.

Proof. Construct the following Lyapunov function:

V(t) =
n

∑
i=1

∥ei(t)∥,

Using Lemma 1 and taking the Caputo fractional derivative of V(t), one can obtain

c
toDα

t V(t) =c
toDα

t

n

∑
i=1

∥ei(t)∥

=
n

∑
i=1

m

∑
i=1

c
t0

Dα
t |eil(t)|

≤
n

∑
k=1

m

∑
l=1

sign(eil(t))
c
t0

Dα
t eil(t)

≤
n

∑
i=1

sign⊤(ei(t))c
t0

Dα
t ei(t)

≤
n

∑
i=1

sign⊤(ei(t))[(A0 + ∆A(t))φi(t)− G0ϕi(t)− B0h̄(ϕi(t))

+ (D0 + ∆D(t))h̄(φi(t) + c
N

∑
j=1

dijΛei(t) + ui(t)]

≤
n

∑
i=1

sign⊤(ei(t))[(A0 + ∆A(t))φi(t)− G0ϕi(t)]

+
n

∑
i=1

sign⊤(ei(t)[(D0 + ∆D(t))h̄(φi(t))− B0h̄(ϕi(t))]

+
n

∑
i=1

sign⊤(ei(t))c
N

∑
j=1

dijΛei(t) +
n

∑
i=1

sign⊤(ei(t))ui(t).

(21)
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From Lemma 2 and Assumption 2, we have

V̄1 =
n

∑
i=1

sign⊤(ei(t)(A0 + ∆A(t))φi(t)− G0ϕi(t)

≤
n

∑
F=1

∥(A0 + ∆A(t))φi(t) + (A0 + ∆A(t)))ϕi(t)

− (A0 + ∆A(t))ϕi(t)− G0ϕi(t)∥

≤
n

∑
i=1

∥(A0 + ∆A(t))ei(t) + (A0 − G0 + ∆A(t))ϕi(t)∥

≤
n

∑
i=1

∥(A0 + MaF(t)Ha)ei(t) + (A0 + MaF(t)Ha − G0)ϕi(t)∥

≤
n

∑
i=1

∥(A0 +
1
2

Ma M⊤
a +

1
2

H⊤
a Ha)ei(t)

+ (A0 +
1
2

Ma M⊤
a +

1
2

H⊤
a Ha − G0)ϕi(t)∥.

(22)

From Assumption 1, one has

V̄2 =
n

∑
i=1

sign⊤(ei(t)[(D0 + ∆D(t))h̄(φi(t))− B0h̄(ϕi(t))]

≤
n

∑
i=1

∥(D0 + ∆D(t))h̄(φi(t))− B0h̄(ϕi(t))∥

≤
n

∑
i=1

∥(D0 + ∆D(t))h̄(φi(t)) + (D0 + ∆D(t))h̄(ϕi(t)

− (D0 + ∆D(t))h̄(ϕi(t))− B0h̄(ϕi(t)∥

≤
n

∑
i=1

∥(D0 + ∆D(t))Lei(t) + (D0 + ∆D(t))h̄(ϕi(t))− B0h̄(ϕi(t))∥

≤
n

∑
i=1

∥(D0 + MdF(t)Hd)Lei(t) + (D0 + MdF(t)Hd)h̄(ϕi(t))− B0h̄(ϕi(t)∥

≤
n

∑
i=1

∥(D0 +
1
2

Md M⊤
d +

1
2

H⊤
d Hd)Lei(t)− B0h̄(ϕi(t)

+ (D0 +
1
2

Md M⊤
d +

1
2

H⊤
d Hd)h̄(ϕi(t))∥.

(23)

Similarly,

V̄3 =
n

∑
i=1

sign⊤(ei(t))c
N

∑
j=1

dijΛei(t)

≤
n

∑
i=1

∥c
N

∑
j=1

dijΛei(t)∥

≤ c
n

∑
i=1

N

∑
j=1

dijΛ∥ei(t)∥.

(24)
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Substituting controller ui(t) into (21), we obtain

V̄4 =
n

∑
i=1

sign⊤(ei(t))ui(t)

≤
n

∑
i=1

sign⊤(ei(t))[−(A0 + ∆A(t)− G0)ϕi(t) + B0h̄(ϕi(t))

− (D0 + ∆D(t))h̄(ϕi(t))− ϖ
ei(t)

∥ei(t)∥ϱ − λδiei(t)]

≤
n

∑
i=1

∥ − (A0 + ∆A(t)− G0)ϕi(t) + B0h̄(ϕi(t))

− (D0 + ∆D(t))h̄(ϕi(t))− ϖ
ei(t)

∥ei(t)∥ϱ − λδiei(t)∥

≤
n

∑
i=1

∥ − (A0 +
1
2

Ma M⊤
a +

1
2

H⊤
a Ha)ϕi(t) + B0h̄(ϕi(t))

− (D0 +
1
2

Md M⊤
d +

1
2

H⊤
d Hd)h̄(ϕi(t)) + G0ϕi(t)− λδiei(t)∥ −

n

∑
i=1

ϖ∥ei(t)∥1−ϱ.

(25)

Substituting (22)–(25) into (21), one obtains

c
toDα

t V(t) ≤V̄1 + V̄2 + V̄3 + V̄4

≤
n

∑
i=1

∥(A0 +
1
2

Ma M⊤
a +

1
2

H⊤
a Ha)ei(t)A0ϕi(t)− G0ϕi(t)

+ (
1
2

Ma M⊤
a +

1
2

H⊤
a Ha)ϕi(t) +

1
2

Md M⊤
d Lei(t)

+ D0Lei(t) +
1
2

H⊤
d HdLei(t) +

1
2

H⊤
d Hd h̄(ϕi(t))

+ (D0 +
1
2

Md M⊤
d )h̄(ϕi(t))− B0h̄(ϕi(t)) + G0ϕi(t)

− (A0 +
1
2

Ma M⊤
a +

1
2

H⊤
a Ha)ϕi(t) +

N

∑
j=1

dijΛei(t)

− (D0 +
1
2

Md M⊤
d +

1
2

H⊤
d Hd)h̄(ϕi(t))− λδiei(t) + B0h̄(ϕi(t)∥ −

n

∑
i=1

ϖ∥ei(t)∥1−ϱ

≤
n

∑
i=1

[A0 +
1
2

Ma M⊤
a +

1
2

H⊤
a Ha + LD0 + L

1
2

Md M⊤
d

+ L
1
2

H⊤
d Hd +

N

∑
j=1

dijΛ − λδi]∥ei(t)∥ −
n

∑
i=1

ϖ∥ei(t)∥1−ϱ

≤−
n

∑
i=1

[λδi − A0 −
1
2

Ma M⊤
a − 1

2
H⊤

a Ha − LD0 − L
1
2

Md M⊤
d

− L
1
2

H⊤
d Hd −

N

∑
j=1

dijΛ]∥ei(t)∥ −
n

∑
i=1

ϖ∥ei(t)∥1−ϱ

≤−
n

∑
i=1

Ω3∥ei(t)∥ −
n

∑
i=1

ϖ∥ei(t)∥1−ϱ

≤− δ̂3 −
n

∑
i=1

ϖ∥ei(t)∥−(ϱ−1),

where µ = ϱ − 1. Then, according to Lemma 3, one has that the FONCDNUP can be
synchronized with ui4(t) in finite time.
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Remark 3. In Theorem 3, we included ui3 in all the nodes, in contrast to Theorem 2. Then,
numerical simulations were conducted to evaluate the performance of the model under three different
controllers. The numerical results indicate that the performances of Theorem 2 and Theorem 3 are
similar, but the control cost of ui2 in Theorem 2 is lower.

4. Numerical Simulation

In this section, by employing MATLAB R2020a and the Admas–Bashforth–Moulton
predictor corrector method, the effectiveness and validity of the methods are confirmed
through a numerical example.

Example 1. Suppose that the FONCDNUP mentioned below consists of a total of n nodes, and it
is designed as follows

c
t0Dα

t ϕi(t) = G0ϕi(t) + B0h̄(ϕi(t)) + c
N

∑
j=1

dijΛϖj(t),

and

c
t0Dα

t φi(t) = (A0 + ∆A(t))φi(t) + (D0 + ∆D(t))h̄(φi(t)) + c
N

∑
j=1

dijΛsj(t) + ui(t).

Then, the controller is

ui1(t) = −(A0 + ∆A(t)− G0)ϕi(t)− (D0 + ∆D(t))h̄(ϕi(t)) + B0h̄(ϕi(t))− ϖ
ei(t)

∥ei(t)∥ϱ ,

ui2(t) = ui1(t)− λ̂ui3,

ui3(t) = δiei(t),

ui4(t) = ui1(t)− λui3,

where α = 0.99, δ = 9, λ = 1, ϖ = 0.02, ϱ = 2.1, ϕi(t) = [ϕi1, ϕi2]
⊤, φi(t) = [φi1, φi2]

⊤,
i = 1, 2, · · · , 10, c = 7.25, h = 3.55, f = 18.1, and the nonlinear functions can be ex-
pressed as h̄(ϕi(t)) = [h ∗ tanh(ϕi1(t)), h ∗ tanh(ϕi2(t))]⊤; h̄(φi(t)) = [ f ∗ tanh(φi1(t)), f ∗
tanh(φi2(t))]⊤.

And the parameters matrices are as follows:

G0 =

(
−45.5 −47
−5.01 −105.01

)
, B0 =

(
−0.5 −1
−0.2 −4.05

)
.

A0 =

(
3.05 20

8 3.55

)
, D0 =

(
−0.551 8.032

5.08 −5.25

)
.

The internal coupling and outer coupling matrices are defined as follows, respectively,

Λ =

(
0.25 0

0 0.25

)
,

(dij)n×n =



−2 1 0 1 0 0 0 0 0 0
0 −2 1 0 1 0 0 0 0 0
1 0 −3 0 0 1 1 0 0 0
0 0 1 −1 0 0 0 0 0 0
0 1 0 1 −3 0 0 0 1 0
1 0 0 0 0 −1 0 0 0 0
0 1 0 0 0 0 −1 0 0 0
1 1 0 0 0 0 0 −2 0 0
1 0 1 0 0 0 0 0 −2 0
0 0 1 0 0 0 0 0 0 −1


.
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Then, the uncertain parameters matrices are

Ma =

(
0.1 0
0 0.5

)
, Ha =

(
0.2 0
0 0.1

)
, Fe(t) =

(
cos(ϖ1(t)) 0

0 cos(ϖ2(t))

)
,

and

Md =

(
1 0
0 0.9

)
, Hd =

(
1 0
0 0.9

)
, Fg(t) =

(
0.41 cos(s1(t)) 0

0 cos(s2(t))

)
.

As per the above the numerical simulations, Figure 1 represents the synchronization
error trajectory of error system ei1 with controllers ui1, ui2, and ui4, respectively. Figure 2
represents the synchronization error trajectory of error system ei2 with controllers ui1,
ui2, and ui4, respectively. Figure 3 represents the total synchronization error trajectory of
error system eij, (i = 1, 2, · · · , 10; j = 1, 2.) with controllers ui1, ui2, and ui4, respectively.

Figure 4 represents the total synchronization error trajectory of ∥e(t)∥ = (∑10
i=1 |ei(t)|22)

1
2

with controllers ui1, ui2, and ui4, respectively. It can be obtained from Figures 1–4, where
b represents the error trajectory of the error system eij, (i = 1, 2, · · · , 10; j = 1, 2.) under
the new controller ui2 and a represents the error trajectory of the error system eij, (i =
1, 2, · · · , 10; j = 1, 2.) under the general controller ui1. Comparing b and a, it can be
obtained that the control effect of b is better than that of a, but there is little difference
compared with the comparison group c, thus proving that the control effect of ui2 is better.
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Figure 1. (a–c) represent the synchronized error trajectories of system ei1(i = 1, · · · , 10) with the
controller ui1, controller ui2, and controller ui4, respectively.
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Figure 2. (a–c) represent the synchronized error trajectories of system ei2(i = 1, · · · , 10) with the
controller ui1, controller ui2, and controller ui4, respectively.
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Figure 3. (a–c) represent the synchronized error trajectories of system eij(i = 1, · · · , 10; j = 1, 2.) with
the controller ui1, controller ui2, and controller ui4, respectively.
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Figure 4. (a–c) represent the total synchronized error trajectories of ∥e(t)∥ = (∑10
i=1 |ei(t)|22)

1
2 with the

controller ui1, controller ui2, and controller ui4, respectively.

5. Conclusions

In this paper, we have researched the FTS problem of FONCNUPs. Firstly, the model
takes into account non-isomorphism and parameter uncertainties and then proposes a new
synchronization criterion to address the FTS problem of FONCNUPs. Additionally, a new
controller is designed to minimize control costs and enhance control efficiency. Finally,
we demonstrate the effectiveness of our results through two numerical examples. Our
conclusions will have equally good effects on fractional-order complex networks with
similar problems, and our conclusions have lower conservatism. It can be applied to many
situations. However, the current study does not consider the case of time delays, which is
also significant in the study of complex networks. And the results of this paper cannot be
directly applied to fractional complex networks with delay. Therefore, in future research,
we can focus on extending the proposed methods to encompass fractional-order complex
networks with time delays.
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