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Abstract: Car-like mobile robots (CLMRs) are extensively utilized in various intricate scenarios
owing to their exceptional maneuverability, stability, and adaptability, in which path planning is an
important technical basis for their autonomous navigation. However, path planning methods are
prone to inefficiently generate unsmooth paths in narrow and large-size scenes, especially considering
the chassis model complexity of CLMRs with suspension. To this end, instead of traditional path
planning based on an integer order model, this paper proposes fractional-order enhanced path
planning using an improved Ant Colony Optimization (ACO) for CLMRs with suspension, which
can obtain smooth and efficient paths in narrow and large-size scenes. On one hand, to improve
the accuracy of the kinematic model construction of CLMRs with suspension, an accurate fractional-
order-based kinematic modelling method is proposed, which considers the dynamic adjustment of
the angle constraints. On the other hand, an improved ACO-based path planning method using
fractional-order models is introduced by adopting a global multifactorial heuristic function with
dynamic angle constraints, adaptive pheromone adjustment, and fractional-order state-transfer
models, which avoids easily falling into a local optimum and unsmooth problem in a narrow space
while increasing the search speed and success rate in large-scale scenes. Finally, the proposed
method’s effectiveness is validated in both large-scale and narrow scenes, confirming its capability to
handle various challenging scenarios.

Keywords: car-like mobile robot; path planning; ant colony optimization; fractional-order; narrow
and large-size scene

1. Introduction

Path planning is a critical technology in the field of mobile robotics, enabling a mobile
robot to efficiently navigate from its starting point to a designated target while circum-
venting obstacles within a given environment. It serves as a fundamental component of
autonomous navigation and intelligent decision-making in mobile robot systems [1–3].
Meanwhile, Car-Like Mobile Robots (CLMRs) play an important role in the fields of ware-
housing and logistics, inspection, and distribution, etc. [4–6], and their chassis is equipped
with a steering mechanism and suspension system [7], which makes CLMRs have good
load capacity, passability, and flexibility. CLMRs are commonly utilized in environments
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characterized by a combination of large-scale areas and narrow spaces. Examples include
neighborhoods with narrow alleys, dynamic manufacturing plants, or wild landscapes with
dense vegetation [8,9]. These types of scenes impose greater demands on the path planning
capabilities of CLMRs, requiring them to efficiently and accurately plan smooth paths.

Recently, path planning methods have emerged as a highly prominent area of research,
captivating the attention of scholars worldwide, and researchers have extensively explored
and developed innovative techniques across a diverse range of scenarios and for various
types of robots [10–12]. In general, research on path planning usually focuses on two major
aspects: the construction of the robot chassis model and the optimization of path planning
methods. Fortunately, the fractional-order method is commonly used for modelling and
optimization, which is a mathematical tool dealing with non-integer order calculus [13–16].
It extends the traditional integer order calculus by allowing derivatives or integrals of
non-integer orders to exist in the model. Fractional-order methods have gained significant
attention in capturing the behavior of complex nonlinear systems. These methods offer
a more accurate representation of system dynamics by incorporating fractional-order
differential equations, which enable the modelling of properties like nonlocal dependence
and nonsmooth behavior, allowing fractional-order models to better fit the behavior of real
systems and provide more accurate predictions and analyses [17–20]. Therefore, this paper
aims to utilize the fractional-order approach to extend the conventional path planning
method based on an integer-order model, to devise a path planning scheme that is not only
smoother but also more efficient.

In terms of robot chassis model construction, it can usually be categorized into kinetic
model and kinematic model construction [21]. In path planning, kinematic model construc-
tion is widely used in mobile robot path planning because it is efficient and practical [22],
unless robots involving special loads or structures need to consider kinetic models [23].
Traditional kinematic model construction assumes that the steering and drive mechanisms
of the vehicle are rigid bodies and uses an integer order approach for model construc-
tion [24]. This approach simplifies the modelling and computational process but also poses
the problem that once the structure and parameters of the robot chassis have been deter-
mined, the angle constraints are fixed. However, for the kinematic modelling of a CLMR,
the traditional approach is not applicable because CLMRs are usually equipped with
shock-absorbing suspensions on the drive and steering mechanisms to enhance passability
and stability [7]. This leads to changes in the chassis structure when steering or crossing
obstacles, which makes the angle constraints in the kinematic model time-varying. Only
by more accurately describing the time-varying angle constraints can the CLMR’s ability
to move in a narrow space be improved. The accurate description of time-varying sys-
tems using fractional-order methods offers a valuable opportunity to enhance the CLMR’s
maneuverability in narrow spaces. In this regard, this paper aims to make a significant
contribution by incorporating dynamic factors, such as chassis suspension, into the precise
construction of the fractional-order kinematic model.

There are many different path planning methods available [25], mainly including
graph-search-based methods (e.g., A* algorithm [26]), stochastic path planning methods
(e.g., Rapidly-Exploring Random Tree, RRT [27]), and optimization algorithms (e.g., Ant
Colony Optimization, ACO [28], and Genetic Algorithm, GA [29]). The above path planning
methods are usually used for global planning, but for dynamic obstacles, they are combined
with local planning in practical applications, such as dynamic window approaches [30].
Graph-search-based methods utilize a heuristic function to assess the priority of nodes
within a graph, enabling the identification of an optimal path by traversing the nodes. This
approach is known for its high search efficiency and accuracy, making it particularly suitable
for small-scale path planning problems. Besides, stochastic path planning methods employ
random sampling and tree expansion techniques to swiftly explore feasible paths and
gradually approach the desired goal position. These methods excel in high-dimensional
environments and complex terrains but are susceptible to planning failures in narrow
scenarios. Alternatively, optimization algorithms iteratively search for either the global
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optimal solution or a near-optimal solution through an optimization process [31]. These
algorithms aim to find the most optimized path by iteratively refining the solution. With the
advantages of a global search ability, complex scene adaptability and learning ability, ACO
has a strong solving ability in path planning problems and is widely used in real-world
scenarios [10].

A lot of good research has been done to use ACOs in a better way, and usually, their
efficiency and smoothing are the focus [32]. The pheromone concentration settings and
heuristic mechanisms of ACO are the classical means around the efficiency improvement
aspect. Liu et al. propose an enhanced heuristic mechanism for Ant Colony Optimiza-
tion (ACO) that incorporates adaptive pheromone concentration settings and a heuristic
mechanism with directional judgments, which increases the purposefulness of planned
paths and reduces turn times [33]. However, ACO usually realizes real-time planning
in a small search space, and its experimental scene is generally less than a 50 × 50 grid
map for algorithm verification [34], which still falls short of the demand for fine path
planning in actual large-scale application scenarios. Path smoothing techniques commonly
involve incorporating angle or path curvature constraints into the planning method and
utilizing spline interpolation to refine the path. For instance, Ali et al. introduce a Markov
decision process trajectory evaluation model that considers arc-length parameterization.
This model effectively filters and reduces the sharpness of global paths, thereby enhancing
path smoothness [35]. Tight constraints on steering angle or path curvature for the sake
of smoothing can limit the robot’s ability to move, especially in narrow spaces. Feng et al.
put forward a path planning algorithm based on immune ACO and B-spline interpolation,
which introduces a B-spline curve smoothing strategy based on the optimal solution to
make the obtained path shorter and smoother [36]. Nonetheless, in narrow environments,
the paths derived using spline interpolation are not necessarily usable, and they may collide
with obstacles. In light of large-scale and narrow environments, further investigation of
existing ACO algorithms is warranted. To address this, the integration of fractional-order
models in path planning holds promise due to their advantages, including flexible and
accurate parameter optimization as well as faster convergence. This paper aims to lever-
age fractional-order models to enhance path planning efficiency and smoothness, which
represents a key highlight of the research.

Overall, the path planning performance of CLMRs in large-scale and narrow envi-
ronments is still limited by inaccurate kinematic models as well as inefficient, insecure,
and unsmooth planning methods. To tackle the aforementioned challenges, this paper
presents fractional-order enhanced path planning for CLMRs in narrow and large-scale
environments, which combines the benefits of fractional-order modelling and optimization
techniques to enhance both the kinematic modelling of CLMRs and the ACO algorithm,
thereby improving the efficiency of path planning and achieving smoother paths compared
to traditional integer-order-based methods. The key contributions of this paper can be
summarized as follows:

(1) To enhance the accuracy of kinematic model construction for CLMRs equipped
with suspension systems, an innovative fractional-order-based kinematic modelling
method is proposed. This method takes into account the dynamic adjustment of angle
constraints to address the issue caused by the time-varying position of the steering
wheel’s virtual center due to suspension changes. By considering these constraints,
the proposed method improves the kinematic capabilities of CLMRs, especially in
limit steering states, which lays a solid foundation for subsequent efficient and smooth
path planning.

(2) To address the issue of unsmooth and inefficient planning paths in narrow and large-
scale scenes, an improved Ant Colony Optimization (ACO) based path planning
method that incorporates fractional-order models is presented, which overcomes the
limitations of traditional approaches by establishing a global multifactorial heuristic
function, utilizing dynamic angle constraints in fractional-order-based kinematic mod-
elling, incorporating adaptive pheromone adjustment rules, and adopting fractional-
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order descriptive state-transfer models. These enhancements enable the algorithm
to quickly acquire smooth paths and mitigate the problem of the algorithm getting
trapped in local optima in narrow spaces, ultimately enhancing the searching speed
and success rate of the algorithm in large-scale scenes.

(3) Several experiments are conducted in narrow and large-size sceneries, and the ef-
fectiveness of the proposed path planning method is proved by comparison with
advanced path planning methods.

The rest of this paper is organized as follows. In Section 2, system modelling and
problem formulation are described. Section 3 gives the accurate fractional-order-based
kinematic modeling of a CLMR. Then, improved ACO-based path planning using fractional-
order models is introduced in Section 4. Experimental results are provided in Section 5,
followed by the conclusions and future outlook in Section 6.

2. System Modelling and Problem Formulation
2.1. System Modelling

Constructing accurate kinematic models is essential as a prerequisite for effective path
planning. However, to improve the passability of CLMRs, it is insufficient to treat the
CLMR as a simple rigid structure. This is because the kinematic constraints imposed on
CLMRs during their movement can vary significantly depending on the specific structure
of its wheel system. As shown in Figure 1a,b, for CLMRs, limiting the minimum radius of
curvature has now become a mainstream method of constructing kinematic constraints,
and traditional kinematic models that do not consider suspension can be expressed in the
following form:

v2
x + v2

y − ρmaxω2 ≥ 0 (1)

vx sin θ − vy cos θ = 0 (2)

1
ρmax

=
1
l

tan(ϕmax) (3)

where vx and vy are the velocity components in the direction of the x- and y-axis in the
global coordinate system, respectively, ω is the angle velocity of the steering of the mobile
robot, ρmax refers to the maximum curvature of the running path of the mobile robot, l is the
axis distance of the robot, θ denotes the angle of the mobile robot in the global coordinate
system, and ϕmax is the maximum steering angle of the virtual wheel system.

However, the condition for the Equations (1)–(3) to hold is that the center of rotation
of the kinematic is on the extension of the rear wheels. As depicted in Figure 1c,d, the four
wheels of CLMRs are usually designed in independent suspension mode to ensure the
abilities of obstacle crossing and shock absorption. As a result, the center of the circle of the
turn is usually not on the extension line of the rear wheels, in which case the maximum
steering angle and the maximum curvature are variable quantities, and the constraints
of the robot need to be recalculated. Considering the one-to-one mapping relationship
between the robot’s direction angle and the path taken, the feasible path needs to take
into account the robot’s kinematic constraints. Therefore, in this paper, we will use the
fractional-order technique to construct a more accurate kinematic model for a CLMR with
suspension, which will be introduced in detail in Section 3.
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Figure 1. The kinematic model of CLMRs. (a) CLMR that does not consider suspension; (b) Traditional
kinematic model that does not consider suspension; (c) CLMR that considers suspension; (d) Actual
kinematic model that consider suspension.

2.2. Fractional-Order Modelling

Fractional-order calculus, with its rich mathematical properties and characteristics, is
an important tool for studying and analyzing complex systems. Considering that fractional
order has obvious advantages in processing and modelling real data in nonlinear systems,
it can be used in constructing complex kinematic models in path planning, and local char-
acteristic constraints more accurately, and thus close to the real situation. The commonly
used fractional-order definitions are the Grunwald–Letnikov definition, Riemann–Liouville
definition, and Caputo definition [17–20]. Among them, the Grunwald–Letnikov definition
provides an expression for the α− th derivative, which allows for the consideration of the
so-called short-memory principle. The Grunwald–Letnikov fractional derivative is based
on discrete data points, which transform the continuity of a function into a discrete differ-
ential form. Therefore, Grunwald–Letnikov fractional derivatives apply to discrete data.
This applies to the description of discrete path points in this article. Specifically, in defining
the fractional-order factor α > 0 and continuous functions f (t), we have the following:

Dα[ f (t)] = lim
h→0

1
hα

∞

∑
n=0

(−1)n
(

α
n

)
f (t− nh) (4)

where (
α
n

)
=

Γ(α + 1)
Γ(n + 1)Γ(α− n + 1)

=
α(α− 1)(α− 2) . . . (α− n + 1)

n!
(5)

where Dα(·) denotes the GL fractional derivative of order α, Γ(·) is the Gamma function, h
is the time step, and (α, n)T represents binomial coefficient.

3. Accurate Fractional-Order-Based Kinematic Modeling of CLMR

As illustrated in Figure 1c,d, the CLMRs can dampen the vibration and improve the
ability to cross the ditch by installing the suspension, which also leads to the unpredictability
of the steering angle during the cornering process. Based on the parameters of the damping
and hydraulic cylinders, the current steering angle constraints of the robot can be obtained,
which provides the kinematic constraints for path acquisition. The path acquired in this
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way can satisfy the obstacle avoidance while improving the tracking accuracy. To simplify
the calculation process, the steering wheel can be defined as a freewheel, i.e., the wheel can
rotate freely around the axle. In the calculation process, a uniform local coordinate system
is defined xpopyp, with the robot center point as the origin of the local coordinate system
and the direction perpendicular to the front of the vehicle as the x-axis. Then, the velocity
of the virtual wheel in the global coordinate system is defined as:[

vxp
vyp

]
=

[
(−xm sin θ − ym cos θ)ω + voxg
(xm cos θ − ym sin θ)ω + voyg

]
(6)

where, vxp and vyp are the velocities of the virtual wheel in the global coordinate system in
the x and y directions, respectively, xm and ym denote the coordinates of the virtual wheel
in the local coordinate system in the x and y directions, respectively, and voxg and voyg are
the velocity of the origin of the local coordinate system in the global coordinate system.
Further, the acceleration expression can be obtained as:

[ .
vxp.
vyp

]
=


(−xm cos θ + ym sin θ)ω2+
(−xm sin θ − ym cos θ)

.
ω +

.
voxg

(−xm sin θ − ym cos θ)ω2+
(xm cos θ − ym sin θ)

.
ω +

.
voyg

 (7)

According to [37], it can be known that changes in the steering angle of the wheel
system can cause dynamic torque distribution. In non-rigid suspension structures, torque
fluctuation can cause wheel system displacement. From the torque distribution law, the
deformation of the suspension near the inner side of the arc is greater than that on the outer
side of the arc, resulting in a change of angle constraint. Fortunately, onboard sensors can
accurately capture the current state information during the CLMR’s movement, allowing
real-time constraint information to be calculated. Therefore, the variation of the virtual
wheel direction angle φc for the CLMR’s movement is calculated as:

φc = φm − θ
φm = arctan( xcm

ycm
)

(8)

Assuming that the posterior axis is fixed and parallel to the y-axis of the defined local
coordinate system, there is no change in the point of the posterior axis. Consider that the
velocity relation can be represented as:

v2 = v2
xp + v2

yp (9)

therefore, it can be concluded that:

xvω = vxp sin θ − vyp cos θ (10)

This leads to a general equation for the relationship between the CLMR’s attitude angle,
velocity, and position, and a general constraint equation for the first-order derivatives. The
relationship between the effects of velocity, attitude, and steering angle on path planning
should be further clarified considering that the robot moves along a curve at different
velocities. The running path (the planned path is obtained in the following section) is
defined as:

y = f (x) (11)

Next, the slopes at the virtual wheels are calculated and the offset of the wheel system
is taken into account. Conventional equations of kinematics do not correctly express
the correctness of the system’s kinematic process, and fractional-order models offer the
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possibility of accurate system modelling. Therefore, we derive the trajectory equations and
bring them into the above equation to obtain the following:

Dρθ =
1
xv

(sin θ − f ′(x))Dα(x) (12)

where α and ρ are predefined fractional-order operators.
The steering angle of the CLMR imposes a constraint on the maximum curvature of the

planned path, considering the dynamic characteristics of the CLMR’s kinematics. However,
directly calculating the curvature constraints proves challenging. From Equation (8), φm can
be obtained from onboard sensors. Therefore, calculating the real-time rate of θ becomes
the key to the solution. By combining Equations (11) and (12) we have the following:

Dρθ

Dα(x)
=

(sin θ − D1−α(x) f ′(x) cos θ)

x
(13)

and bringing Equation (7) into Equation (8), the corner constraint can be obtained as:

ϕmax = arctan

 (xm cos θ − ym sin θ) (sin θ−D1−α(x) f ′(x) cos θ)
x + f ′(x)

(−xm sin θ − ym cos θ) (sin θ−D1−α(x) f ′(x) cos θ)
x + 1

− θ (14)

Considering the fluctuation of suspension in different environments, fractional-order-
based kinematic modelling provides precise and dynamic angle constraints. This improves
the success rate of path planning for a CLMR in narrow and difficult-to-pass scenarios.

From Figure 1, the adjustment of the angular constraints mainly relies on the suspen-
sion adjustment of the wheel system in two degrees of freedom. However, through the
change of the wheel system structure, the maximum constraint angle is also changed. At
this point, the circular extension of the steering is not on the rear wheel system, which is
of greater relevance to the planning of the path considering the mapping of the direction
angle to the path. From Equation (8), it can be seen that the wheel system angle constraint
varies with the change of the wheel system angle of rotation and the initial calibration
position. For computational convenience, this paper focuses on the summation constraints
of the virtual wheel system to improve computational and planning efficiency. With the cal-
culation of the maximum constraint angle and the acquisition of the current steering angle
from the sensing module, we can calculate the change in the maximum constraint angle.

4. Improved ACO Based Path Planning Using Fractional-Order Model

The traditional ACO usually uses the path length as the heuristic function term when
solving the path planning problem; however, the environment faced during robot operation
is more complex. Path planning, as a key module of mobile robot operation, plays a vital
role in the safety and smoothness of robot operation. The pseudocode of the proposed ACO
method is shown in Algorithm 1. In the algorithm, lines 1 to 3 are the initialization phase
of the algorithm, which completes the initialization of the weight factors and pheromones.
Lines 4 to 20 are the iterative part of the algorithm. Specifically, line 6 gives the initial
position of the ant colony. Lines 8 to 16 are the ant colony search under the current iteration
cycle, and the next moment position of the ant is obtained by transferring the probability
model, recording the status of the ant colony, and determining the relationship with the
target point. After the completion of the current iteration loop, the pheromone values
τij(t + 1) and path optimums Lk for the scenario are updated. In Line 21, the optimal values
for each loop are compared and the optimal path Ln is selected.
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Algorithm 1 The pseudocode of the improved ACO.

1 /*Initialization*/
2 Initialize the parameters, including λ1 λ2 ϕ1 Ltr ε η β1 β2 β3
3 Calculate initialize pheromone matrix τij(0)
4 /*main Loop*/
5 While iteration number n does not arrive at the target Nmax do:
6 Place all ants at the start point;
7 /*inner loop*/
8 For k = 1 to K do
9 Calculate the pk

ij(t) using Formula (25) and confirm the next node
10 If Ant k reach the target point do
11 Goto step 15
12 Else
13 Goto step 9
14 End if
15 Select the optimal ant path for this round according to Equation (15)
16 End for
17 Update the τij(t + 1) by Formulas (23)–(25)
18 n = n + 1, k = 0
19 Select the optimal path Ln
20 End while
21 Return final optimal path Lk

To obtain a safe and feasible path, the safety, smoothness, and path distance of the path
need to be considered comprehensively, so the improved multi-factor heuristic function is
as follows:

J = ϕ1
{

λ1ω + λ2(D +
1
d
)

}
(15)

where J is the path planning heuristic function, ϕ1 refers to the heuristic function that
ensures the safe operation of the CLMR, λ1 and λ2 denote the weighting factors, respectively,
ωij(k) refers to the curvature smoothing factor, D(k) is the modified path heuristic function,
and d(k) implies the standard path heuristic function, which is required by the planning
method to obtain the minimum value of the cost function.

4.1. Factorization of the Cost Function with Fractional-Order Model
4.1.1. Safety Functions with Local Region Preprocessing

The operational safety of the mobile robot is the first factor to be considered for path
planning. As shown in Figure 2, considering the existence of tracking errors, the planning
module needs to leave enough redundant space. To facilitate the process, a common
approach is to uniformly inflate the static map with the CLMR’s radius; however, in large-
scale or highly dynamic scenarios, the optimal or relatively optimal paths are difficult to
obtain and the length of the planned paths increases dramatically. Treating robots as a fixed
matrix reduces the passability of a CLMR and leads to lower search efficiency. For this
reason, this paper proposes a safety factor function based on ACO storage information,
defined as follows:

ϕ1
ij(k) =


1, Ltr × S(i, j) ∩ imdilate(MA×B(i, j), Ltr × S(i, j))
∩Lpix ×mod(Dir(i, j), 2) == 0 6= In f ;
In f , Others

(16)

where
S(i, j) = RC×D × f (θ) (17)

where Ltr is the safety threshold constant, S(i, j) denotes the intermediate function, imdilate(·)
refers to the map expansion function, MA×B(i, j) implies the map information stored by the
ACO in the map information, A× B is expressed as the information dimension matrix, Lpix
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denotes the length of the map pixel point, mod(·) refers to the residual function, Dir(i, j)
is the searching direction raster labelling, RC×D stands for the CLMR’s matrix under the
CLMR’s coordinate system, C× D denotes the robot’s matrix dimensions, f (θ) is the coor-
dinate system transfer matrix, and θ refers to the robot direction angle in global coordinates.
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4.1.2. Smoothing Function Based on Dynamic Angle Constraints

The ACO iterates towards the final heuristic function during the planning process,
while the smoothness and feasibility of the paths are not given much attention. However,
the angle constraints of the robot impose new requirements on the planning of paths, while
excessive corners reduce the feasibility of paths. Improving the smoothness of the path
and eliminating excessive corners will help reduce the travelling time and improve the
smoothness of the path. To address these issues, considering the dynamic characteristics of
the dynamic angle constraints in fractional-order-based kinematic modelling, a dynamic
smoothing factor is introduced to reduce the integrated angle probability and improve the
comprehensive performance of the algorithm, and the corner smoothing function is:

ωij(k) =

{
εG(i, j)

ϕij(Nmax−Nk)
ϕc Nk

ϕij ≤ ϕc

In f ϕij > ϕc
(18)

where ϕc denotes the computed wheel system corner constraint, ϕij is the planning corner
at point i to point j, ε denotes the path angle adjustment factor, G(i, j) represents the robot
straight travelling function, Nmax stands for the maximum number of iterations, and Nk
refers to the current number of iterations. Further, as shown in Figure 3, the robot straight
line function is expressed as:

G(i, j) =

{
ϕm−1(lm−2+lm−1)+ϕm(lm−1+lm)+ϕm+1(lm+lm+1)

2(lm−2+lm−1+lm+lm+1)
m ≥ 4

1 m < 4
(19)

where lm−2, lm−1, lm and lm+1 are the four consecutive trajectories planned by the colony at
the current point, and ϕm−1 ϕm and ϕm+1 represent the three consecutive corners consisting
of these four trajectories.
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The feasibility of the path is improved by the smoothing function with angle con-
straints. In the function, the smoothing factor of the angle is added to ensure the smoothness
of the planned path, which is more favorable to the operation of the CLMR.
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4.1.3. Path Functions by Adding Adjusting Factor

In actual operation, the length of the path is still an important factor to be considered,
which is closely related to the CLMR’s work efficiency and energy utilization. For the
traditional ACO, at the beginning of the iteration, the very small distance difference easily
causes search confusion. At the late stage of convergence, there is a certain probability of
falling into a local minimum. For this reason, we need to amplify the very small factor of
fluctuation in the early stage in the distance factor to accelerate the convergence speed. In
the later stages of iteration, we need to reduce the influence brought by the path, so that
the path obtained is comprehensively optimal. The modified path factor function is:

Dij(k) =

{
η(L(max(Pij, PGoal))− d(Pij, PGoal))

Lpix + L(max(Pij, PGoal))− L(min(Pij, PGoal))

(Nmax − Nk)

Nk
(20)

where η is the path coefficient, L(max(Pij, PGoal)) denotes the longest path from the current
point Pij to the target point PGoal planned by the ACO, L(min(Pij, PGoal)) denotes the
shortest path from the current point Pij to the target point PGoal , and d(Pij, PGoal) refers to
the Euclidean distance from the current point Pij to the target point PGoal .

4.2. Adaptive Pheromone Update Rules

Traditional ACO algorithms are usually set to a constant C in the initial stage, which
leads to a blind search mainly relying on the heuristic function at the initial stage, and it
is very easily falls into a local minimum in large scene maps. To solve this problem and
improve the search efficiency, the initial pheromone is redistributed in the initial stage of
the map with the help of the convergence method of the initial A* algorithm to speed up
the subsequent path replanning in large scenes. The initial pheromone is recorded as:

τij(0) =
{

nc, j ∈ lp
c, j ∈ otherwise

(21)

In the actual operation of the CLMR, path planning is influenced by multiple factors,
and the goal is to find an optimal path that considers all of these conditions collectively.
Currently, efforts are focused on improving the amount of pheromone changes at different
points along the path. The specific follow-up rules are as follows:

τij(t + 1) = (1− ζ(t))τij(t) +4τij(t) (22)

4τij(t) =

{
κ1Ph

W + κ2Ph
LA

, (i, j) ∈ allowed
0, others

(23)

where ζ(t) is the dynamic volatilization factor of pheromone, τij(t+ 1) denotes the pheromone
matrix at the current moment, Ph represents the pheromone concentration, κ1 and κ2 refer
to the conditioning factors, W implies the mean squared deviation value of the walking
angle, and LA denotes the cumulative path length from the starting point to the target point.

The iterative values of 4τij(t) are also dynamically adjusted through the changes
of angle W and distance values LA. By setting the magnitude of the values of weight
coefficients κ1 and κ2, the acquisition of effective paths that are more compatible with the
scene is facilitated.

The dynamic pheromone volatilization factor is designed as:

ζ(t) =

{
a

Nmax
Nk ζ(t− 1), t 6= 0, (0 < a < 1)

ζinit, t 6= 0
(24)

where a and ζinit are self-defined constants, and ζ(t) can be adjusted adaptively with
the search.
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From Equation (24), it can be seen that the pheromone volatilization function ζ(t)
reaches the maximum value in the pre-search period of the ACO which is in the period
of the fastest change of the pheromone volatilization value. This increases the uncertainty
factor in the early stage of the algorithm during the optimization process, which is more
conducive to obtaining the globally optimal feasible solution. As the number of iterations
increases, the pheromone volatility function ζ(t) tends to stabilize, and the local search
process is more frequent, which helps to improve the quality of the path. Therefore, the
iterative process accomplishes the adaptive regulation of pheromone concentration, which
facilitates the realization of rapid path planning and optimization.

4.3. Fractional-Order Transfer Probability Rules

To obtain the feasible path faster and ensure the quality of the path, this paper improves
the transfer probability of the algorithm. It makes the target probability increase the angle
factor and distance factor. It is expected to obtain the shortest path under the premise of
ensuring a smooth path. The improved state transfer probability is:

pk
ij(t) =


[τij(t)]

β1 [Dα1 Rij(t)]
β2 [Dα2 Qij(t)]

β3

∑
S∈allowed

[τis(t)]
β1 [Dα1 Ris(t)]

β2 [Dα2 Qis(t)]
β3

,

0
(25)

where β1, β2, and β3 denote the heuristic term factor, respectively, and Rij(t) and Qij(t) are
defined as follows:

Dα1 Rij(t) = Dα1 ωij(t) (26)

Dα2 Qij(t) = Dα1(Dij(t) + dij(t)) (27)

The fractional reciprocal of the angle factor and the distance factor is calculated to
improve the sensitivity of the transition probability to its change, to ensure the timeliness
of the path change and to improve the passability of the path.

A fractional-order state-transfer model can more accurately adjust the exploration
probability of ant colonies in unexplored areas, which is beneficial for ant colony algorithms
to jump out of the current local optimal solution and search for the global optimal solution
with a greater probability, thereby improving the success rate of the search in large-scale
scenarios. At the same time, due to the high dependence of the pheromone concentration
on the optimal path, the modification of the transfer model increases the search breadth
and the search probability of the optimal path, avoiding the acquisition of the optimal
path, accelerating the search process around the optimal path, and thus improving the
convergence speed.

5. Experimental Validations
5.1. Experimental Implementation

The narrow and large-size experimental scenes and self-developed CLMRs are shown
in Figure 4. The CLMR consists of an industrial computer (Intel(R) Core (TM) i7-6500U
CPU @2.50 GHz, 8 GB of RAM, 64-bit operating system), LiDARs, motor encoders, and
some related sensors, such as an ultrasonic transducer and IMU. More specifically, with
an impressive range of 150 m and a scanning rate of 10 Hz, the Velodyne VLP-16 LiDAR
provides the CLMR with a broad field of view, which guarantees that the CLMR has
enough field of view to ensure safety and real-time mapping and path planning. As
illustrated in Figure 4a, to improve the stability and passability of the CLMRs in complex
environments, the drive and steering mechanisms are fitted with suspensions. As we can
see from Figure 4b–d, the entire neighborhood is quite expansive, covering an area of
sixteen thousand square meters. However, the alleyways within the neighborhood are
remarkably narrow. These tight spaces are often filled with temporarily parked cars and
bustling pedestrians, which severely limits the available space for CLMRs to navigate
through. In particular, shown in Figure 4b, to obtain more detailed and practical paths, we
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chose a grid map with a resolution of 0.2 m, making the map size 800 × 500, which is a
great challenge for the path planning algorithm.
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5.2. Experimental Results and Discussions

In the experiment, it is necessary to obtain real-time vehicle positioning data and
wheel steering angle data. Real-time recording and storage of experimental data was
performed on the PC. The planning, calculation, allocation, and execution process are
as follows: The current data are processed by the data processing unit and returned to
MATLAB. Then, MATLAB is used to complete the calculation of the planning algorithm.
Finally, the path instructions generated by the planning are sent to the control unit, com-
pleting the current path planning process. The initial state of the considered robot is the
same, all parameters are optimally adjusted, and experiments are conducted under the
same operating conditions. In the process of parameter tuning, parameter stabilization is
achieved through the use of a nature-inspired optimization algorithm called Artificial Bee
Colony [38], which reduces the sensitivity of the parameters to the environment and also
ensures the fairness of the algorithm comparison process. The values of the parameters
obtained are as follows: λ1 = 0.6, λ2 = 0.2, ε = 0.1, Nmax = 50, η = 1.1, κ1 = 0.8, κ2 = 0.2,
and a = 0.4. The superiority of the proposed fractional-order ACO (FACO) is verified by
comparing it with the traditional A*, improved A* (IA) [26], ACO [28], improved ACO
combined with path fitting (ACOF) [39], Genetic Algorithm (GA) [29], and the GA method
combined with A* (AGA). We used different algorithms to run each of them ten times
in large-scale narrow scenes. To better validate the effectiveness and advantages of the
proposed method, we drew on the comparative methods in literature [40] and selected
common path lengths, times, and success rates of trajectory planning (including planning
failures and collisions with obstacles) to accurately describe the process of path planning.
The comparison results are shown in Table 1, and the experimental results of the planned
path are shown in Figures 5–11.
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Table 1. Performance comparison of different path planning methods.

Methods Path Length (m) Times (s) Success Rate (%)

A* 91.60 857.26 100
IA 93.57 591.73 100
GA 101.24 100.61 100

AGA 93.36 123.67 100
ACO 89.20 350.66 100

ACOF 94.97 153.71 0
FACO 92.98 63.74 100
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From Table 1, it can be seen that the A* algorithm takes the longest time, which is
because the A* algorithm completes the traversal of the surrounding space before finding
the target point, and due to the high-precision attribute of the map, more and more compu-
tational resources are consumed and the computational speed decreases dramatically in the
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planning process. In the improved A* method, the search direction is guided to improve the
planning efficiency, but to ensure the success rate of path planning, the efficiency improve-
ment for a large-space search is not obvious. GA has excellent performance in the field of
optimization, and in the planning process GA achieves random sampling in the space by
repeated cross-compilation, which greatly reduces the planning time, and by combining it
with the A* algorithm, there is an increase in the planning time, but there is an increase
in the stability of the path. The ACO-based planning algorithm demonstrates reduced de-
pendency on parameters in path planning. However, employing pure ACO preprocessing
alone increases the time required. By combining the ACO algorithm with A*, the overall
time decreases further. In the proposed method, the additional search burden caused by the
large space is mitigated through local space weighting in the ACO search. This reduction
in computational burden leads to improved planning efficiency. Experimental results show
a significant enhancement in efficiency with the proposed method, achieving improve-
ments of 92.56%, 57.84%, and 81.82% compared to traditional A*, GA, and ACO methods,
respectively. These improvements have great significance for real-world scenarios.

In terms of path length, the A* method shows a greater advantage due to the objective
of the method to obtain shorter paths, and with the increase in constraints, the paths of the
improved methods based on A*, GA, and ACO all increase to varying degrees. Further
analysis shows that GA shows significant non-randomness of paths due to the random
sampling in space and the path length appears to increase to a greater extent, whereas the
ACO algorithm shows better stability of paths due to having an advanced spatial search
and shorter path lengths. The proposed method needs to meet the actual operational
requirements and the dynamic constraints make the planned paths increase, but the length
of the planned paths decreases by 0.63%, 0.40%, and 2.10% compared to the improved
methods of A*, GA, and ACO, respectively. When comparing the various path planning,
all of them show better results in terms of path length. However, the proposed method is
more advantageous under the constraints.

In Table 2, the smoothness indicator is given, which reflects the proportion of different
steering angles between path points in path planning. It has been proven that a smoother
trajectory is achieved when there is a lower proportion of large steering angles. However,
optimization-based planning algorithms, such as GA, AGA, ACO, and ACOF, often pri-
oritize a single performance improvement, resulting in a path consisting of a relatively
simple finite set of points. For example, the GA algorithm represents the path using only
five coordinate points, and the proportion of large steering angles reaches 66.67%. Conse-
quently, these optimization algorithms introduce numerous angle mutation points, making
it challenging to ensure a smooth path. Moreover, traditional path planning methods like
A* and IA struggle to incorporate dynamic angle constraints at corners, leading to scattered
abrupt changes in the path. Although smoothing the obtained path can prevent the occur-
rence of mutation points, it may also result in high spatial requirements after the smoothing
process. To address these challenges, we propose a novel path planning algorithm that
fully leverages the constraint characteristics of angles. This algorithm performs real-time
smoothing during the planning phase, avoiding abrupt changes in the path’s angle, the
proportion of small steering angles exceeds 99%, which means that the proposed method is
essentially free of steering mutations. As a result, it offers significant benefits for planning
in narrow spaces while still considering angle constraints.
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Table 2. The proportion of different steering angles between path points.

Methods 0–5◦ 5–10◦ >10◦

A* 98.39% 1.15% 0.46%
IA 96.77% 2.30% 0.93%
GA 0 33.33% 66.67%

AGA 0 0 100%
ACO 33.33% 0 66.67%

ACOF 100% 0 0
FACO 99.4% 0.6% 0

According to the results of path planning from Figures 5–11, it is evident that both the
A* algorithm and its improved version can produce relatively smooth paths. However, it is
noticeable that the paths tend to excessively prioritize shorter routes at corner nodes and
articulation points. This pursuit of shorter paths increases operational risks and reduces
feasibility. In the GA method, random sampling points introduce a certain possibility of
encountering large corners, resulting in longer paths, and placing higher demands on the
CLMR’s maneuverability. To address this issue, the combination of A* and GA methods
improves the path’s smoothness and provides guidance. Nonetheless, the presence of more
corners and narrow areas in the path poses greater challenges for the robot’s capabilities
and model. In the planning of ACO, it follows the pursuit of the shortest path when the
path shows better smoothness, but the passage is not considered in the method. Given
this, after combining with A*, the smoothing of the path is proposed, and here the B-spline
is used for processing because the smoothing of the path is usually accompanied by a
change in the path points, and it can be seen from the figure that, due to the space being
relatively small, the path status quo is changed, and a larger set of points appeared to
be in contact with the obstacles, which poses a greater threat to the operational safety,
making it difficult for the traditional path smoothing to be sufficient. In the proposed
method, a transfer model of fractional-order is established by building a fractional-order
model with constraints in the method, which improves the path smoothing, avoids the
path changes brought about by the additional path smoothing, and improves the path
safety, while the obtained smoothed paths ensures the path feasibility. At the same time,
we can see that the paths of ACOF are corrected to increase smoothness, but in a narrow
space, and this late correction makes it easy for the planned paths to run into obstacles,
resulting in a drastic decrease in their success rate. The proposed method, on the other
hand, maintains smoothness and at the same time has a high success rate, which proves
the excellent performance of the planning method based on the fractional-order model.

Figure 12 provides the mean and current lowest values of the objective function for var-
ious optimization algorithms: GA—both Mean GA (MGA) and Current Lowest GA (CLGA),
AGA—both Mean AGA (MAGA) and Current Lowest AGA (CLAGA), ACO—both Mean
ACO (MACO) and Current Lowest ACO (CLACO), ACOF—both Mean ACOF (MACOF)
and Current Lowest ACOF (CLACOF), and FACO—both Mean FACO (MFACO) and
Current Lowest FACO (CLFACO). GA is characterized by fast convergence in the initial
stage; however, with the depth of the iteration, the GA is more likely to fall into premature
maturity. In contrast to the ACO calculation, the method is more dependent on the initial
value, and the convergence is slower in the early stage; however, with the help of the
method’s adaptation to nonlinear and complex problems it has an advantage in dealing
with the local optimal solution. To improve the search efficiency, the traversal based on the
A* method is used in this paper: AGA, ACOF, and FACO. This shows great advantages in
the fast convergence of the mean value and the optimization of the minimum value. In the
iterative search for the minimum value, AGA achieves faster convergence, while ACOF
and FACO can still jump out of the current local optimality conditions and further search
for the global optimal solution. Therefore, the proposed method has a great advantage in
realizing the optimal value of the cost function in this paper.
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6. Conclusions and Outlook

This paper presents a novel ACO approach for the path planning of CLMRs with
suspension in narrow and large-scale environments, which combines fractional-order en-
hanced path planning with an improved ACO algorithm to achieve smooth and efficient
paths. To improve the accuracy of the kinematic model construction for CLMRs with sus-
pension, a precise fractional-order-based kinematic modeling method is introduced. This
method takes into account the dynamic adjustment of angle constraints, resulting in a more
accurate representation of the CLMR’s motion. Furthermore, the path planning algorithm
is further enhanced by incorporating fractional-order transfer-probability modelling into
the ACO framework. This extension effectively addresses the challenges associated with
local optima and lack of smoothness in narrow spaces. Additionally, it improves the search
speed in large-scale scenes, ensuring more efficient and optimized path planning.

It is worth noting that the proposed method adopts a fixed fractional order although it
is more accurate and flexible than the integer order, but the exact value of the fractional
order is still a challenge. In future work, we will introduce sensor observation, further
implement variable fractional order to improve the accuracy of model construction and
explore the potential application of fractional-order models in other path planning methods.
In addition, we will subsequently refine the path planning methods and further investigate
local planning algorithms based on the existing global path planning to cope with highly
dynamic scenarios.
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