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Abstract: In this article, an event-triggered adaptive fuzzy finite-time dynamic surface control (DSC)
is presented for a class of strict-feedback nonlinear fractional-order systems (FOSs) with full-state
constraints. The fuzzy logic systems (FLSs) are employed to approximate uncertain nonlinear
functions in the backstepping process, the dynamic surface method is applied to overcome the
inherent computational complexity from the virtual controller and its fractional-order derivative, and
the barrier Lyapunov function (BLF) is used to handle the full-state constraints. By introducing the
finite-time stability criteria from fractional-order Lyapunov method, it is verified that the tracking
error converges to a small neighborhood near the zero and the full-state constraints are satisfied
within a predetermined finite time. Moreover, reducing the communication burden can be guaranteed
without the occurrence of Zeno behavior, and the example is given to demonstrate the effectiveness
of the proposed controller.

Keywords: fractional-order systems; fuzzy systems; event-triggered control; finite-time; state
constraints

1. Introduction

The fractional-order systems (FOSs) with infinite memory and genetic characteristics
can describe the more nonclassic phenomenon in the physical systems [1,2], which have
been applied in a lot of different areas such as secret communication [3,4], vehicle [5,6],
circuit [7,8], finance [9,10], image [11–13], etc.

Many nonlinear controller results for FOSs have been presented including adaptive
backstepping control, dynamic surface control (DSC), and so on. Among them, the adaptive
backstepping control technology can settle the tracking control problem of FOSs with mis-
matched conditions, in which the approximation performance of neural networks (NNs) or
fuzzy logic systems (FLSs) [14–19] are always used to handle unknown nonlinear functions
in the FOSs, and the stability of the closed-loop system is accomplished. For example, the
authors in [20] consider nonlinear FOSs under actuator faults and come up with a NN
backstepping control scheme by using the property of NNs. An adaptive fuzzy control
strategy for nonstrict-feedback nonlinear large-scale FOSs is designed and analyzed in [21].
Liu et al. [22] investigate the adaptive DSC for a class of parametric uncertain FOSs by
utilizing backstepping mechanism. Despite many literatures and achievements have been
obtained and published, output or state constraints are ignored and not considered there.

In fact, state constraints or output constraint are the most important factor restricting
system performance, and generally widespread in plentiful physical systems. Once violate
these constraints at some point of the operation, the control systems are unable to work
normally and cause extreme harm. To address the constraint issue to guarantee the steady-
state and transient behavior of the FOSs, the barrier Lyapunov function (BLF) by employing
the relevant error constraints is the prevalent method to indirectly restrict system states,
and a number of the constraint control strategies for FOSs has been achieved. The authors
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in [23] develop an adaptive NN constraint control strategy for uncertain nonlinear nonstrict-
feedback FOSs under full-state constraints, and all the states remain in their constraint
bounds by introducing the BLF. In [24], a bipartite consensus of multiple nonlinear FOSs
with output constraints is assessed, and a distributed backstepping control method is
developed, in which the BLFs are applied to restrict the output of followers into the preset
range. To achieve the performance of the FOSs under asymmetric time-varying state
constraints and input nonlinearities [25], a neural adaptive DSC is proposed by using
asymmetric BLFs to refrain from the transgression of the pseudo-state constraints. The
uncertain nonstrict-feedback incommensurate FOSs under output constraints is addressed
in [26], and an adaptive NN controller based on the observer is proposed to guarantees
the tracking error satisfying the constraints. In these traditional time-trigger schemes,
the communication is performed periodically, leading to the waste of resources from the
communications burden and vast data transmission.

Different from time-driven periodic sampling mechanism with fixed frequency, the
frequency of event-driven control (ETC) is determined according to state error, which can
save communication resources and computing resources of the system, and event-triggered
control for FOSs have been proposed in some outstanding works. In [27], the ETC strategy
for the FOSs has been designed to ensure the stability of the closed-loop system. For
fractional-order multiagent networks in [28], a distributed ETC is designed to address
the limitations of communication resources. In [29], an adaptive NN ETC for FOSs with
unmodeled dynamics is proposed by using Mittag-Leffler input-to-state practical stability
Lyapunov function. The authors in [30] research the state estimation of the fractional-order
complex networked systems with randomly occurring nonlinearities, and an adaptive
nonfragile state estimation method with event-triggered mechanism is designed. For
nonlinear FOSs with uncertainty and disturbance in [31], the adaptive event-triggered
fuzzy DSC strategy is investigated to reduce the transmission of control signals. In [32],
the adaptive NN backstepping ETC algorithm for the nonlinear double-integrator FOSs
with unknown dynamics and disturbances is presented. For nonstrict-feedback uncertain
multi-input multi-output time-delay FOSs with actuator faults, the observer-based adaptive
hybrid fuzzy controller via dynamic surface method and event-triggered mechanism is
proposed in [33]. To our best knowledge, there is a lack of research on the finite-time state
constrained ETC strategy for nonlinear FOSs.

In this article, the event-triggered finite-time adaptive control method for nonlin-
ear FOSs with actuator saturation and full-state constraints is proposed, and the major
innovations are given as follows:

(1) Compared with state constrained controller [23,25,27,34] or finite-time controller for
nonlinear FOSs [35–38], an event-triggered adaptive fuzzy finite-time DSC approach
for strict-feedback uncertain nonlinear FOSs with actuator saturation and full-state
constraints is proposed, in which the fuzzy logic systems are employed to approximate
uncertain nonlinear functions in the backstepping process and the dynamic surface
method is applied to overcome the inherent computational complexity from the
virtual controller.

(2) Compared with the results in [39,40], the event-triggered mechanism is designed
together with finite-time full-state constrained adaptive controller, and the finite-time
stability of the closed-loop systems is proved based on fractional-order Lyapunov
criterion, which reduces the consumption of network resources to make the proposed
controller more general for application.

2. Problem Formulations and Preliminary
2.1. Systems Dynamics and Some Basic Assumptions

The following strict-feedback nonlinear FOSs with actuator saturation are considered:
Dαxi = fi(xi) + gi(xi)xi+1, i = 1, 2, . . . , n − 1
Dαxn = fn(x) + gn(x)u(ν)
y = x1

(1)
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where xi =
(

x1 x2 . . . xi
)T ∈ Ri(i = 1, 2, . . . , n − 1) and x =

(
x1 x2 . . . xn

)T ∈ Rn are
state vectors, y ∈ R is output, fi(·) is unknown function, and gi(·) is known function, i = 1, 2, . . . , n.
α is fractional order, and αth is the Caputo fractional derivative of continuous function ξ(t), which is
defined as [41,42]:

Dα
t0

ξ(t) =
1

Γ(n − α)

∫ t

t0

(t − τ)n−α−1ξ(n)(τ)dτ (2)

where Γ(α) =
∫ ∞

0 e−ttα−1dt, n − 1 < α < n, n ∈ Z+. Dα
t0

is denoted as Dα, when t0 = 0.
Define an open set as Ωi = { xi(t) ∈ R||xi| < kci , kci > 0}, then each system state xi is con-

strained in Ωi. v is the control input, and u(v) is the saturation input defined as:

u(ν) =


umax, ν ≥ umax

ν, umin < ν < umax

umin, ν ≤ umin

(3)

where umax > 0 and umin < 0. Saturation (3) can be described as the smooth function as follow [43,44]:

u(ν) = h(ν) + ∆(ν) (4)

where

h(ν) =


umax· e

ν
umax −e−

ν
umax

e
ν

umax +e−
ν

umax
, ν ≥ 0

umin· e
ν

umin −e−
ν

umin

e
ν

umin +e−
ν

umin
, ν < 0

(5)

and ∆(ν) = u(ν)− h(ν) satisfying |∆(ν)| ≤ max{umax(1 − tanh(1)), umin(tanh(1)− 1)} = D. Then,
there is a constant µ, 0 < µ < 1, and one can get h(ν) = hνµ ν when selecting ν0 = 0. One can get

u(ν) = hνµ ν + ∆(ν) (6)

In this article, the event-triggered adaptive fuzzy finite-time controller for FOSs (1) will be
constructed, so that:

(1) output y follows desired yr(t), and the tracking error ϑ1 = y − yr(t) converges to a small
neighborhood of the origin in finite time;

(2) the full-state constraints are satisfied no later than the predetermined finite time;
(3) all the signals in the closed-loop system remain boundedness and the Zeno behavior is avoided

to occur.

To complete the control objective, the following assumptions are made.

Assumption 1. For ∀kc1 > 0, there exist positive constants A0, A1, and A2, such that
|yr| ≤ A0 < kc1 , |Dαyr(t)| ≤ A1, and

∣∣D2αyr(t)
∣∣ ≤ A2. In addition, there exists a compact

Ωyr =
{(

yr Dαyr D2αyr
)T
∣∣∣y2

r + (Dαyr)
2 +

(
D2αyr

)2 ≤ δyr , δyr > 0
}

, such that(
yr Dαyr D2αyr

)T ∈ Ωyr .

Assumption 2. There exist unknown constants 0 < gi min ≤ gi max, such that 0 < gi min ≤ |gi(xi)| ≤
gi max, i = 1, 2, . . . , n. Without loss of generality, it is further assumed that 0 < gi min ≤ gi(xi) ≤ gi max.

2.2. Necessary Preparations
Lemma 1 ([45]). For ∀q1, q2 and ∀s1, s2, s3 > 0, one can obtain:

|q1|s1 |q2|s2 ≤ s1
s1 + s2

s3|q1|s1+s2 +
s2

s1 + s2
s
− s1

s2
3 |q2|s1+s2 (7)

Lemma 2 ([46,47]). If ς(t) satisfy |ς(t)| ≤ kb0
for ∀kb0

> 0, one can have

ln
k2

b0

k2
b0
− ς2(t)

≤ ς2(t)
k2

b0
− ς2(t)

(8)
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Lemma 3 ([48]). Let f (x) ∈ R is an unknown function, then there is FLS and a ∀ε > 0 such that

sup
x∈Ω

∣∣∣ f (x)− WTΨ(x)
∣∣∣ < ε (9)

where Ψ(x) ∈ Rr denotes the basis function vector, and W ∈ Rr represents the ideal constant weight vector.

Lemma 4 ([49,50]). Let x(t) ∈ Rn, and Dα
(

xT(t)Px(t)
)
≤ 2xT(t)PDα(x(t)) holds for ∀t ≥ t0 and

α ∈ (0, 1], P = PT > 0.

Lemma 5 ([51]). Let h1(·), h2(·) ∈ R. Assume that the function h1(h2) is convex (i.e.,
∂2h1(h2)

/
∂h2

2 ≥ 0), then, for ∀t ≥ 0 and α ∈ (0, 1], inequality Dαh1(h2) ≤ ∂h1(h2)
/

∂h2 ·
Dαh2 holds.

Lemma 6 ([52]). Let f (t) ∈ C1((0,+∞], R), then

Dα f β(t) =
Γ(1 + β)Γ(2 − α)

Γ(1 + β − α)
f β−1(t)Dα f (t) (10)

where α ∈ (0, 1], and β ∈ [1, ∞).

Lemma 7 ([53]). For ∀ε∗ > 0 and z ∈ R, it holds that

|z| − z tanh
( z

ε∗

)
≤ 0.2785ε∗ (11)

3. Main Results
3.1. Design of Adaptive Event-Triggered Controller

To adopt the backstepping technology with the DSC technology, the following coordinate
transformations are considered:

ϑ1 = y − yr(t)
ϑi = xi − Yi.l
ζi = Yi.l − Yi−1
i = 2, 3, . . . , n

(12)

where ϑ1 is the tracking error, ϑi is the dynamic surface error, ζi is the filter output error, Yi−1 is the
virtual controller, and Yi.l is the filter output defined as:

κiDαYi.l = −Yi.l + Yi−1
Yi.l(0) = Yi−1(0), i = 2, 3, . . . , n.

(13)

where κi is a constant.
For t ∈ [tk, tk+1), the virtual control laws and actual control law are designed as follows:

Y1 = 1
g1(x1)

(
− c1ϑ

2ρ−1
1(

k2
b1
−ϑ2

1

)ρ−1

−
(

g1 min

2b2
1

θ1 ∥ Ψ1(Z1) ∥2 +
1+g2

1 max
2 d2

1

)
ϑ1

k2
b1
−ϑ2

1

) (14)

Yi =
1

gi(xi)

(
−
(

1
2b2

i
θi gi min∥ Ψi(xi) ∥

2 +
1+g2

i max
2 d2

i

)
ϑi

k2
bi
−ϑ2

i

+DαYi.l −
ciϑ

2ρ−1
i(

k2
bi
−ϑ2

i

)ρ−1 −
gi−1(xi−1)ϑi−1

(
k2

bi
−ϑ2

i

)
k2

bi−1
−ϑ2

i−1

)
i = 2, . . . , n − 1

(15)

Yn = 1
gn(x)hνµ

(
−
(

1
2b2

n
θn gn min∥ Ψn(x) ∥2 +

1+g2
n max
2 d2

n

)
ϑn

k2
bn−ϑ2

n

+DαYn.l − cnϑ
2ρ−1
n

(k2
bn−ϑ2

n)
ρ−1 −

gn−1(xn−1)ϑn−1(k2
bn−ϑ2

n)
k2

bn−1
−ϑ2

n−1

) (16)

Θ(t) = −(1 + λ∗
1)

Yn tanh

 Ynϑn

κ∗
(

k2
bn
− ϑ2

n

)
+ λ

∗
2 tanh

 λ
∗
2ϑn

κ∗
(

k2
bn
− ϑ2

n

)
 (17)
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v(t) = Θ(tk), ∀t ∈ [tk, tk+1) (18)

where tk is the controller update time, k ∈ Z+. bi, ci, di > 0 and κ∗ > 0 are the design parameters.
kbi

> 0 will be given later, i = 1, 2, . . . , n. Ψi(·) is the basis function vector and will be specified

later, θi is the estimate parameter of θ∗i = 1
gi min

∥ W∗
i ∥2, and W∗

i is the optimal fuzzy weight in step i.

λ
∗
2 >

λ∗
2

1−λ∗
1
, λ∗

1 ∈ (0, 1) and λ∗
2 > 0 are the design parameters.

The parameter adaptive laws are designed as follows:

Dαθ1 =
γ1

2b2
1

ϑ2
1(

k2
b1
− ϑ2

1

)2 ∥ Ψ1(Z1) ∥2 − ς1θ1 (19)

Dαθi =
γi

2b2
i

ϑ2
i(

k2
bi
− ϑ2

i

)2 ∥ Ψi(xi) ∥
2 − ςiθi, i = 2, . . . , n (20)

where γ1 > 0, ς1 > 0,γi > 0 and ςi > 0 are the design parameters.
The event sampling error is designed as

Y(t) = Θ(t)− Θ(tk), ∀t ∈ [tk, tk+1) (21)

Then the sampling instants from (18) are determined by the following triggering condition

tk+1 = inf{ t ∈ R||Y(t)| ≥ λ∗
1 |v(t)|+ λ∗

2} (22)

3.2. Stability Analysis
The details of the proposed control scheme are given by using the backstepping technique,

which involves n recursive steps.
Step 1: From (1) and (12), the derivative of ϑ1 is

Dαϑ1 = Dαy − Dαyr(t)
= f1(x1) + g1(x1)x2 − Dαyr(t)
= W∗T

1 Ψ1(Z1) + ε1 + g1(x1)(ϑ2 + ζ2 + Y1)
(23)

where F1(Z1) = F1(x1, Dαyr(t)) = f1(x1)−Dαyr(t) is approximated via the fuzzy system W∗T
1 Ψ1(Z1)

according to Lemma 3, and satisfies F1(Z1) = W∗T
1 Ψ1(Z1) + ε1. Assume that there exists ε1 > 0 such

that ε1 ≤ ε1.
Construct the Lyapunov function candidate as

V1 =
1
2

ln
k2

b1

k2
b1
− ϑ2

1
+

g1 min
2γ1

θ̃2
1 (24)

where θ̃1 = θ∗1 − θ1.
Based on Lemmas 4 and 5, the αth Caputo fractional derivative of V1 on each time interval

[tk, tk+1) is
DαV1 = ϑ1

k2
b1
−ϑ2

1
Dαϑ1 −

g1 min
γ1

θ̃1Dαθ1

= ϑ1
k2

b1
−ϑ2

1
W∗T

1 Ψ1(Z1) +
ϑ1

k2
b1
−ϑ2

1
(ε1 + g1(x1)(ϑ2 + ζ2 + Y1))

− g1 min
γ1

θ̃1Dαθ1

(25)

The Young’s inequality and Assumption 1 are applied and yields:

ϑ1

k2
b1
− ϑ2

1
W∗T

1 Ψ1(Z1) ≤
1

2b2
1

ϑ2
1(

k2
b1
− ϑ2

1

)2 θ∗1 g1 min∥ Ψ1(Z1) ∥2 +
1
2

b2
1 (26)

ϑ1(ε1 + g1(x1)ζ2)

k2
b1
− ϑ2

1
≤

d2
1
(
1 + g2

1 max
)
ϑ2

1

2
(

k2
b1
− ϑ2

1

)2 +
1
2

d2
1ε2

1 +
1
2

d2
1ζ2

2 (27)
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Substituting (26) and (27) into (25), one can get

DαV ≤ g1(x1)
ϑ1ϑ2

k2
b1
−ϑ2

1
+ 1

2 b2
1 +

1
2 d2

1ε2
1 +

1
2 d2

1ζ2
2

−g1 min θ̃1

(
1

γ1
Dαθ1 − 1

2b2
1

ϑ2
1(

k2
b1
−ϑ2

1

)2 ∥ Ψ1(Z1) ∥2

)
+
(

g1 min

2b2
1

θ1 ∥ Ψ1(Z1) ∥2 +
1+g2

1 max
2 d2

1

)
ϑ2

1(
k2

b1
−ϑ2

1

)2

+g1(x1)Y1
ϑ1

k2
b1
−ϑ2

1

(28)

Substituting (14) and (19) into (28), DαV1 is presented as:

DαV1 ≤ − c1ϑ
2ρ
1(

k2
b1
−ϑ2

1

)ρ + g1(x1)
ϑ1ϑ2

k2
b1
−ϑ2

1

+ 1
2 b2

1 +
1
2 d2

1ε2
1 +

1
2 d2

1ζ2
2 +

g1 minς1
γ1

θ̃1θ1

(29)

Step i(i = 2, 3, . . . , n − 1): The derivative of ϑi is presented as:

Dαϑi = Dαxi − DαYi.l
= fi(xi) + gi(xi)xi+1 − DαYi.l
= W∗T

i Ψi(xi) + εi + gi(xi)(ϑi+1 + ζi+1 + Yi)− DαYi.l

(30)

where fi(xi) is approximated by W∗T
i Ψi(xi) such that fi(xi) = W∗T

i Ψi(xi) + εi, and there exists
constant εi > 0 satisfying εi ≤ εi.

The Lyapunov candidate function is selected as

Vi = Vi−1 +
1
2

ln
k2

bi

k2
bi
− ϑ2

i
+

gi min
2γi

θ̃2
i +

1
2

ζ2
i (31)

where θ̃i = θ∗i − θi denotes the estimation error.
The αth Caputo fractional derivative of Vi is

DαVi = DαVi−1 +
ϑi

k2
bi
−ϑ2

i
W∗T

i Ψi(xi)

+ ϑi
k2

bi
−ϑ2

i
(εi + gi(xi)(ϑi+1 + ζi+1 + Yi)− DαYi.l)

− gi min
γi

θ̃iDαθi + ζiDαζi

(32)

According to the Young’s inequality, the following inequality can be obtained:

ϑi

k2
bi
− ϑ2

i
W∗T

i Ψi(xi) ≤
1

2b2
i

ϑ2
i(

k2
bi
− ϑ2

i

)2 θ∗i gi min∥ Ψi(xi) ∥
2 +

1
2

b2
i (33)

ϑi(εi + gi(xi)ζi+1)

k2
bi
− ϑ2

i
≤

d2
i
(
1 + g2

i max
)
ϑ2

i

2
(

k2
bi
− ϑ2

i

)2 +
1
2

d2
i ε2

i +
1
2

d2
i ζ2

i+1 (34)

Substituting (33) and (34) into (32), yields

DαVi ≤ DαVi−1 +
1

2b2
i

ϑ2
i(

k2
bi
−ϑ2

i

)2 θ∗i gi min∥ Ψi(xi) ∥
2 + 1

2 b2
i

− gi min
γi

θ̃iDαθi + ζiDαζi +
(1+g2

i max)ϑ2
i

2
(

k2
bi
−ϑ2

i

)2 + 1
2 d2

i ε2
i +

1
2 d2

i ζ2
i+1

+ ϑi
k2

bi
−ϑ2

i
(gi(xi)(ϑi+1 + Yi)− DαYi.l)

(35)

Based on Lemma 5, formulas (12), (13), and DSC technology, one can get

Dαζi = DαYi.l − DαYi−1 = − ζi
κi

+ Hi(·) (36)
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where

Hi(·) = −
i−1

∑
j=1

∂Yi−1
∂xj

Dαxj −
∂Yi−1
∂θi−1

Dαθi−1 −
∂Yi−1
∂Yi−1.l

DαYi−1.l (37)

Substituting (15), (19) and (36) into (35), the DαVi can be rewritten as

DαVi ≤ DαVi−1 +
gi(xi)ϑiϑi+1

k2
bi
−ϑ2

i

− ciϑ
2ρ
i(

k2
bi
−ϑ2

i

)ρ − gi−1(xi−1)ϑi−1ϑi(
k2

bi−1
−ϑ2

i−1

)
+

gi minςi
γi

θ̃iθi + ζiDαζi +
1
2 d2

i ε2
i +

1
2 d2

i ζ2
i+1 +

1
2 b2

i

≤ −
i−1
∑

j=1

cjϑ
2ρ
j(

k2
bj
−ϑ2

j

)ρ +
i−1
∑

j=1

gj minς j
γj

θ̃jθj

+
i−1
∑

j=1

1
2 d2

j ε2
j +

i−1
∑

j=1

1
2 d2

j ζ2
j+1 +

i−1
∑

j=1

1
2 b2

j

+
gi−1(xi−1)ϑi−1ϑi

k2
bi−1

−ϑ2
i−1

+
i−2
∑

j=1
ζ j+1Dαζ j+1

+
gi(xi)ϑiϑi+1

k2
bi
−ϑ2

i
− ciϑ

2ρ
i(

k2
bi
−ϑ2

i

)ρ − gi−1(xi−1)ϑi−1ϑi(
k2

bi−1
−ϑ2

i−1

)
+

gi minςi
γi

θ̃iθi + ζiDαζi +
1
2 ε2

i +
1
2 ζ2

i+1 +
1
2 b2

i

≤ −
i

∑
j=1

cjϑ
2ρ
j(

k2
bj
−ϑ2

j

)ρ +
i

∑
j=1

gj minς j
γj

θ̃jθj

+
i

∑
j=1

1
2 d2

j ε2
j +

i
∑

j=1

1
2 d2

j ζ2
j+1 +

i
∑

j=1

1
2 b2

j

−
i−1
∑

j=1

ζ2
j+1

κj+1
+

i−1
∑

j=1

∣∣∣ζ j+1Hj+1(·)
∣∣∣+ gi(xi)ϑiϑi+1

k2
bi
−ϑ2

i

(38)

Step n: From (6) and (12), one can get

Dαϑn = Dαxn − DαYn.l

= fn(x) + gn(x)
(

hνµ ν + ∆(ν)
)
− DαYn.l

= W∗T
n Ψn(x) + εn + gn(x)hνµ ν + gn(x)∆(ν)− DαYn.l

(39)

where fn(x) = W∗T
n Ψn(x) + εn, and εn ≤ εn, εn > 0.

The Lyapunov function candidate is as following

Vn = Vn−1 +
1
2

ln
k2

bn

k2
bn
− ϑ2

n
+

gn min
2γn

θ̃2
n +

1
2

ζ2
n (40)

where θ̃n = θ∗n − θn.
Then, one can have

DαVn = DαVn−1 +
ϑn

k2
bn−ϑ2

n
W∗T

n Ψn(x)

+ ϑn
k2

bn−ϑ2
n

(
εn + gn(x)hνµ ν + gn(x)∆(ν)− DαYn.l

)
− gn min

γn
θ̃nDαθn + ζnDαζn

(41)

It is true that

ϑn

k2
bn
− ϑ2

n
W∗T

n Ψn(x) ≤ 1
2b2

n

ϑ2
n(

k2
bn
− ϑ2

n

)2 θ∗n gn min∥ Ψn(x) ∥2 +
1
2

b2
n (42)

ϑn(εn + gn(x)∆(ν))
k2

bn
− ϑ2

n
≤

d2
n
(
1 + g2

n max
)
ϑ2

n

2
(

k2
bn
− ϑ2

n

)2 +
1
2

d2
nε2

n +
1
2

d2
nD2 (43)

and
Dαζn = DαYn.l − DαYn−1 = − ζn

κn
+ Hn(·) (44)
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where

Hn(·) = −
n

∑
j=1

∂Yn−1
∂xj

Dαxj −
∂Yn−1
∂θn−1

Dαθn−1 −
∂Yn−1
∂Yn−1.l

DαYn−1.l (45)

From Assumption 1 and the boundedness of one Vn are compact, there exists a constant Ξi > 0,
such that |Hi| ≤ Ξi. Then the following inequality holds:

|ζi Hi| ≤
ζ2

i Ξ2
i

2
⌢
q i

+

⌢
q i
2

(46)

where
⌢
q i > 0, i = 1, 2, . . . , n.

Substitute (42)–(46), (16) and (20) into (41) yields

DαVn ≤ DαVn−1 +
1

2b2
n

ϑ2
n

(k2
bn−ϑ2

n)
2 θ∗n gn min∥ Ψn(x) ∥2

+ 1
2 b2

n + ϑn
k2

bn−ϑ2
n

(
gn(x)hνµ ν − DαYn.l

)
+

d2
n(1+g2

n max)ϑ2
n

2(k2
bn−ϑ2

n)
2 + 1

2 d2
nε2

n + 1
2 d2

nD2

− gn min
γn

θ̃nDαθn − ζ2
n

κn
+ |ζn Hn(·)|

≤ DαVn−1 − ζ2
n

κn
+ ζ2

nΞ2
n

2
⌢
q n

+
⌢
q n
2 + 1

2 d2
nε2

n

+ 1
2 d2

nD2 + 1
2 b2

n + ϑn
k2

bn−ϑ2
n

(
gn(x)hνµ ν − DαYn.l

)
+
(

1
2b2

n
θn gn min∥ Ψn(x) ∥2 +

1+g2
n max
2 d2

n

)
ϑ2

n

(k2
bn−ϑ2

n)
2

− gn min
γn

θ̃n

(
Dαθn − γn

2b2
n

ϑ2
n

(k2
bn−ϑ2

n)
2 ∥ Ψn(x) ∥2

)

(47)

Theorem 1. Consider the nonlinear FOSs (1) with the Assumptions 1 and 2. If the initial conditions
satisfy xi(0) ∈ Ωx = { xi||xi(0)| < kci}, the actual controller (18) with virtual controllers (14)–(16), and
parameter adaptive laws (19) and (20) can confirm that all the signals in the closed-loop system are bounded, all
the states x(t) do not transgress the pregiven sets, and the Zeno behavior is excluded. Moreover, for ∀t ≥ T,
the closed-loop error signal ϑi will stay around the compact set

Ωϑi =

{
ϑi||ϑi| ≤ kbi

√
1 − e−2(M/(σ(1−ϑ)))

1/ρ

}
, i = 1, 2, . . . , n (48)

where

T =

(
Γ
(

2−ρ
1−ρ

)
Γ(2−α)Γ(α+1)

σϑΓ
(

2−ρ
1−ρ −α

) (
V1−ρ

n (0)−
(

M
σ(1−ϑ)

) 1
ρ

)) 1
α

ϑ ∈ (0, 1)

(49)

Proof. From the definition ∆(t) = Θ(t)− u(t) and (22), one can have

Θ(t) = (1 + λ∗
1λ1(t))u(t) + λ∗

2λ2(t) (50)

where |λ1(t)| ≤ 1 and |λ2(t)| ≤ 1. Accordingly, one can obtain

ν(t) =
Θ(t)− λ∗

2λ2(t)
1 + λ∗

1λ1(t)
(51)

According to (16), (18), (19) and (51), inequality (47) can be rewritten as

DαVn ≤ DαVn−1 +
gn(x)hνµ ϑn

k2
bn−ϑ2

n

Θ(t)−λ∗
2 λ2(t)

1+λ∗
1 λ1(t)

− cnϑ
2ρ
n

(k2
bn−ϑ2

n)
ρ − gn−1(xn−1)ϑn−1ϑn

k2
bn−1

−ϑ2
n−1

−gn(x)hνµ
Ynϑn

k2
bn−ϑ2

n
+

gn min
γn

ςn θ̃nθn

− ζ2
n

κn
+ ζ2

nΞ2
n

2
⌢
q n

+
⌢
q n
2 + 1

2 d2
nε2

n + 1
2 d2

nD2 + 1
2 b2

n

(52)
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In view of |λ1(t)| ≤ 1 and |λ2(t)| ≤ 1, one can have

Θ(t)ϑn
1+λ∗

1 λ1(t)
≤ Θ(t)ϑn

1+λ∗
1

λ∗
2 λ2(t)

1+λ∗
1 λ1(t)

≤
∣∣∣ λ∗

2
1−λ∗

1

∣∣∣ (53)

Using Lemma 7, it follows that

DαVn ⩽ DαVn−1+
gn min

γn
ςn θ̃nθn − cnϑ

2ρ
n

(k2
bn−ϑ2

n)
ρ

− gn(x)hνµ Ynϑn

k2
bn−ϑ2

n
− Ynϑn gn(x)

k2
bn−ϑ2

n
tanh

(
Ynϑn

κ∗(k2
bn−ϑ2

n)

)
− gn(x)hνµ ϑn

k2
bn−ϑ2

n

λ∗
2 λ2(t)

1+λ∗
1 λ1(t)

+
λ
∗
2 ϑn gn(x)
k2

bn−ϑ2
n

tanh
(

λ
∗
2 ϑn

κ∗(k2
bn−ϑ2

n)

)
−

gn−1

(
x
−n−1

)
ϑn−1ϑn

k2
bn−1

−ϑ2
n−1

− ζ2
n

κn
+ ζ2

nΞ2
n

2
⌢
q n

+
⌢
q n
2 + 1

2 d2
nε2

n + 1
2 d2

nD2 + 1
2 b2

n

⩽ DαVn−1+
gn min

γn
ςn θ̃nθn − cnϑ

2ρ
n

(k2
bn−ϑ2

n)
ρ

+hνµ gn(x)
(∣∣∣∣ λ

∗
2 ϑn

k2
bn−ϑ2

n

∣∣∣∣− λ
∗
2 ϑn

k2
bn−ϑ2

n
tanh

(
λ
∗
2 ϑn

κ∗(k2
bn−ϑ2

n)

))
+hνµ gn(x)

(∣∣∣∣ Ynϑn
k2

bn−ϑ2
n

∣∣∣∣− Ynϑn
k2

bn−ϑ2
n

tanh
(

Ynϑn
κ∗(k2

bn−ϑ2
n)

))
−

gn−1

(
x
−n−1

)
ϑn−1ϑn

k2
bn−1

−ϑ2
n−1

− ζ2
n

κn
+ ζ2

nΞ2
n

2
⌢
q n

+
⌢
q n
2 + 1

2 d2
nε2

n + 1
2 d2

nD2 + 1
2 b2

n

⩽ DαVn−1 − cnϑ
2ρ
n

(k2
bn−ϑ2

n)
ρ −

gn−1

(
x
−n−1

)
ϑn−1ϑn

k2
bn−1

−ϑ2
n−1

− gn min
γn

ςn θ̃nθn

− ζ2
n

κn
+ ζ2

nΞ2
n

2
⌢
q n

+
⌢
q n
2 + 1

2 d2
nε2

n + 1
2 d2

nD2 + 1
2 b2

n + 0.557κ∗gn maxhνµ

⩽ −
n
∑

j=1

cjϑ
2ρ
j(

k2
bj
−ϑ2

j

)ρ +
n
∑

j=1

gj minς j
γj

θ̃jθj

+
n−1
∑

j=1

1
2 d2

j ζ2
j+1 −

n−1
∑

j=1

ζ2
j+1

κj+1
+

n−1
∑

j=1

ζ2
j+1Ξ2

j+1

2
⌢
q j+1

+
n−1
∑

j=1

⌢
q j+1

2

+
n
∑

j=1

1
2 d2

j ε2
j +

n
∑

j=1

1
2 b2

j +
1
2 d2

nD2 + 0.557κ∗gn maxhνµ

(54)

Based on the estimation error θ̃j = θ∗j − θj, the following inequality holds:

θ̃jθj ≤
1
2

θ∗2
j − 1

2
θ̃2

j (55)

Then, one can obtain

n

∑
j=1

gj minς j

γj
θ̃jθj ≤

n

∑
j=1

gj minς j

2γj
θ∗2

i −
n

∑
j=1

gj minς j

2γj
θ̃2

i (56)

From (56), (??) can be rewritten as

DαVn ≤ −
n
∑

j=1

cjϑ
2ρ
j(

k2
bj
−ϑ2

j

)ρ +
n
∑

j=1

gj minς j
2γj

θ∗2
i −

n
∑

j=1

gj minς j
2γj

θ̃2
i

+
n
∑

j=1

1
2 d2

j ε2
j +

n−1
∑

j=1

1
2 d2

j ζ2
j+1 −

n−1
∑

j=1

ζ2
j+1

κj+1
+

n−1
∑

j=1

ζ2
j+1Ξ2

j+1

2
⌢
q j+1

+
n−1
∑

j=1

⌢
q j+1

2

+
n
∑

j=1

1
2 b2

j +
1
2 d2

nD2 + 0.557κ∗gn maxhνµ

≤ −σ

 n
∑

j=1

 ϑ2
j

2
(

k2
bj
−ϑ2

j

)
ρ

+
n
∑

j=1

gj min
2γj

θ̃2
i +

n−1
∑

j=1

1
2 ζ2

j+1

+ Θ

(57)
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where

σ = min
{

2ρci, ςi, 2
κj+1

− d2
j −

Ξ2
j+1

⌢
q j+1

, i = 1, . . . , n; j = 1, . . . , n − 1
}

Θ =
n
∑

j=1

1
2 d2

j ε2
j +

n
∑

j=1

1
2 b2

j +
1
2 d2

nD2 +
n
∑

j=1

gj minς j
2γj

θ∗2
j +

n−1
∑

j=1

⌢
q j+1

2

+0.557κ∗gn maxhνµ

(58)

According to Lemma 1, choose q1 = 1, q2 =
n
∑

j=1

gj min
2γj

θ̃2
j , s1 = 1 − ρ, s2 = ρ and s3 = ρ

ρ
1−ρ , then

one can obtain  n

∑
j=1

gj min

2γj
θ̃2

j

ρ

≤ (1 − ρ)s3 +
n

∑
j=1

gj min

2γj
θ̃2

j (59)

n−1

∑
j=1

1
2

ζ2
j+1

ρ

≤ (1 − ρ)s3 +
n−1

∑
j=1

1
2

ζ2
j+1 (60)

Based on (59) and (60), (57) can be rewritten as

DαVn ≤ −σ
n
∑

j=1

 ϑ2
j

2
(

k2
bj
−ϑ2

j

)
ρ

−σ

(
n
∑

j=1

gj min
2γj

θ̃2
j

)ρ

− σ

(
n−1
∑

j=1

1
2 ζ2

j+1

)ρ

+ M

(61)

where M = 2σ(1 − ρ)s3 + Θ.
From Lemma 2, (61) can be described as

DαVn ≤ −σVρ
n + M (62)

For ∀ϑ ∈ (0, 1), (2) can be rewritten as DαVn ≤ −σϑVρ
n −σ(1 − ϑ)Vρ

n +M. If Vn >
(
M
/
(σ(1 − ϑ))

) 1
ρ ,

one can obtain
DαVn ≤ −σϑVρ

n (63)

Let V = V1−ρ
n , then DαV

1
1−ρ ≤ −σϑV

ρ
1−ρ . From Lemma 6, one can get

DαV
1

1−ρ =
Γ
(

2−ρ
1−ρ

)
Γ(2 − α)

Γ
(

2−ρ
1−ρ − α

) V
ρ

1−ρ DαV (64)

Then

DαV ≤ −σϑ
Γ
(

2−ρ
1−ρ − α

)
Γ
(

2−ρ
1−ρ

)
Γ(2 − α)

(65)

From V = V1−ρ
n , one get

V1−ρ
n (t)− V1−ρ

n (0) ≤ −σϑ
Γ
(

2−ρ
1−ρ − α

)
Γ
(

2−ρ
1−ρ

)
Γ(2 − α)

tα

Γ(α + 1)
(66)

From (66), the finite time T can be designed as (49), and one can get

Vn ≤
(
M
/
(σ(1 − ϑ))

) 1
ρ , ∀t ≥ T (67)

Furthermore, based on the definition of Vn, one can obtain

1
2

ln
k2

bi

k2
bi
− ϑ2

i
≤
(
M
/
(σ(1 − ϑ))

) 1
ρ , ∀t ≥ T (68)

This implies that

|ϑi| ≤ kbi

√
1 − e−2(M/(σ(1−ϑ)))

1/ρ

, ∀t ≥ T (69)
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Then, after the finite time T, the tracking error converges to Ωϑi .

The boundedness of ln
k2

bk
k2

bi
−ϑ2

i
can be obtained according to (67), thus

∣∣ϑi
∣∣ remains in the set∣∣ϑi

∣∣ < kbi
. Also, it holds that θ̃i and ζi+1 are bounded. As ϑ1 and yr(t) are bounded, then x1 is

bounded. From (14), Y1 is a function of ϑ1 and θ1. Then, Y1 is bounded and satisfies |Y1| < Y1, Y1 > 0.
Using ϑ2 = x2 − Y2.l and ζ2 = Y2.l − Y1, one can get that Y2.l and x2 are bounded. Similarly, the
boundedness of states xi, i = 3, . . . , n, virtual controllers Yi, i = 2, . . . , n − 1, and controller ν are all
obtained. From x1 = ϑ1 + yr(t) and |yr(t)| ≤ A0 according to Assumption 1, one can have |x1| ≤
|ϑ1|+ |yr(t)| < kb1

+ A0. Define kb1
= kc1 − A0, one obtain |ζ2| ≤

√
2(M/(σ(1 − ϑ))(σ(1 − ϑ)))

1
2ρ =

∆2, for ∀t ≥ T, yielding |x2| ≤ |ϑ2|+ |ζ2|+ |a1| < kb2 + ∆2 + a1. Let kb2 = kc2 − ∆2 − a1, one can get
|x2| < kc2 . Similarly, one can in turn obtain |xi| < kci , i = 3, . . . , n. Thus, the condition of the full-state
constraints is accomplished.

Now we will show that the proposed strategy can avoid the Zeno behavior, i.e., one can always
find a positive a∗ > 0 such that tk+1 − tk ≥ a∗, ∀k ∈ Z+. From the sampling error (21), one can get
Dα|Y(t)| = sign(Y(t))DαY(t) ≤ |DαΘ(t)|. Due to (17), DαΘ(t) is bounded and ∃ζ > 0 satisfying
|DαΘ(t)| < ζ. According to Y(tk) = 0 and lim

t→tk+1
Y(t) = λ∗

2 , one gets tk+1 − tk ≥ λ∗
2

ζ , which avoids

the Zeno phenomenon. This completes the proof. □

4. Simulation
Consider the following nonlinear FOSs:

D0.8x1 = 0.8x2
1 + (6 + 3 sin(x1))x2

D0.8x2 = 0.5x3
1 cos(x2)

+
(
5 + sin

(
x2

1
)
+ cos

(
x1x2

2
))

u(υ)
(70)

where f1(x1) = 0.8x2
1 and f2(x2) = 0.5x3

1 cos(x2) are the unknown function, g1(x1) = 6 + 3 sin(x1)
and g2(x2) = 5 + sin

(
x2

1
)
+ cos

(
x1x2

2
)

are the known function. The saturation parameters are
umax = 0.15 and umin = −0.13. The state constraints are given as kc1= 0.9 and kc2= 0.65. The
reference signal is chosen as yr(t) = 0.8 sin(t).

The parameters are given as b1 = b2 = 0.1, c1 = 1, c2 = 0.8, d1 = 1, d2 = 0.5, κ2 = 0.01, κ∗ =
1.1, ρ = 0.5, γ1 = 6, γ2 = 0.05, ς1 = 0.1, ς2 = 0.01, λ∗

1 = 0.001 and λ∗
2 = 0.1. The initial values are

chosen as x1(0) = x2(0) = 0, θ1(0) = 0 and θ2(0) = 0.
To deal with the unknown nonlinear f1(x1) = 0.8x2

1 and f2(x2) = 0.5x3
1 cos(x2), the membership

functions of FLS are designed as follows:

Ψ(x1) = exp
(
− (x1−xk1 )

2

δ2
1

)
Ψ(x2) = exp

(
− (x1−xk1 )

2

δ2
1

− (x2−xk2 )
2

δ2
2

)
xk1

∈ {0.2k1 − 1|k1 = 1, 2, . . . , 9}
xk2 ∈ {0.25k2 − 1|k2 = 1, 2, . . . , 6}
δ1=0.15, δ2=0.15

(71)

Figures 1–6 show the simulation results by the proposed finite-time ECT controller. The trajec-
tories of the tracking error and the system state are shown in Figures 1 and 2. It can be found that
the transient response of output y is reasonable in both magnitude and frequency content, state x1
satisfies |x1| ⩽ kc1=0.9 and state x2 satisfies |x2| ⩽ kc2=0.65, which are not to violate their constraint
bound. Figure 3 illustrates the trajectories of parameters estimation, and the controller input u is de-
picted in Figure 4, which are all bounded. Figures 5 and 6 list the sequence of steps of event-triggered
sampling and the number of accumulated events. It demonstrates that the frequency of event-driven
controller is not fixed, which is determined by the state error and can save communication resources
and computing resources. It is clear that the tracking objective and stability of the closed-loop system
in finite time can be achieved, and the communication burden can be reduced effectively.
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5. Conclusions

An event-triggered adaptive fuzzy finite-time DSC approach for strict-feedback uncer-
tain nonlinear FOSs with actuator saturation and full-state constraints has been proposed.
The dynamic surface method is applied to overcome the difficulty of inherent computational
complexity. By employing the BLFs and fractional-order Lyapunov method, the constraints
are not violated, the closed-loop system is bounded, and the tracking error converges to a
small region around the origin in finite time. Meanwhile, the Zeno behavior can be avoided
and the simulation results verify the effectiveness. In the future, we will extend the results
of this paper to switched fractional-order nonlinear systems, and apply the theoretical
results to practical engineering applications.
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