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Abstract: In this paper, we mainly consider two kinds of perturbed accelerated gradient descents
driven by Lévy perturbations, which is of great importance for enhancing the global search ability.
By using Lévy representation, Lévy perturbations can be divided into two parts: small jumps and
large jumps, whose properties are then carefully discussed. By introducing the concept of attraction
domain for local minima, Makovian transition properties are proven for the proposed two perturbed
accelerated gradient descents with different infinitesimal matrices. Finally, all the results are extended
to the vector case and two simulation examples are provided to validate all the conclusions.

Keywords: accelerated gradient descent; Lévy perturbations; global optimization; Markovian
transition property

1. Introduction

Nowadays, optimization problems can be found almost everywhere, for instance,
(1) Modeling: minimize some given cost function to find the optimal parameters for
describing a system [1]; (2) Optimal control: find the optimal controller parameters for
different goals, such as most energy-saving, most time-saving, or the fastest response
rate [2]; (3) Machine learning: an important task of machine learning is to train the neural
network to find a set of parameters that minimize the mismatching rate [3].

The key to an optimization problem is the optimization algorithm. Among all the exist-
ing optimization algorithms, gradient descent (GD) [4,5] is a basic but popular optimization
algorithm and plays an important role in all kinds of problems. Moreover, to overcome the
shortcomings of GD, many variants have been proposed. For instance, accelerated GDs
(AGDs) including GD with momentum [6,7] and Nesterov acceleration [8], have been pro-
posed to increase the convergence speed. Unlike AGD which is accelerated by introducing
one more variable, second-order algorithms such as Newton method and quasi-Newton
method [9], increase the convergence speed by modifying the iteration direction. Moreover,
it has been shown that AGDs can be described by a second-order transfer function and its
properties can be derived using system theory [7,10]. Some methods for estimating the
Hessian matrix have also been provided to make Newton method more applicable [11,12].

As is known, GD is a local algorithm since gradient information is local, for which
GD can easily fall into a local minimum point and it will be quite tough for escaping from
a saddle point. To increase the global search ability of GD for non-convex optimization,
perturbed GDs (PGDs) have then been proposed. The PGD driven by Brownian noise can
be viewed as the discrete form of the Langevin equation in physics [13], which is used to
interpret particle’s transition between different potential wells [14]. Each potential well
plays the same role as an attraction domain of a local minimum point in optimization, thus

Fractal Fract. 2024, 8, 170. https://doi.org/10.3390/fractalfract8030170 https://www.mdpi.com/journal/fractalfract

https://doi.org/10.3390/fractalfract8030170
https://doi.org/10.3390/fractalfract8030170
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com
https://orcid.org/0000-0002-3372-0085
https://orcid.org/0000-0002-7422-5988
https://doi.org/10.3390/fractalfract8030170
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com/article/10.3390/fractalfract8030170?type=check_update&version=1


Fractal Fract. 2024, 8, 170 2 of 13

PGD can help jumping out a local minimum and existing PGD driven by Brownian motion
has been proven to jump out a local minimum but the first exist time depends exponentially
on the depth of the well [15]. Moreover, PGD can also help escaping the saddle point and
the property for faster escaping from saddle point was carefully discussed in [16,17]. To
help jumping out the local minima more efficiently, the perturbation is then replaced by the
Lévy perturbations, which is a heavy-tailed distribution and has been proven to be efficient
in global searching for intelligent algorithms. Compared with the Brownian motion, the
variance of Lévy perturbations is infinite and more frequently large jump sizes will take
place, which contributes to jumping out the local minima a lot [18]. In [19,20], dedicated
analyses were given to the simulated annealing driven by Lévy perturbations by dividing
the Lévy perturbations into large jump sizes and small jump sizes. In [21], it is proven that
the first exit time for escaping from a local minimum point driven by Lévy perturbations
is polynomial.

Stochastic GD (SGD) was originally proposed to increase the training speed in deep
learning, where it uses a random mini-batch instead of the whole data to generate an
update [22,23]. SGD has the same format of the commonly used GDs in convex optimiza-
tion and looks different from PGD, but they are the same in essence. Ref. [24] provided
the detailed deduction for the relation between SGD and PGD by assuming that the error
of the mini-batch gradient and the real gradient was distributed according to some distri-
bution. Recently, in [24], it is found that the stochastic noise can be better described with
a Lévy distribution. Moreover, in [25,26], it is found that the first exist time from a local
minimum is only polynomial with the width of the well, which is conflict to the existing
results. Thus GD driven by Lévy perturbations is then get increasing attention. In [27],
the Langevin Monte Carlo driven by Lévy perturbations was carefully discussed and by
carefully designing the drift item, the convergence to the invariant measure was proven.
On this basis, in [28], the results were extended to the overdamped Langevin Monte Carlo,
where an additional momentum item was included to accelerate the convergence speed to
the invariant measure.

AGD has already been widely used in deep learning. Similar to the procedures pro-
vided in [24] where stochastic GD is reformulated as the conventional PGD, accelerated
PGD (PAGD) can be derived. There have already been some work about the properties
of PAGD driven by Brownian motion [29]. However, properties of PAGD driven by Lévy
fligths have not been analyzed yet, which is of great importance in deep learning [24].
Therefore, in this study, two different types of PAGDs will be proposed and their corre-
sponding continuous case will also be given. Divide Lévy perturbations into two parts:
small jumps and large jumps and their properties are then carefully discussed. On this basis,
by introducing the concept of attraction domain for local minima, Makovian transition
properties will be proven for the proposed PAGDs with different infinitesimal matrices.
Finally, two simulation examples are provided to validate all the conclusions. The main
contribution of the paper is summarized as follows

• By dividing the Lévy perturbation into small jumps and large jumps, a general frame-
work for analyzing PAGDs is given;

• Convergence performance of PAGDs are analyzed under small perturbations and
large perturbations respectively;

• By introducing the concept of attraction domain for local minima, Makovian transition
properties are proven for PAGDs.

2. Preliminaries

In this paper, consider the following unconstrained nonconvex optimization problem

min
x∈Rn

f (x)

where f (x) is differentiable and has multi local minimum points {mi}r
i=1.
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2.1. Accelerated Gradient Descent

The commonly used AGD with momentum item [10] can be formulated as{
yk+1 = λyk − ρ∇ f (xk),
xk+1 = xk + yk+1,

(1)

and its corresponding continuous form [30] is{
dy = (λ − 1)ydt − ρ∇ f (x)dt,
dx = ydt,

(2)

where 0 < λ < 1, ρ > 0 is the step size, and ∇ f (xk) denotes the gradient of f (x) at xk. In
all the following, it is assumed that f (x) satisfies the following condition locally

µ∥x − y∥ ≤ ∥∇ f (x)−∇ f (y)∥ ≤ L∥x − y∥, (3)

where µ > 0 and L > 0.

2.2. Perturbed Gradient Descent

The PGD can be derived by adding a perturbation item

xk+1 = xk − ρ∇ f (xk) + εηk, (4)

where, ε > 0 is the scaling parameter and ηk is the perturbation generated from some given
distribution, such as Gaussian distribution or Lévy distribution introduced in the following.
PGD has played an important role in interpreting the excellent performance of stochastic
GD in machine learning, where the target function is always non-convex [24].

2.3. Stable Process and Lévy Perturbations

Lévy distribution, a symmetric unbiased stable distribution, F(x) is defined by its
characteristic function [31]

F(k) = e−γ|k|α , 0 < α < 2, (5)

where γ > 0 is the scaling parameter and α is called Lévy index.
A symmetric stable process Lt, t ≥ 0 is a Markov process with independent stationary

increments and marginal with a Lévy distribution. Stable process Lt can be described by its
characteristic function [32]

E
{

eikLt
}
= e−at|k|α , 0 < α < 2, (6)

where a > 0 is the scaling parameter. The characteristic function of Lt can be formulated in
a integral form as

E
{

eikLt
}
= exp

{
t ∫
R\{0}

[
eiky − 1 − ikyI{|y| ≤ 1}

] dy

|y|1+α

}
. (7)

where I{|y| ≤ 1} is the index function. It is concluded that Lévy process is a compound
Poisson process and the Lévy measure of the stochastic process Lt is given by

v(A) =
∫

A\{0}

dy

|y|1+α
. (8)

Lemma 1 ([20]). Define dLt = Lt − Lt− as the jump size of Lt at time t, and the number of jumps
on the time interval (0, t] whose jump size belongs to the Borel set A has a Poisson distribution with
mean tv(A).
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Remark 1. When α = 2, Lévy distribution and stable process Lt will reduce to a Gaussian
distribution and Brownian motion, respectively. Ref. [18] provided simple procedures to generate
random numbers according to Lévy distribution.

According to Lemma 1 and the fact that a Poisson process can be divided into several
independent Poisson processes, we will divide the Lévy flights into two parts: one is the
large jump size where |dLt| = |ηk| > κ and the other one is the small jump size where
|dLt| = |ηk| ≤ κ.

For the large jump size, the Lévy measure is finite and one has that

βκ =
∫
|x|≥κ

dy

|y|1+α
=

2
ακα

. (9)

Denote τk and Wk as the jump arrival times and jump sizes. Then the internal-arrival
times Tk = τk − τk−1 are identically independent and exponentially distributed with mean
β−1

κ . According to the property of Poisson process, it is known that thr probability density
function of τk satisfies a Gamma distribution

f
(

βφ, k
)
=

βφe−βφt(βφt
)k−1

(k − 1)!
. (10)

Moreover, perturbations in between two successive large step sizes are all small jump sizes
(bounded by κ).

Remark 2. The above analyses indicate that Lévy index could control both the frequency and ampli-
tude of large jumps. The smaller Lévy index, the more frequent large jumps and the larger amplitude.

3. PAGDs Driven by Lévy Perturbations

Combining the AGD with a perturbation item, one can derive two kinds of PAGDs
respectively as {

yk+1 = λyk − ρ∇ f (xk),
xk+1 = xk + yk+1 + εηk,

(11)

and {
yk+1 = λyk − ρ∇ f (xk) + εηk,
xk+1 = xk + yk+1.

(12)

where the perturbation εηk is added to different positions.
For the convenience, the following property analyses will mainly based on their

continuous forms and Lévy perturbations are used, which can be described respectively as{
dy = (λ − 1)ydt − ρ∇ f (x)dt,
dx = ydt + εdLt,

(13)

and {
dy = (λ − 1)ydt − ρ∇ f (x)dt + εdLt,
dx = ydt.

(14)

Remark 3. PGD (4) is the discrete form of the overdamped Langevin equation while PAGD (14)
is known as the underdamped Langevin equation. We have to mention that PAGD (11) is newly
proposed in this study. One may refer the work of [30] for more details about the discrete and
continuous forms of AGDs.

Remark 4. In neural network training, stochatic GD is often used and it has been shown in [24]
that the gradient estimation error can be better modeled by a Lévy perturabtion. In the following, we
will focus on the property analyses of PAGDs driven by Lévy perturabtion.
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Convergence Analyses for Small Perturbations

Theorem 1. Set κ = ε−γ, 0 < γ < 1. As ε → 0, the trajectories of PAGDs (13) and (14) will
both converge to that of AGD (2) for small perturbations bounded by κ.

Proof. The solution of differential Equation (2) is

x̄(t) = x0 +
∫ t

0

[
e(λ−1)Ty0 − ρ

∫ T

0
e(λ−1)(T−τ)∇ f (x̄)dτ

]
dT, (15)

and the solution of differential Equation (14) is

x(t) = x0 +
∫ t

0

[
e(λ−1)Ty0 − ρ

∫ T

0
e(λ−1)(T−τ)∇ f (x)dτ

]
dT + εLt. (16)

Then the absolute error between x(t) and x̄(t) is

∥x̄(t)− x(t)∥ = ∥ρ
∫ t

0

∫ T
0 e(λ−1)(T−τ)[∇ f (x)−∇ f (x̄)]dτdT + εLt∥

≤ ρL
∫ t

0

∫ T
0 e(λ−1)(T−τ)∥x̄(τ)− x(τ)∥dτdT + ∥εLt∥

= ρL
∫ t

0 ∥x̄(τ)− x(τ)∥
∫ t

τ e(λ−1)(T−τ)dTdτ + ∥εLt∥
≤ ρL

1−λ

∫ t
0 ∥x̄(τ)− x(τ)∥dτ + ∥εLt∥,

where condition (3) is used.
As ε → 0, one has that ∥εdLt∥ ≤ ε1−γ → 0 and

∥x̄(t)− x(t)∥ ≤ ρL
1 − λ

∫ t

0
∥x̄(τ)− x(τ)∥dτ.

Using Gronwall’s inequality [33], we have that

∥x̄(t)− x(t)∥ ≤ 0,

which indicates the results of the given theorem.
For the differential Equation (14), the result still holds and the proof procedures are

similar.

Remark 5. Theorem 1 indicates that if ε is set sufficiently small, the small perturbations (bounded
by κ) will not influence the convergence trajectory a lot. In other words, small perturbations in
Lévy perturbations will not enhance the global search ability while the large perturbations will do.
Therefore, we will focus on the analyses on large perturbations in the following.

Assumption 1. Set κ = ε−γ, 0 < γ < 1. As ε → 0, it is assumed that the mean waiting time of
successive large jumps is much longer than the convergence time of AGD (2) to the ε-neighbourhood
of a local minimum point i.e., ∥x(t)− x∗∥ ≤ ε.

According to aforementioned discussion, perturbations in between two successive
large jumps are all smaller than κ. Then the convergence time to a local minimum point of
the conventional GD from its corresponding attraction domain could be derived. Choose
Lyapunov function V = ∥x − x∗∥2 and take first-order time derivative, yielding,

V̇ = −2ρ∇T f (x)(x − x∗) ≤ −2ρµ∥x − x∗∥2 = −2ρµV.

where condition (3) is used. It is concluded that

∥x − x∗∥2 ≤ ∥x0 − x∗∥2e−2ρµt. (17)

Therefore, if t ≥ 1
2ρµ ln

(
∥x0−x∗∥2

ε

)
, conventional GD will converge to the ε-neighbourhood

of local minimum point. Besides, the mean waiting time of two successive large jumps is
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α
2εγα . As ε → 0. it is concluded that α

2εγα is much larger than 1
2ρµ ln

(
∥x0−x∗∥2

ε

)
. Since AGD

converges faster than the conventional GD by carefully tuning the parameters, Assump-
tion 1 can then be shown reasonable.

Remark 6. Assumption 1 indicates that if ε is set sufficiently small, both PAGDs (13) and (14) will
fall into a ε-neighbourhood of a local minimum point, which is important for the following analysis.

4. Convergence Properties for PAGD (13)

In this section, the properties of two PAGDs will be studied. Before moving, the
attraction domain of a local minimum point must be defined. For a given target function
f (x), if the optimization algorithm is determined, then it can be viewed as a nonlinear
feedback system, where a local minimum point is a steady equilibrium of the system. By
using the definition of attraction domain in nonlinear systems, the attraction domain of a
local minimum point can be defined.

Definition 1. The attraction domain of a local minimum point mi is the collection of all the initial
states such that the optimization algorithm finally converges to the local minimum point mi.

For AGD (2) where f (x) has multi local minimum points {mi}r
i=1, it has r steady

equilibriums, i.e., (x, y)T = (mi, 0)T whose corresponding attraction domain are defined
as Ωi.

4.1. Convergence Properties for PAGD (13)

In this subsection, PAGD (13) is considered, where the perturbation is added to x. Then
define a new state space {Ωi}r

i=1 and denote σij as the first time to jump from attraction
domain Ωi to attraction domain Ωj.

According to Lemma 1, it is concluded that (x, y)T has converged to a small neigh-
bourhood of (mi, 0)T before the next large jump arrives and then the transition can be
approximated by transition from (mi, 0)T to attraction domain Ωj. Then according to the
the fact that the arrival of large perturbations constructs a Poisson process, the mean of σij
can be calculated as

E
{

σij
}
=

∞
∑

k=1
E{τk}P

(
σij = τk

)
=

∞
∑

k=1
kE{T1}P

(
σij = τk

)
≈ P((mi+εWk ,0)∈Ωj)

βφ

∞
∑

k=1
k[1 − P((mi + εW1, 0) /∈ Ωi)]

k−1

=
P(mi+εW1∈Ωj)

βφP2(mi+εW1 /∈Ωi)
.

(18)

where the definitions and properties of Wk and τk are given in Section 2.3, and

P
(
σij = τk

)
≈ P

(
k−1⋂
i=1

(mi + εW1, 0)T ∈ Ωi, (mi + εWk, 0) ∈ Ωj

)
= (1 − P((mi + εW1, 0) /∈ Ωi))

k−1P
(
(mi + εW1, 0) ∈ Ωj

)
.

Besides, the probability distribution function of σij can be calculated as
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P
(
σij > u

)
=

∞
∑

k=1
P(τk > u)P

(
σij = τk

)
=

∞
∑

k=1
P(τk > u)P

(
σij = τk

)
=

∞
∑

k=1

∫ ∞
u

βφe−βφ t(βφt)
k−1

(k−1)! dtP
(
σij = τk

)
≈ βφP

(
(mi + εW1, 0) ∈ Ωj

) ∫ ∞
u

∞
∑

k=1

e−βφ t(βφt)
k−1

Pk−1
Ω̄i

(k−1)! dt

=
P((mi+εW1,0)∈Ωj)
P((mi+εW1,0)1 /∈Ωi)

exp
{
−uβφP((mi + εW1, 0) /∈ Ωi)

}
,

(19)

with PΩ̄i
= 1 − P((mi + εW1, 0) /∈ Ωi). Equation (19) indicates that σij is approximately

distributed to an exponential function with mean E{σij}.

Theorem 2. Set κ = ε−γ, 0 < γ < 1. As ε → 0, the transition of x(t), the solution of
PAGD (11), among the state space {Ωi}r

i=1 constructs an approximate continuous Markov chain
whose infinitesimal matrix is Q =

{
qij

}m
i,j=1 with

qij := βφP
(
(mi + εW1, 0) ∈ Ωj

)
, i ̸= j,

qii = −∑
j ̸=i

qij.

Proof. According to Theorem 1, the influence of small perturbations can be totally ignored.
Moreover, according to Asssumption 1, if x(t) falls into Ωi, it will soon converge to its cor-
responding equilibrium point (mi, 0)T before the next large jump arrives. The distribution
of σij is calculated in (19), which follows a exponential distribution. On this basis, for i ̸= j,
qij in infinitesimal matrix can be derived as

lim
u→0

d
du

(
1 − P

(
σij > u

))
= βφP

(
(mi + εW1, 0) ∈ Ωj

)
,

This completes the proof.

4.2. Convergence Properties for PAGD (14)

In this subsection, PAGD (14) is considered, where the perturbation is added to y.
Similar to the analyses for PAGD (14), denote σij as the first time to jump from attraction
domain Ωi to attraction domain Ωj. One can then calculate the mean of σij and probability
distribution respectively as

E
{

σij
}
=

P
(
(mi, εW1) ∈ Ωj

)
βφP2((mi, εW1) /∈ Ωi)

(20)

and

P
(
σij > u

)
=

P
(
(mi, εW1) ∈ Ωj

)
P((mi, εW1) /∈ Ωi)

exp
{
−uβφP((mi, εW1) /∈ Ωi)

}
(21)

Remark 7. The analyses for PAGD (11) and (12) are quite similar. Compare (19) and (21), it
is found that the transition probability from (mi, 0)T to attraction domain Ωj for PAGD (11) is
P
(
(mi + εW1, 0) ∈ Ωj

)
while it is P

(
(mi, εW1) ∈ Ωj

)
for PAGD (12), since the perturbations are

added to different positions of PAGD (11) and (12).
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Theorem 3. Set κ = ε−γ, 0 < γ < 1. As ε → 0, the transition of x(t), the solution of
PAGD (11), among the state space {Ωi}r

i=1 constructs an approximate continuous Markov chain
whose infinitesimal matrix is Q =

{
qij

}m
i,j=1 with

qij := βφP
(
(mi, εW1) ∈ Ωj

)
, i ̸= j,

qii = −∑
j ̸=i

qij.

4.3. Conclusive Remarks

• The results here can be extended to many other kinds of optimization algorithms, such
as the conventional PGD driven by Lévy perturbations. Moreover, our results will be
more precise than that in [19] by using the attraction domain as the state space rather
than using the local minimum points.

• For conventional PGD, the attraction domain for a local minimum point of f (x) is
the interval constructed by its two adjacent maximum points. Then the probability of
P
(
(mi + εW1, 0) ∈ Ωj

)
and P

(
(mi, εW1) ∈ Ωj

)
can be calculated as shown in [19].

• Here, ε is set sufficiently small to guarantee the establishment of Theorem 1 and
Assumption 1. For practical usage, one can set the small jumps as zero to derive
the truncated Lévy perturbations and guarantee the establishment of Theorem 1.
If κ is chosen such that β−1

κ is much larger than the convergence time to a small
neighbourhood of a local minimum point, then the results in Theorems 2 and 3 still
hold for PAGDs driven by truncated Lévy perturbations.

5. Extensions to Vector Case

The aforementioned results only hold for scalar case. By using the vector form of Lévy
process, the aforementioned analyses can be directly extended to the vector case. According
to the presented heavy-tailed noise in [28], it is shown that the norm of the gradient noise
is heavy-tailed. Therefore, according to Theorem 6.17 in [32], the characteristic function of
the vector Lévy process can be formulated as follows

E
{

ei⟨k,Lt⟩
}
= exp

{
t
∫
Rn\{0}

[
ei⟨k,y⟩ − 1 − i⟨k, y⟩I{∥y∥ ≤ 1}

]
v(dy)

}
.

Since the norm of the gradient noise is heavy-tailed, the Lévy measure can be described as
the mentioned measure (8) multiplied by an uniform direction stochastic variable, which
can be formulated as

v(yθ : y ∈ A, θ ∈ B) =
∫

θ∈B

∫
y∈A\{0}

dy

|y|1+α
M(dθ),

and M(dθ) denotes the measure of θ.
The analyses for the vector case is almost the same as the scalar case and the main

difference concentrates on using WkΘk to replace Wk for the jump size, where Wk and Θk
are two independent stochastic variables (Wk denotes the jump size and Θk denotes the
jump direction) with

P(W1 ∈ A) =
1
β

∫
y∈A\{0}

dy

|y|1+α

and
P(Θk ∈ A) = M(A).

Then define σij as the first exit time from attraction domain Ωi to Ωj and following equa-
tions hold

E
{

σij
}
=

P
(
(mi, εW1Θ1) ∈ Ωj

)
βP2((mi, εW1Θ1) /∈ Ωi)

,
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and

P
(
σij > u

)
=

P
(
(mi, εW1Θ1) ∈ Ωj

)
P((mi, εW1Θ1) /∈ Ωi)

exp{−uβP((mi, εW1Θ1) /∈ Ωi)}.

Define a new state space {Ωi}r
i=1 where Ωi denotes the attraction domain for local

minimum point mi, and follow theorem for vector PAGD (14) can similarly derived.

Theorem 4. Set κ = ε−γ, 0 < γ < 1. As ε → 0, the transition of x(t), the solution of
PAGD (14), among the state space {Ωi}r

i=1 constructs an approximate continuous Markov chain
whose infinitesimal matrix is Q =

{
qij

}m
i,j=1 with

qij := βκ P
(
(mi, εW1Θ1) ∈ Ωj

)
, i ̸= j,

qii = −∑
j ̸=i

qij.

Furthermore, the transition property for PAGD (13) can be similarly derived as follows.

Theorem 5. Set κ = ε−γ, 0 < γ < 1. As ε → 0, the transition of x(t), the solution of
PGD (13), among the state space {Ωi}r

i=1 constructs an approximate continuous Markov chain
whose infinitesimal matrix is Q =

{
qij

}m
i,j=1 with

qij := βκ P
(
(mi + εW1Θ1, 0) ∈ Ωj

)
, i ̸= j,

qii = −∑
j ̸=i

qij.

Remark 8. Compared with the scalar case, the convergence property performs almost the same,
where the main difference is a direction variable Θ is introduced. Moreover, the large jump size
can help jumping out a local minimum point, which can be viewed as re-initialization. We have to
declare the proposed expression can better captured the characteristic of the gradient noise since it
has been shown that the norm of the gradient noise is heavy-tailed in [28].

6. Illustrative Examples

In this section, some simulation examples are provided to validate all the conclusions.

Example 1. Consider function with two local minima, which is formulated as

f (x) = x2 − 10 cos(x). (22)

Set the Lévy index α = 1.5, step size ρ = 0.01, scaling parameter ε = 0.01, and λ = 0.8.
Results are shown in Figures 1 and 2, where case 1 and case 2 indicates using PAGD (11) and
PAGD (12) respectively. Then we have the following observations

• The transition among different local minima always happens when the large jump arrives, and
we have labeled some typical transition points in Figure 2, which shows the main contribution
of large jumps for improving global search ability.

• For different PAGDs where perturbations are added to different positions, different transitions
can be viewed with the same perturbations, where we have also labeled in Figure 2.

• As labeled in Figure 1, the arrival time of two successive large jumps can be very close.
Therefore, Assumption 1 only holds in the mean of expectation and we can try to design the
arrival time of large jumps in the future.
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Figure 1. Lévy perturbations with order α = 1.5.
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Figure 2. Comparison of PAGD (11) and PAGD (12).

Example 2. In this example, we will compare results of PAGD (11) driven by Lévy perturba-
tions and truncated Lévy perturbations. Consider function with multi local minima, which is
formulated as

f (x) = x2 − 100 cos(x). (23)

All the parameters are the same as in Example 1. The truncated Lévy perturbations are derived by
truncating Lévy perturbations with κ = 50. Results are shown in Figures 3 and 4, where case 1 and
case 2 indicates using PAGD Lévy perturbations and truncated Lévy perturbations respectively.

• Figure 3 shows the comparison of Lévy perturbations and truncated Lévy perturbations (red
circles) with threshold κ = 50. Moreover, it is found that transition among local minimum
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points always happens when the large jump arrives, and Markovian transition property can
also be observed.

• Figure 4 shows that PAGD using truncated Lévy perturbations has almost the same transitions
as PAGD using Lévy perturbations. Besides, PAGD (11) using truncated Lévy perturbations
has a more convergence accuracy since it has no small perturbations.
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Figure 3. Lévy perturbations and truncated Lévy perturbations.
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Figure 4. Comparison of PAGD (11) and truncated PAGD (11).

Remark 9. The simulation results implies that the transitions always happen when the large jumps
occure. In neural network training, a sudden performance improvement or deterioration is often
found, where the algorithm jumps from a local minimum point to another one.
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7. Conclusions and Future Topics

In this study, we have presented two types of PAGDs driven by Lévy flights and
analyzed their properties. By dividing Lévy perturbations into small perturbations and
large perturbations, the properties of Lévy perturbations are then carefully analyzed. On
this basis, the Markovian transition properties for different PAGDs are given by introducing
the concept of attraction domain for local minima. The main difference for different PAGDs
is concentrated on different infinitesimal matrices. All the conclusions are finally validated
by simulation examples. Some promising research topics are listed as follows

• extend the results to PAGDs with adaptive Lévy index for better convergence
performance;

• extend the results to the optimization algorithms driven by truncated Lévy perturbations;
• apply the proposed PAGDs in non-convex optimization problems such as neural

networks training.
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