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Abstract: The Lax pairs of the higher-order Gerdjikov–Ivanov (HOGI) equation are extended to the
multi-component formula. Then, we first derive four different types of nonlocal group reductions to
this new system. To construct the solution of these four nonlocal equations, we utilize the Riemann–
Hilbert method. Compared to the local HOGI equation, the solutions of nonlocal equations not
only depend on the local spatial and time variables, but also the nonlocal variables. To exhibit
the dynamic behavior, we consider the reverse-spacetime multi-component HOGI equation and its
Riemann–Hilbert problem. When the Riemann–Hilbert problem is regular, the integral form solution
can be given. Conversely, the exact solutions can be obtained explicitly. Finally, as concrete examples,
the periodic solutions of the two-component nonlocal HOGI equation are given, which is different
from the local equation.

Keywords: four nonlocal HOGI equations; nonlocal group reduction; Riemann–Hilbert method;
exact solution

1. Introduction

In natural science and engineering technology, it is widely acknowledged that nu-
merous phenomena are nonlinear and cannot be explained only by simple linear systems.
Nonlinear systems, characterized by their nonlinear terms, provide a more precise depiction
of these intricate phenomena compared to linear systems, and thus more accurately reflect
the nature of these phenomena. Integrable systems include a special class of nonlinear
partial differential equations (nPDEs), which have been widely considered because of their
many good properties and algebraic structures [1–3]. Among many integrable systems,
there are two most important equations, namely the nonlinear Schrödinger (NLS) equation
and derivative NLS equation, which can be derived from the AKNS hierarchy and KN
hierarchy, respectively. The NLS equation plays an important role in many fields such as
water waves, nonlinear optics, and so on [4–6]. When the higher-order nonlinear effects are
considered, the derivative NLS equations are seen as long-wave, small-amplitude models
in a wide range of fields, including quantum field theory and short light pulse [7–9]. The
derivative NLS equation can be generally represented as

iut + uxx + a|u|2u + ib|u|2ux + icu2u∗
x +

1
4

c(2c − b)|u|4u = 0, (1)

where u∗ denotes the complex conjugation of u [10]. When a = 0 and b = 2c, Equation (1)
can be reduced to the Kaup–Newell (KN) equation, also known as DNLS I, which is derived
from the magneto-hydrodynamic equations with the Hall effect [11]. When a = c = 0,
Equation (1) transforms to the Chen–Lee–Liu (CLL) equation, also called DNLS II, which is
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an optical model of ultrashort pulses [12]. When a = b = 0, Equation (1) changes into the
Gerdjikov–Ivanov (GI) equation, also called DNLS III, which is applied to model Alfvén
waves propagating parallel to the ambient magnetic field [13]. Three types of the derivative

NLS equation can be transformed through Gauge transformations, CLL
(a)−→KN

(b)−→GI. The
CLL equation transforms into the KN equation through the Gauge transformation (a) [14],
and making another Gauge transformation (b) [15], the KN equation yields the GI equation.
Due to the complexity of the integral terms involved in Gauge transformations and the
alteration of Lax pairs after applying Gauge changes, each of them deserves separate
investigation. Therefore, it is simpler and more convenient to deal with them separately.
For example, there are several individual studies on KN, CLL, and GI equations [16–18]. For
the CLL equation, Zhang et al., gave the n-fold Darboux transformations in the determinant
form and successfully obtained the rogue wave and multi-rogue wave solutions through
these transformations [17]. For the GI equation, Fan gave the soliton-like solutions by the
n-fold Darboux transformation [16], and He et al., obtained the rogue wave solutions from
a periodic “seed” by the two-fold Darboux transformation [18]. So far, there are some
studies on these three equations, but most are local cases.

In recent years, nonlocal integrable systems, largely viewed as variants of classical
local integrable systems, have developed into one of the new hot topics in soliton theory.
More importantly, the discovery of nonlocal integrable systems stems from a hot research
area in modern physics: parity-time (PT ) symmetry. In 1998, Bender et al., discovered an
important relationship between the existence of all real eigenvalues for a non-Hermitian
system and PT -symmetry, which has nonlocal features involved simultaneously at two
mirror symmetry points (x, t) and (−x, t) [19]. Ablowitz et al., proposed the concept
of nonlocal integrable systems [20]. Then, Yan studied the PT -symmetry nonlocal and
local integrable vector nonlinear Schrödinger (NLS) equations under different reduction
conditions [21]. Musslimani et al., proposed the Cauchy problem and the theory of inverse
scattering transforms for nonlocal NLS equations [22]. Lou et al., proposed the Alice–Bob
system based on the PT -symmetry theory and discovered its multi-soliton solution [23].
Chow et al., discussed breather and rogue wave solutions for third-order nonlocal partial
differential equations [24]. Gerdjikov et al., discussed the integrable properties of nonlocal
NLS equations [25]. Rao et al., applied the KP hierarchy reduction method to study the
nonlocal Davey–Stewartson I equation with nonzero background [26]. Recently, Ma et al.,
introduced PT -symmetry into the multi-component integrable systems and studied the
Riemann–Hilbert problem of these integrable systems [27,28].

In this paper, we mainly study a reverse-spacetime multi-component higher-order
Gerdjikov–Ivanov (mHOGI) equation

ut(x, t) =− uxxx(x, t) +
3i
2

ux(x, t)Σ−1uT
x (−x,−t)u(x, t)

+
3i
2

u(x, t)Σ−1uT
x (−x,−t)ux(x, t)− 3

4
(u(x, t)Σ−1uT(−x,−t))2ux(x, t)

− 3
4

u(x, t)Σ−1uT(−x,−t)ux(x, t)Σ−1uT(−x,−t)u(x, t),

(2)

where uuu = (u1, u2, · · · , un), Σ is an invertible matrix, and T represents matrix transpo-
sition. The local GI equations have been extensively studied, such as the decompo-
sition of GI equation [29], Wronskian solution [30], hierarchy structure [31], Darboux
transformation [16], and Gauge transformation [32]. Compared to local GI equations, non-
local higher-order GI equations have different dynamical behavior due to nonlocal terms
and higher-order dispersion. More importantly, nonlocal multi-component GI equations
result in richer features across different components. Therefore, we intend to study the non-
local multi-component GI equation and obtain the exact solutions by the Riemann–Hilbert
(RH) method.

This paper starts with the following structure. Section 2 gives four different types of
nonlocal group reductions of the mHOGI equation and then derives the reverse-spacetime
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mHOGI equation through the Lax pairs, compatibility condition, and nonlocal group reduc-
tion. Section 3 analyzes the analyticity of Jost’s solution to the reverse-spacetime mHOGI
equation, establishes its RH problem, and gives the symmetries of the eigenfunction matrix
and the scattering data. In Section 4, when the determinant of the eigenfunction matrix is
not zero, the integral form solution is given by the Sokhotski–Plemelj formula. Conversely,
exact solutions are obtained, and the first three exact solutions of the nonlocal 2-component
GI equation are given.

2. Nonlocal Multi-Component Higher-Order Gerdjikov–Ivanov Equation

The Lax pairs of scalar GI equations have been well known and studied, but the
reverse-spacetime mHOGI equation has not been studied. Therefore, we will build a
reverse-spacetime mHOGI equation by nonlocal group reduction in this section.

Firstly, we introduce the Lax pairs of mHOGI equation

ψx = M(u, u∗, λ)ψ,

ψt = N (u, u∗, λ)ψ,
(3)

with

M = −iλ2σ3 + M, N = −4iλ6σ3 + N, (4)

where

M = λσ3U +
1
2

iσ3U2, N = 4σ3Uλ5 + 2iσ3U2λ4 + 2Q3λ3 + Q2λ2 + Q1λ + Q0,

Q3 = iUx, Q2 = [U, Ux]−
1
2

iσ3U4, Q1 = Uxxσ3 + iUUxU +
1
2

σ3U5,

Q0 =
1
4
(iσ3U6 + U2UxU + U2UUx − UxUU2 − UUxU2)− i

2
σ3(UxxU + UUxx − U2

x),

U =

[
0 u

u∗ 0

]
, σ3 =

[
1 0
0 −In

]
.

(5)

Here, λ stands for spectral parameter, u is defined in Equation (2). This Lax pair can
obtain the mHOGI equation

ut = −uxxx +
3i
2

uxu∗
xu +

3i
2

uu∗
xux −

3
4
|u|4ux −

3
4

uu∗uxu∗u, (6)

by zero curvature equation
Mt −Nx + [M, N ] = 0. (7)

Then, we list four different types of nonlocal group reductions.
Case 1: The nonlocal group reduction is

MT(x̃, t̃, δλ) = YM(x, t, λ)Y−1, (8)

and the corresponding potential reduction is

u∗(x, t) = −δΣ−1uT(x̃, t̃), (9)

where Y =

[
1 0
0 Σ

]
, ΣT = Σ, δ = ±1, and (x̃, t̃) = (−x, t), (x,−t), (−x,−t).

Case 2: The nonlocal group reduction is

MT(x̃, t̃, δiλ) = −YM(x, t, λ)Y−1, (10)
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and the corresponding potential reduction is

u∗(x, t) = δiΣ−1uT(x̃, t̃), (11)

where ΣT = Σ.
Case 3: The nonlocal group reduction is

M†(x̃, t̃, δλ∗) = −YM(x, t, λ)Y−1, (12)

and the corresponding potential reduction is

u∗(x, t) = δΣ−1u∗†(x̃, t̃), (13)

where Σ† = Σ.
Case 4: The nonlocal group reduction is

M†(x̃, t̃, δiλ∗) = YM(x, t, λ)Y−1, (14)

and the corresponding potential reduction is

u∗(x, t) = δiΣ−1u∗†(x̃, t̃), (15)

where Σ† = Σ.
In this paper, we mainly discuss a nonlocal group reduction about reverse-spacetime

MT(−x,−t,−iλ) = −YM(x, t, λ)Y−1, (16)

as a concrete example to demonstrate the study of the Riemann–Hilbert problem to non-
local mHOGI equation. This nonlocal group reduction is derived from case 2 when
δ = −1, (x̃, t̃) → (−x,−t). According to Equation (4), it is easy to obtain

MT(−x,−t,−iλ) = −YM(x, t, λ)Y−1, (17)

which equivalently leads to

u∗(x, t) = −iΣ−1uT(−x,−t). (18)

Similarly, we can gain the reverse-spacetime group reduction of the time part

N T(−x,−t,−iλ) = YN (x, t, λ)Y−1,

NT(−x,−t,−iλ) = YN(x, t, λ)Y−1.
(19)

It is easy to know the nonlocal group reductions Equations (16) and (19) also satisfy the
compatibility condition (7). Therefore, according to the Lax pairs, compatibility condition
and nonlocal reduction, the reverse-spacetime mHOGI equation can be gained,

ut(x, t) =− uxxx(x, t) +
3i
2

ux(x, t)Σ−1uT
x (−x,−t)u(x, t)

+
3i
2

u(x, t)Σ−1uT
x (−x,−t)ux(x, t)− 3

4
(u(x, t)Σ−1uT(−x,−t))2ux(x, t)

− 3
4

u(x, t)Σ−1uT(−x,−t)ux(x, t)Σ−1uT(−x,−t)u(x, t).

(20)
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When n = 2, the reverse-spacetime two-component GI equation can be obtained,

u1t(x, t) =− u1xxx(x, t) + 3iu1(x, t)u2x(−x,−t)u1x(x, t)

− 3
2
(u1(x, t)u2(−x,−t))2u1x(x, t),

u2t(x, t) =− u2xxx(x, t)− 3iu2(x, t)u1x(−x,−t)u2x(x, t)

− 3
2
(u2(x, t)u1(−x,−t))2u2x(x, t).

(21)

3. Riemann–Hilbert Problem of the Reverse-Spacetime mHOGI Equation

In this section, we will analyze the analytical properties of the eigenfunction matrix to
construct the RH problem of the reverse-spacetime mHOGI equation, discuss the symmetric
properties of the scattering data, and present its time evolution.

Firstly, assuming that all the potentials rapidly vanish as x, t → ±∞, we can gain the
reverse-spacetime mHOGI equation’s asymptotic behavior: ψ ∼ e−iλ2σ3x−4iλ6σ3t. Then, we
introduce a new function

ϕ = ψeiλ2σ3x+4iλ6σ3t. (22)

It is straightforward to know that when x, t → ±∞, ϕ → In+1. Substituting this new
function into Equation (3), we determine

ϕx = −iλ2[σ3, ϕ] + Mϕ, (23)

ϕt = −4iλ6[σ3, ϕ] + Nϕ. (24)

According to the Liouville’s formula [33], we can gain

det ϕ = 1. (25)

Then, we introduce two matrix Jost solutions ϕ±(x, λ) of Equation (23) that satisfy

ϕ± → In+1, (26)

when x → ±∞, respectively. According to Equation (25), it is easy to gain that det ϕ± = 1
for all x.

Combined with boundary conditions (26) and the parameter variation method,
Equation (23) can be converted into the Volterra integral equation below [34]:

ϕ±(λ, x) = In+1 +
∫ x

±∞
e−iλ2σ3(x−y)M(y)ϕ±(λ, y)e−iλ2σ3(y−x)dy, (27)

When we consider the analyticity of ϕ−, it is easy to find from Equation (27) that the
exponential factor e2iλ2(x−y) is present in the first column of ϕ− and the last n columns of
ϕ− involves only the exponential factor e−2iλ2(x−y). Because y < x and the exponential
factor e2iλ2(x−y) decays when Im(λ2) > 0, the first column of ϕ− are analytic in Γ+ =

{λ ∈ C|argλ ∈ (0, π
2 )

⋃
(π, 3π

2 )}. Because y < x and the exponential factor e−2iλ2(x−y)

decays when Im(λ2) < 0, the last n columns of ϕ− is analytic in Γ− = {λ ∈ C|argλ ∈
(0, π

2 )
⋃
(π, 3π

2 )}, and both allow analytical continuations to Γ0 = {R⋃
iR}. Similarly,

it is obvious that the first column of ϕ+ and the last n columns of ϕ+ are analytical in
Γ− = {λ ∈ C|argλ ∈ (π

2 , π)
⋃
( 3π

2 , 2π)} and Γ+ = {λ ∈ C|argλ ∈ (0, π
2 )

⋃
(π, 3π

2 )},
respectively (See Figure 1).
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Figure 1. The jump contour Γ̂ = Γ̂1 + Γ̂2 in the complex, where the red line denotes Γ̂1, the blue line
denotes Γ̂2, the gray area represents Γ+, and the yellow area represents Γ−.

Since
ψ± = ϕ±E (28)

are both solutions of Equation (3), there is a linear relationship between them

ϕ−E = ϕ+ES(λ), λ ∈ Γ0, (29)

where E = e−iλ2σ3x, S(λ) = (sij)(n+1)×(n+1) is called the scattering matrix. The scattering
matrix S satisfies

S(λ) = lim
x→+∞

E−1ϕ−E = I +
∫ +∞

−∞
eiλ2σ3yQ(y)ϕ−(λ, y)e−iλ2σ3ydy, λ ∈ Γ0,

and det S(λ) = 1. Obviously, s11 is analytically extended to Γ+, the rest of sij allow analytic
extension to Γ−.

According to the analyticity of the Jost solution, we construct two matrix eigenfunc-
tions K±(x, λ), analytically continued to Γ+ and Γ−, respectively. Let

ϕ± = (ϕ±
1 , ϕ±

2 , · · · , ϕ±
n+1), (30)

we can make
K+(x, λ) = (ϕ−

1 , ϕ+
2 , · · · , ϕ+

n+1) = ϕ−T1 + ϕ+T2, (31)

where T1 and T2 are defined by

T1 = diag(1, 0, · · · , 0︸ ︷︷ ︸
n

), T2 = diag(0, 1, · · · , 1︸ ︷︷ ︸
n

). (32)

According to the analyticity of ϕ±, K+ is analytic in Γ+ and continuous to Γ0. By
inserting K+ into Equation (29), the equation can be derived,

K+ = ϕ+ES+E−1 = ϕ+E


s11 0 · · · 0
s21 1 · · · 0
...

...
. . .

...
sn+1,1 0 · · · 1

E−1.

Then, det(K+) = s11.
Similarly, we can use the adjoint spectral problems to construct the matrix eigenfunc-

tion K−, which is analytic in Γ−. Since det ϕ± = 1, ϕ̃± = (ϕ±)−1 is identified as the adjoint
matrix. Therefore, we can obtain

ϕ̃x = iλ2[ϕ̃, σ3]− ϕ̃M. (33)

Let
ϕ̃± = (ϕ̃±

1 , ϕ̃±
2 , · · · , ϕ̃±

n+1)
T, (34)
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we can make
K− = (ϕ̃−

1 , ϕ̃+
2 , · · · , ϕ̃+

n+1)
T = T1ϕ̃− + T2ϕ̃+. (35)

Similarly, it is clear that

K− = ES−1E−1(ϕ+)−1 = E


ŝ11 ŝ12 · · · ŝ1,n+1
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

E−1(ϕ+)−1,

where S−1(λ) := (ŝij)(n+1)×(n+1). It can be seen from the above formula that det(K−) = ŝ11.
Combining Equation (29) and the matrix functions K±, it can be calculated directly as

K+(x, λ) = K−(x, λ)J(x, λ), λ ∈ Γ0, (36)

where

J(x, λ) = E(T1 + T2S(λ))(T1 + S−1(λ)T2)E−1

= E


1 ŝ12 ŝ13 · · · ŝ1,n+1

s21 1 0 · · · 0
s31 0 1 · · · 0
...

...
...

. . .
...

sn+1,1 0 0 · · · 1

E−1.
(37)

Secondly, we examine the symmetries of some matrices. If ϕ(x, t, λ) is the matrix
eigenfunction of the spatial spectrum problem Equation (23), then Yϕ−1(x, t, λ) is its matrix
adjoint eigenfunction, and they have the same eigenvalue λ. Therefore, based on nonlocal
group reductions (17), it is easy to know that

ϕ̃(x, t, λ) := ϕT(−x,−t,−iλ)Y (38)

presents another matrix adjoint eigenfunction associated with the same original eigen-
value λ, i.e., ϕT(−x,−t,−iλ)Y solves the adjoint spectral problem (33). Therefore, upon
observing the asymptotic properties for ψ at infinity for λ, the uniqueness of solutions
tells us that

ϕT(−x,−t,−iλ) = Yϕ−1(x, t, λ)Y−1. (39)

The jump matrix J carries basic scattering data from the scattering matrix S(λ) and
has the property J(−x,−t,−iλ) = Y J(x, t, λ)Y−1.

The Jost solution ϕ(λ) satisfies another symmetry relation

ϕ(−λ) = σ3ϕ(λ)σ3,

S(−λ) = σ3S(λ)σ3,
(40)

namely,
s11(λ) = s11(−λ). (41)

It is visible that if λ ∈ Γ+ is the zero of s11, then combined with the above m it can be
shown that −λ is another zero of s11. According to nonlocal group reductions, it can be
shown that ŝ11 has two zeros, namely ∓iλ.

Next, substituting Equation (28) into Equation (24), we obtain

Stñ = 4iλ6[σ3, S]. (42)
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The time evolution of the time-dependent scattering coefficients is given by

s1,j = s1,j(λ, 0)e8iλ6t, si,1 = si,1(λ, 0)e−8iλ6t, 2 ≤ i, j ≤ n + 1, (43)

and the rest of the scattering coefficients are all time-independent.

4. Solutions by the Riemann–Hilbert Method

In this section, the solutions of the reverse-spacetime mHOGI equation are gained by
the RH method. When using the RH method to solve the equation, for the RH problem,
there are two situations, one of which is the regular RH problem, namely detK+ = s11 ̸= 0
and detK− = ŝ11 ̸= 0. In this case, for the general local initial conditions, the solutions
of the reverse-spacetime mHOGI equation cannot be expressed explicitly, but the formal
solution can be obtained by the Sokhotski–Plemelj formula. For this type, we can determine

(K−)−1K+ = J, λ ∈ Γ0. (44)

Their boundary condition is that when λ → ∞,

K± → In+1. (45)

By the Plemelj formula, it is easy to obtain

K− = In+1 +
1

2πi

∫
Γ̂

K−(ζ) Ĵ(ζ)
ζ − λ

dζ, λ ∈ Γ+,

where Ĵ := J − In+1 and Γ̂ is defined in Figure 1.

Theorem 1. [Uniqueness Theorem of Solutions] If K± and K̂± are both solutions of Equation (44),
K± = K̂±.

Proof. Now, we will prove the uniqueness of the solution. Assume that K± and K̂± are
two different solutions of Equation (44); then, according to Equation (44), we know that
(K−)−1K+ = (K̂−)−1K̂+, namely

K+(K̂+)−1 = (K̂−)−1K−, λ ∈ Γ0. (46)

If K+(K̂+)−1 and (K̂−)−1K− are analytic in Γ+ and Γ−, respectively, a matrix function
in the entire plane is established by analytical continuation. Using Equation (45), it is evident
that this analytic function converges to the identity matrix In+1 at λ → ∞. Liouville’s
theorem is one of the fundamental theorems in complex functions, and its content can be
simply described as “a bounded analytic integral function must be a constant function”.
Therefore, combining Liouville’s theorem and the above description, we know that

K+(K̂+)−1 = (K̂−)−1K− = In+1,

namely K± = K̂±, implying the uniqueness of the solution.

Next, we will consider the second case. Based on Equations (29), (31) and (35), it is
clear that

det K+(x, λ) = s11(λ), det K−(x, λ) = ŝ11(λ). (47)

Considering the symmetry and involution properties of s11 and ŝ11, we suppose that
s11 has 2N zeros {λ̃k = ±λk|λk ∈ Γ+, 1 ≤ k ≤ N} and ŝ11 has 2N zeros {λ̂k = ∓iλk|iλk ∈
Γ−, 1 ≤ k ≤ N}. Here, we focus on the case of a single zero, that is, all zeros ±λk are simple.
According to matrix theory, we can take

K+(x, λ̃k)gk = 0, ĝkK
−(x, λ̂k) = 0, 1 ≤ k ≤ N. (48)
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From Refs. [35–37], if the RH problems have canonical normalization conditions and
zero structures (48), the problems can be solved. If J = In+1, there is no reflection in the
scattering data, namely si,1 = ŝ1,i = 0 (2 ≤ i ≤ n + 1). Hence, we can take the solutions as

K+(x, λ) = In+1 −
N

∑
k,l=1

(
gk(Υ

−1)kl ĝl

λ − λ̂l
− σ3gk(Υ

−1)kl ĝlσ3

λ + λ̂l
),

K−(x, λ) = In+1 −
N

∑
k,l=1

(
ĝ†

l (Υ
−1)†

klg
†
k

λ − λ̃l
−

σ3ĝ†
l (Υ

−1)†
klg

†
k σ3

λ + λ̃l
),

(49)

where Υ := (υkl)N×N and

υkl =
ĝkgl

λ̃l − λ̂k
− ĝkσ3gl

λ̃l + λ̂k
, 1 ≤ l, k ≤ N. (50)

Since the space and time of solutions are independent of each other, using Equations (23)
and (48), we have

K+(x, λk)(
dgk
dx

+ iλ2
kσ3gk) = 0, 1 ≤ k ≤ N. (51)

Looking at Equation (48), we know that the vectors
dgk
dx

+ iλ2
kσ3gk and gk are linearly

related, namely
dgk
dx

+ iλ2
kσ3gk = Cgk, 1 ≤ k ≤ N, (52)

where C1 is a constant. Similarly, we can determine

dgk
dt

+ 4iλ6
kσ3gk = C2gk, 1 ≤ k ≤ N, (53)

where C2 is a constant. Without loss of generality, we take C1 = C2 = 0, then

gk(x, t) = e−iλ2
k σ3x−4iλ6

k σ3tg0k, 1 ≤ k ≤ N, (54)

ĝk(x, t) = gT
0keiλ̂2

k σ3x+4iλ̂6
k σ3tY , 1 ≤ k ≤ N, (55)

where g0k is independent of x and t.
Then, the large-λ expansions of K+ are derived,

K+(x, λ) = In+1 +
1
λ
K+

1 (x) +
1

λ2 K
+
2 (x) + O(

1
λ3 ), λ → ∞. (56)

Combined with Equation (23), we obtain

U = −iλ[σ3,K+
1 ], (57)

where U =

[
0 λu

−λu∗ 0

]
, K+

1 = ((K+
1 )ij)(n+1)×(n+1). Equivalently,

uj = 2i(K+
1 )1,j+1, 1 ≤ j ≤ n. (58)

Then, we can obtain via Equation (49)

K+
1 = −

N

∑
k,l=1

(gk(Υ
−1)kl ĝl − σ3gk(Υ

−1)kl ĝlσ3). (59)

Combining Equations (58) and (59), the exact solutions of the reverse-spacetime
mHOGI equation is obtained,

uj = −2i
N

∑
k,l=1

(gk(Υ
−1)kl ĝl − σ3gk(Υ

−1)kl ĝlσ3)1,j+1, 1 ≤ j ≤ n, (60)
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where the matrix Υ is defined by Equation (50), and gk = (gk,1, gk,2, · · · , gk,n+1)
T and

ĝk = (ĝk,1, ĝk,2, · · · , ĝk,n+1), 1 ≤ k ≤ N, respectively.
Finally, as a concrete example, we give the three different solutions of the two-

component nonlocal reverse-spacetime HOGI equation.
When n = 2, we take

g0k = (ck,1, ck,2, ck,3)
T, ζk = iλ2

k x + 4iλ6
kt, Σ =

[
γ1 0
0 γ2

]
, (61)

where λk = ξk + iηk, ξk and ηk are arbitrary, ck,j (j = 1, 2, 3) and γ are arbitrary but nonzero.
When N = 1, we can derive the solution u in Equation (60)

uj =
−4ic1,1c1,j+1γjλ1

ic2
1,1e−2ζ1 − (c2

1,2γ1 + c2
1,3γ2)e2ζ1

, 1 ≤ j ≤ 2. (62)

From the mathematical structure of the solution, it can be seen that solutions are
singular outside of λ1 ∈ R∪ iR, and the solution can decay to a constant on R∪ iR.

When N = 2, the solution u is rewritten as

uj =
−4ic1,1(λ

4
1 − λ4

2)c1,j+1γj A

−(λ2
1 − λ2

2)
2(c2

1,2γ1 + c2
1,3γ2)2e2ζ1+2ζ2 + c4

1,1(λ
2
1 − λ2

2)
2e−2ζ1−2ζ2 + B

, 1 ≤ j ≤ 2, (63)

where A = (c2
1,2γ1 + c2

1,3γ2)(λ1e2ζ2 − λ2e2ζ1) + ic2
1,1(λ2e−2ζ1 − λ1e−2ζ2), B = 2ic2

1,1(c
2
1,2γ1 +

c2
1,3γ2)((λ

2
1 + λ2

2) cos(2iζ2 − 2iζ1)− 2λ1λ2)(λ
2
1 + λ2

2).
Similarly, we find that the solutions are singular outside of R∪ iR, but in this case, the

solutions degenerate into periodic wave solutions on R∪ iR.
When N = 3, the solution u is rewritten as

uj =

3
∑

i=1
4c11c12γj(λ

4
i+1 − λ4

i+2)(λ
4
i+1 − λ4

i )λi+2 A − B

−
3
∑

i=1
c2

11(c
2
12γ1 + c2

13γ2)(λ
2
i − λ2

i+1)
2(λ2

i+1 + λ2
i+2)

2(λ2
i+2 + λ2

i )
2C + D

, 1 ≤ j ≤ 2, (64)

where

A = i(λ2
i − λ2

i+2)
2(c2

11e−2ζi−2ζi+1 − (c2
12γ1 + c2

13γ2)
2e2ζi+2ζi+1 )

+ 2(λ2
i + λ2

i+1)
2 cos(2iζi − 2iζi+1),

B = 8c3
11c12γi(c2

12γ1 + c2
13γ2)((λ

2
1 − λ2

2)
2 + (λ2

1 − λ2
3)

2 + (λ2
2 − λ2

3)
2)

3

∏
i=1

λi(λ
2
i + λ2

i+1),

C = i(c2
12γ1 + c2

13γ2)e2(ζi+ζi+1−ζi+2) + c2
12e2(−ζi−ζi+1+ζi+2),

D =
3

∏
i=1

(λ2
i − λ2

i+1)
2((c2

12γ1 + c2
13γ2)

3e2ζ1+2ζ2+2ζ3 + ic6
11e−2ζ1−2ζ2−2ζ3 ) + 4c2

11(c
2
12γ1 + c2

13γ2)

× (
3

∑
i=1

λi+1λi+2(λ
2
i − λ2

i+1)(λ
2
i − λ2

i+2)(i(c
2
12γ1 + c2

13γ2)e2ζi + c2
11e−2ζi ))

3

∏
i=1

(λ2
i + λ2

i+1),

with λ4 = λ1, λ5 = λ2.
In the same way, we obtain the same conclusion as the case N = 2. Without loss of

generality, choosing some specific values of λk ∈ R or iR, we can give figures of periodic
wave solutions with N = 2 and N = 3 (see Figure 2).
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(a) (b)

Figure 2. Periodic wave solutions |u1| to the reverse-spacetime mHOGI equation: (a) N = 2, c1,1 =

c1,2 = c1,3 = γ1 = 1, γ2 = −1, λ1 = 17
20 i, λ2 = 23

20 i; (b) N = 3, c1,1 = c1,2 = c1,3 = γ1 = 1, γ2 = −1, λ1 =

i, λ2 = 17
20 i, λ3 = 23

20 i.

5. Discussion

In this paper, we list four different types of nonlocal group reductions of the multi-
component higher-order Gerdjikov–Ivanov equation. Then, a class of nonlocal reverse-
spacetime mHOGI equation and its Riemann–Hilbert problem are obtained under the
parity-time transformation (x → −x, t → −t, λ → −iλ). The main analysis is based
on Riemann–Hilbert problems associated with a kind of arbitrary-order matrix spectral
problems with matrix potentials under zero background. Upon obtaining the exact solution
to this equation, we explore two types of the Riemann–Hilbert problem. One is the regular
Riemann–Hilbert problem. At the same time, the other one is the non-regular Riemann–
Hilbert problem with a reflectionless scattering problem. Whenever the transition matrix J
equates to an identity matrix, exact solutions of the nonlocal reverse-spacetime mHOGI
equation are presented the explicit formulas. Finally, as specific examples, the first three
solutions to the two-component nonlocal reverse-spacetime HOGI equation are shown. We
find that under this parity-time transformation, there are periodic wave solutions only on
R∪ iR, and in other regions, the solutions are singular.

In this paper, we mainly focused on the nonlocal multi-component HOGI equation
with the zero boundary condition. In future, we will consider the nonlocal multi-component
HOGI equation with the non-zero boundary condition. Compared with the zero boundary
condition, the Riemann–Hilbert problem with non-zero boundary becomes more complex,
especially for multi-component systems. The main reason is that the spectral distribu-
tion becomes more complex under the non-zero boundary condition, and the forms of
solutions corresponding to spectral points become more diversified. The periodic wave
solutions are constructed when the Riemann–Hilbert problem is non-regular. Conversely,
when the Riemann–Hilbert problem is regular, we can analyze the asymptotics of the
solutions. In Refs. [38,39], the authors studied the long-time asymptotics for the nonlocal
mKdV equation. And in Ref. [40], the authors analyzed the long-time asymptotics for
the integrable nonlocal Lakshmanan–Porsezian–Daniel equation. Following this idea, the
long-time aymptotics of the nonlocal multi-component HOGI equation will be studied in
future work.
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