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Abstract: Fractional calculus has been a concept used to obtain new variants of some well-known in-
tegral inequalities. In this study, our main goal is to establish the new fractional Hermite-Hadamard,
and Simpson’s type estimates by employing a differentiable function. Furthermore, a novel class
of fractional integral related to prominent fractional operator (Caputo-Fabrizio) for differentiable
convex functions of first order is proven. Then, taking this equality into account as an auxiliary
result, some new estimation of the Hermite-Hadamard and Simpson’s type inequalities as gener-
alization is presented. Moreover, few inequalities for concave function are obtained as well. It is
observed that newly established outcomes are the extension of comparable inequalities existing in
the literature. Additionally, we discuss the applications to special means, matrix inequalities, and the
g-digamma function.
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1. Introduction

Fractional calculus indeed has wide range of applications including in mathematics as
well as in various fields of the modern sciences, such as bio-engineering [1,2], biologi-
cal membranes [3,4], medicine [5], geophysics [6], demography [7], economy [8], and
physics [9]. The field of fractional calculus was established in order to solve differential
equations with fractional order derivatives. The solutions to these problems of engineering
disciplines have motivated many mathematicians to work in this new field of research.
Classical derivations cannot properly model a lot of practical problems. Fractional integral
and derivative operators provide solutions that, in terms of application domains, are very
ideal for problems discovered in everyday life. Let f : I C R — R be convex on the interval
I of a real number and ()4, () € I with (37 < ). The Hermite-Hadamard inequality is cru-
cial to the study of convex functions in numerous fields of mathematics and its applications,
the original version is given below [10].

f(Ql —;QZ> = @) 1 04 /0(1)2 f(x)dx < A ;f(Qz)

Mathematical inequalities give error bounds and uniqueness of solutions to boundary
value problems as the basis of computational methods. Mathematicians have turned to
more generalized and advanced inequalities as a result of their extensive application in
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both the field of mathematics and other present domains of research [11,12]. With enor-
mous popularity, the Caputo and Riemann-Liouville derivatives were widely employed
in physics, biology, engineering, and various other kinds of domains to show complex
dynamics [13]. It is well-known that memory-impacting systems often play a role in natural
events. Therefore, we continually look for the best nonlocal model with each kind of data.
The use of innovative fractional operators with distinct local and nonlocal kernels has
also been studied by other authors [14-16]. They have several fractional operators that
distinguish the operators from one another has different singularity and locality properties,
the kernel expression of the operator is demonstrated by functions like the power law, the
exponential function, or a Mittag-Leffler function. For more literature reviews, see [17-20].

Basic and advanced mathematics have recently become more interested in convex
analysis, which has been essential to the generalizations and extensions of inequality the-
ory. The theory of convexity presents a really incredible exciting and intriguing field
of study. This theory allows us to develop and improve the numerical tools required
to explore and investigate complex mathematical subjects. The most intriguing inequal-
ity is the Hermite-Hadamard, which is the first outcome of convex mappings. It has
a simple geometric explanation and several applications. See these articles [21-23] for
more information on the Hermite-Hadamard type inequalities. Budak et al. has estab-
lished Hermite-Hadamard type inequalities using Riemann-Liouville fractional integrals
(see [24]). Set, E. et al. [25] employed the Riemann-Liouville integrals on the Ostrowski type
inequality for differentiable mappings. Budak discussed the Ostrowski and Simpson’s type
inequalities for differentiable convex function by using the extended fractional integrals
in [26]. Recently, a few generic and midpoint-shaped fractional inequalities were ex-
plored by Hyder et al. (see [27]). Using the well-known fractional operator (Caputo—
Fabrizio), Xiaobin wang et al. [28] proved the Hermite-Hadamard type inequalities for mod-
ified h-convex functions. Abbasi demonstrated the novel versions of Hermite-Hadamard
type inequalities for s-convex functions utilizing the (Caputo—-Fabrizio integral operator).
In [29], similar inequalities for strongly (s, m)-convex functions were provided by H. Yang
in [30]. Akdemir et. al [31] employed the Atangana-Baleanu fractional integral opera-
tors for convex and concave functions. For further literature review also see [32-34]. We
recall the definitions of R-L fractional operator and Caputo- Fabrizio fractional operator
as follows:

Definition 1 ([35]). Let f € L1[Qq, Oy]. The Riemann—Liouville fractional integrals of order
« € Rt are presented as follows:

Joy f(x) :réﬂi f(Qdg, O <x,
BSW = g [0, 00>

Here, T'(«) is the Gamma function and it is defined as follows:
I'(a) = / e “u* du.
0
It is noted that ]g+f(x) = ]g,f(x) = f(x).
1 2

Definition 2 ([36]). Let f € H'(Qq,0), Q1 < O, & € [0,1]. Then, the Caputo—Fabrizio
fractional integral are defined by the following:
1—-« o x
I F) (x AR 0)dg

(Frf) ) = s+ / 1
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where B(a) > 0 is normalization function that satisfies B(0) = B(1) = 1.
Definition 3 ([36]). Let H'(Q, Q) be the Sobolev space of order one defined as

H' (0, ) = {f € L* (O, M) : f' € LZ(QLQz)},
where

Lz(Ql,Qz) = {f(z) : ( Q(:ZfZ(Z)dz>2 < oo}.

Let f € HY(Qq, ), Q1 < Oy and a € [0,1], the nth notion of left derivative in the sense of
Caputo—Fabrizio is defined as follows:

(&ope) ) = P9 [ iyt

M
x > a and the associated integral operator is

1—«a o x

Wf(x) + ‘B(DC) o f(g)dgr

where B(a) > 0 is the normalization function satisfying (0) = B(1) = 1. Fora = 0,a = 1, the
left derivative is defined as follows, respectively

(&PD'f)(x) = f(x)
(BP0 (x) = flx) = f(n).

For the right derivative operator

(G1f) ()

CFD ya _ Bla) /Qz 1))
(&P f) ) = 5 [ F@e T dg,
x < () and the associated integral operator is

_1—oc o

(S"18uf) ) = s )+ 5 [0

The Simpson’s type inequality is important in numerous fields of mathematics. The
Simpson type inequality in classical form is defined as follows:

Theorem 1. Let f : [()1,0p] — R be a four times continuously differentiable function on
(O, ) and Hf(4) Hoo = SUP.(0;,0)

& (x)’ < 0o, then we have the following inequality:

O+ 1 o) 0, —y)?

o)+ 37( ) + G| - gt [ o] < g @

Munir et al. [37], proved the Simpson’s type inequality using the Caputo-Fabrizio
fractional operator as follows:

Lemma 1 ([37]). Let f : I C R — R be an absolutely continuous mapping on I° (interior of 1)
where Oy, Yy € 1 with Q1 < Oy, then the following equality holds:

{f(Ql) n 4f<01 +Qz> +f(02)]

6 6 2 6
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s (S W+ (P, ) 0] +

= (-0 [ KO0+ (- OO0,

where

N
1<(€)—{€_g ge{%,l}.

Theorem 2 ([37]). Let the condition of Lemma 1 hold. If | f'| is (s, m)-convex on [y, ()], then
the following fractional inequality holds:

Hf(?l) +‘éf<01~2FQz> _i_f(?z)}

Bla)

o ey [(E17) 0+ (P, ) 0] + 2

d
B() f(k)
2—1—5 X 3—2—5 (1 _ 22+s % 31+S _ 32+s +52+s 4+ 25 x 31+Ss) | ,(Q )|
(s+1)(s+2) f

IR F P A 17X 6) 42X P45 x 60y
G+1)(G+2) Y

< (02—01)[

+m

Proposition 1. Let the condition of Theorem 2 hold. If we take s = m = 1, then we have;

7O+ () g0 — L PO (§) 00+ (10 )
5( — ) (
72

IN

|f(@)] + |f'(Q)]). ¢)

Glirbiiz et al. [38], showed related recent developments using the well-known operator
Caputo—Fabrizio for the Hermite-Hadamard inequality.

Theorem 3 ([38]). Let f : [, ] — R be a differentiable function on I° and |f'| is convex
function on [Q1, ], where 1, QY € Twith O < M. If f/ € L1[Oq, O] and « € [0, 1], then
the inequality as follows:

FON+F0) B . . 20 -e)
S o, (G 0+ (T ) + )
< @20 (p0q)) 470, g

Theorem 4. [38] Let f : [, (] — R be a differentiable function on I° and let |f'| be a
convex function on [, O], where Oy, Oy € Twith O < O If ' € L1[Oq, Q] and a € [0,1],
then we have the following inequality:

o o) 5(a) ) . 2(1—a)
Aoy (&) )+ (Fitf) ) T —an W
< 200 04 |p(ay) N

Sahoo et al. [39], obtained new error bounds for the midpoint inequality for convex
function as follows:
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-0

(O+9)

Theorem 5 ([39]). Let f : [, 0] — R be a differentiable function on I° and let |f'| be a
convex function on [, ], where Q1,0 € Twith Oy < Q. If f' € L1[Oy, O], then we have
the following inequality:

&((”U) o+ (1 él+02+f>( >> (M52

(1-a) (-0
s )+ ()] < C2E (0 -+ ).

Theorem 6 ([39]). Let f : [Q1, ] — R be a differentiable function on I° and let |f'| be a
concave function on [, O], where Oy, Oy € Twith O < . If ' € L[y, O], then we have
the following inequality:

o ((“If> 0+ (I 0, ) >)

7)) - “(“)")(f(nlwf(nz))\

B«

< 02—01[ ,<Q1+202>’+ ,(2014‘02)”‘ 5)
8 3 3

There are two sections of the current study. The first part is connected to the body
of the introduction, basic concepts and theories that operate as the base for each section.
The auxiliary outcomes are obtained for the well-known operator (Caputo—Fabrizio) and
shown in the second section. Additionally, the main intention in this article is to develop
the Hermite-Hadamard and Simpson’s type integral inequalities for convex and concave
functions employing the fractional operator. Furthermore, we discuss the special cases of
our results compared with similar results that have been identified in the literature. Finally,
we discuss the applications to special means, matrix inequalities, and the g-digamma
function. We hope that the investigation will be able to inspire more research in this field.

2. Main Results

In this section, we have established a novel Caputo-Fabrizio fractional integral identity
that will act as an auxiliary result.

Lemma 2. Let f : [Q)1,Op] — R be a differentiable function on (Q1, ). If f € L[Qq, Q]
witha € [0,1] and 9,y € (0,1], then the following equality holds:

fo-o-wr (e a-0R % s o0 -oir (s a-00 3% )

+,/01(¢—

07 (e25 2 v a-oan)ac+ [[@-or (¢P L2 a- 0o )]

2

(

f(Ql);f(Qz)> n (Z*gfll’)f<0ﬁ£02)

Bla)

(X(Qz

w0 —0n) ((Frf) 0+ (Frayf) () + 20=0) i,

p(a)

where B(x) is a normalization function.

Proof. Let

/01[(1 —O - (ml 1= g)QlerQz)d“/ 1-91f (Cﬂz +(1- C)W)dg
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+fo-or (P52 va-om)a+ [[c-or (¢ ER - o)
= L4+b+h+l

I

and

Iy

[a-0-r(an+a

Integrating by parts, we obtain

01+Qz>

“2((1-0) = )f (E + (1 - )25
Qg—flh ) _inﬂ /1f<501+(1—€)01+02)d6

() + §§le (™) - 2701/ fleon+ -0 2 a
)

01 +0y
-7

2 foy) + f(u)du.

O — )

2(1— (Ql + 0y

02*01 02—01 1

Analogously, we have

[io-a-ai (e +a-0H5 2 )
1 .
e s (e - ) [ r(eon+ -0 )

20 2 O+ 2 1 M+
mf(ﬂz)‘Fm(l—ﬂ)f( 0 )—02_01/0 f<§01+(1—§)#>d§

e

%f(02)+ﬁ(170)f<01302) B (02_401)2 /“?;’2 f(u)du,

[w-or (224 0-pm)a

_2 qz 0) f(g(h—i-ﬂz )Qz> : - 01/ f< [ (1—§)Qz>d§
52*01 f(Ql+02> ZIP f( 2) - 02*01/0 f<§01—502+(1—§)02>d§

[@-or (252 v a-om)a

1

01+Qz 01+
o (¢ R 0| Q2_01/ (R a- 0o )
Qz_Qlf(ﬂlmz) 2 - o2 [ lezﬂl—@)ol)dé
20-9) (1 + 0y 20 4 22
0, — Qlf< 2 ) o, Qlf(QZ) (Qa — )* Joy flujdn.

Adding the equalities (6)—(9), we obtain

(6)

@)

®)

©)
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1 01 +Q 014+ 0
[ra-0-vir(enra-0P 52+ [To-a-oir(conr a-0 P52 )
0 +0 0 +0
+/ w-or (2= )a+ [ e o (¢ L2 a- oo )a
0
. L s 014+
— g P OUO) SO+ 20 (PEE)
8 M
_ du. 10
Tl MELOL (10)
Multiply the equality (10) with = 2(Q Sﬁ((;l)z and subtracting zg(;sx ) f(k), we obtain
A2
MO a0 - (son+ -0 2 )ar + [1o-a- o) (e e -0 p 2 g
+[o-or (¢ a-00)a+ [e-or (R a-gan)a] - s
_ 2 " . 2
- ﬁ(wm(ﬂnl)+f<nz>>“(0§ﬁ(a?” + gy - o (20 ) e )
B 8 (e >)° 2(1-w)
O o, S s By W
- 7"‘(2;(’ P+ o)) + (00) + 7“(2;(’ e-o- w)f(—“l =
(5t o s+ Gt st 2 [ Lrt)
- A )(1/1+19)(f(01) + £ >>+%(2fﬂf¢>f(@)
() w+ (i) o).
02701 M+ 01+

f1a-0-vr (e a-02
+/ W—0)f <Ql+02
40) (£ 100)) , 20=9)

2
aon e (G700 + (1) ) + 250

The proof of Lemma 2 is completed. [J

)dg+/ 8-

a —g)oz)dg+/o -0 (¢

01+Qz)

2
—0)

f(K).

Theorem 7. Let the conditions of Lemma 2 hold.

[Q), (Y], then the following inequality holds:

U@ +f() + 520 -

:
- (Qi(i)()l) (&) +(

M[6(2 3y + 6y? — 24

8
4

+%<4—31p+2¢3—319+2193)

O+

) W) + 2

Q14+

a-0f (mz -9

)i

2

+1- 0 )]

If f' € LYy, O] and |f'| is a convex on
O+

)

1 — w)
pa)

)

= 304602 —20%) (|f'(0)] +|F'(€)])

)

2

Proof. By using Lemma 2 and convexity, we obtain

[0+ 0+ ) + 320 -y (B

01+

)
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e (Er ) 6+ (i) ) + 2 o)

= O g -yl (s a- 0™ )|

[ o-a-or (w0t a-0M )|«

4(%@)%(@@ (=00 e+ | [ o7 (¢25 2 + a0 ) |

< @2 - (conva - 0252 )

+/O|wflfm (mz -0 52 )

+[le-2 '(c@m—om) i+ [[1@-or (¢MFE +a-on) ]
< 20 Pra-g -y (elr@ol+ a-o)r (252«

+/ - a-ou(elr@l+a-ofr (252)| )«

+ [e-oi(dr (252) [+ a- ol

+[1e=on(er (P52 |+ a-olronie) |
< 2R (oo -20%) @)+ g (2- 3y 2) | (B2

§(1-30 46 —28) F(@n)| 4 g (230 +207) (572

s (2avr2) 7 (22| + S (1-sw o —2) 7 (m)

62304207 (B2 ) [+ G (1-30 6" 20 70|
< o aap ey 29 a0+ 607 - 260%) (1) + |7(0))

+%(473¢+2¢37319+2193)

()

This completes the proof. [

J

Corollary 1. We use the further convexity of |f'| in Theorem 7, we have

‘i(¢+0)(f(01)+f(02)) + ;(zglp)f(m;()z)
b () o+ (1, ) 00) + 25 )|

EQQQQP*0+V*¢+WMVﬂhM+vaM-

Remark 1. If we choose = & = 1 in Corollary 1, then we have

O PO ()0 + (i) w) + 2 te)

< @000 p@)),

which was proved by Giirbiiz et al. in [38].

Remark 2. If we choose i = & = 0 in Corollary 1, then we have

’f<m +Qz> 3 K(le(i)m) ((gfl“f) (k) + (Cplf‘)zf) (k)) T “>f(k)
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which was proved by Sahoo et al. in [39].

Remark 3. If we choose ¢ = ¢ = % in Corollary 1, then we have

\i 700+ 7P 4 ()
) (Qi(f)m) (&) 0+ (Tiaf) () + Z%(zx)“)f (k)’
5(02

<

1)+ |f ()]

which was proved by Munir et al. in [37].

Corollary 2. If we choose p = ¢ = 2 in Corollary 1, then we have

‘;[f(ﬂl) erf(ﬂz) +f<01 42er>]

Dc(Qi(i)Ql) (&) 00+ (i) ) + 2525 0
(2 — )
6

<

[ @)+ |f ()]
Corollary 3. If we choose p = ¢ = % in Corollary 1, then we have

HIGIEFGSE Ea ]

e () 0+ (i, f) ) + 25 )
20201 (00)| + |f () ).

<

Theorem 8. Let the conditions of Lemma 2 hold. If f' € L[Q, Q] and |f'|7, g > 1, is a convex
on [Q)y, (Y], then we have the following inequality:

OO +f(O) + 320 - w)f(“ﬁ“z)

1
2
oy ((E) 0+ (Tmf)09) + X5 )

(02;01){2( 219+2192) 1( 21p+2zp)}

H 2 39 + 697 — 20° — 3¢ + 6y° —21/J)|f(01)\
(

30}

230+ 687 —26° —3p + 697 — 24° )| f ()"

(2527

IN
\Q\b—l

X

%4 39 +20° — 31p+21p3)
{al
(

1
6

1
6

4-39+20° 3y + 2¢3)
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Proof. By using Lemma 2 and power-mean inequality, we have

‘i(l[)+19)(f(()1) + f()) + ;(2—19—1/))]“(01;02)

(Q’f‘“)gl) () W+ (1, ) 00) + 25 o)

1 F@
= [(/1 o-viac)

O +Qz>

IN

{/“ 0- ¢|\f(ml+(1 0
+(flo-a- éldé) {/w -l (e + -0
([e-su) {(/o w1} (e + - 00) qdé};
o) e
[(/(1 £) - 9lac) o

{/'1 0 ¢I(C\f Ayl + -0 (52 )dg}é

o([o-aa) " ([o-a) (s a- ol (252)
“(f W"?'d@)l ([ w-a) (e (22 +
(o) (o)

)’
Ql+02)

ng}},

IN

e}
a-lf(© >|")dé}5
a-olr)) };dgl

_1

)B(l 20 +26) + ;(1 2¢+2lp)]1 '

IN

(2
[ 2 39 + 697 — 20° — 3y + 63> 2¢)\f ()|
1
6

32}

(2-30+68% —26° 39+ 632 — 29°) |1 () '
! Ql'*‘QZ 1

Corollary 4. If we choose = & = 1 in Theorem 8, then we have

— 30 +20% — 3+ 29 )

O\M—‘

(
ol
(

1
(430420 3¢+24)3)

This completes the proof. [

OB PO () 0+ (Ti ) ) + 25w
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IN

IN

(Q — )

(O — )

(Gl +3lr(F52) ) +(Clronr+

Corollary 5. If we choose = ¢ = 0 in Theorem 8, then we have

(57)

31.

8

(5 2) s (&) 00 + (i) 00) + 25w

(Arnr + 2 (259 + (Lriomp + 2 (25%)

Corollary 6. If we choose p = 0 = 3 in Theorem 8, then we have

il

8

o0 () s

s (Err) 00 + (1t f) ) + 2 pie)
(61|f’<01>lq +29f/<ﬂz>|")3 L (2 i +61|f’(Qz)|q>;]'

5(Qp — )
- 72

90 90

Corollary 7. If we choose p = 0 = % in Theorem 8, then we have

‘;{f(ﬁl) erf(Qz) +f(01 ﬂzLQzﬂ

_K(Qi(i)ﬂl) (Err) o+ (Tiaf) ) + 2(;(;)a)f (k)'

31N+ 1F Q)TN [ 1F(Q)]T +3F ()TN 7
(AL O (1@ ﬂ)]‘

(2 — ()

<
- 16

Corollary 8. If we choose p = ¢ = % in Theorem 8, then we have

‘:15|:f(01) + () +f(011'02>

_oc(Q‘i(f)Ql) ((8‘:[”7) (k) + (CF%Z]{) (k)) * 2(;(;)“)]((@’

< 502 —0y) (37|f’<01>|q+8f’<02>|‘7>5 N <8|f/(01)|q+37|f/(02)q>;].

- 72

45 45

Theorem 9. Let the conditions of Lemma 2 hold. If | f'|7 is a concave function on [Q1, )], then
we have the following inequality:

[0+ 0O+ ) + 32— 0 -y (P

—a(nf(f)ol)((ﬁfff) # (i) ) + g 0

{I f (111 o) +112 Ql+02)> (113 ) +I14<01+Qz>)‘}
19

+ Lo|f

(Q2 — )
8
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010,
" {121 f/(lﬂ( 2 122+ 118(01)) ’H,

o= [l0-0-wiear=L(1-3p+6y> - 2"), ho= [10-0) 91~ )i = ¢ (2 -39 +24?)
s = /1|19— 1- )|gdg:1(1—3z9+6192—2z93) 114:/1|19— 1—§)|(1—§)d§:%(2—319+2193)

+ I

In

F (115<01§QZ) + 116(02)>

where

he = [lp-tlcdc=g(2-30+20), he= [ -2l -0z = ¢ (1-3p+ 6y~ 2¢)
Ly = /|§ 9|gdg = ~ (z 30+26%), /|g 9(1- ) (1—319+6192 26°)
Lo = /01(1— )—¢|d§:§(1—219+2192), 120:/0 8- (1-¢ )\d§:§(1—2¢+2¢2>

Iy = /01|1[J—§|d§=%(1—21[]+21[)2), 121:/01|§—19|d§=%(1—219+2192).

Proof. By the concavity and Jensen integral inequality, we obtain

Q) +5(0) + 52— 0 ¢>f<“ﬁ“2)

1
>
e (&) 0+ (P, f) ) + 25 )

1 (=0 =) (200 + (1- ) 242 |ag
(/O|<1—@>—¢|d@)f( T

I
1 Jy (@ >\(¢oz+ 1-¢) 240 ) lag
+( Iﬁ—(1—€)|d€>f( o0 o
1 Al (é%ﬂl—é)oz) ag
(fle-aa)s ( IHURNSIS )

1 1+ _
VT BLIRT SRS

Jo (€ —8)dg
I13(02) + Ii4 (Ql+02)
f I

) I17<01+02) + I18(M1)
f I» '

This completes the proof. [

(2 — M)

<
- 8

(O — O))
8

IN

+ 120

O +Qz
) I11 () + Ilz(lT)
Ly

{119 f

; (115 (01+02) + 116(02))

+ 122

I

Remark 4. If we choose i = 0 = % in Theorem 9, then we have

014+ 0y
2

\é () + a7 )+ )]
e () 0+ (i, ) ) + 25 )
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290 + 160,
()l

IN

5(0p — ) {
72

(160 +290;
45

which was proved by Munir et al. in [37].

3. Applications to Matrix Inequalities

Example 1. We denote the set of all n x n complex matrices by C", and we denote M,, to be
the algebra of all n X n complex matrices, and by M, , we mean the strictly positive matrices in
My. That is, Oy € M} if (Aq,, Q1) > 0 for all nonzero (O € C". In [40], Sababheh proved
that the function (0) = ||A°XB1=0 + AYOXBY||, 1,0, € M;}, X € My is convex for all
6 € [0,1]. Then by using Corollary 2, we have

0+ O+ O+ Q9+ 15(0() for ko nl—k Ik v ok
AT 2XB T 4 AT 2 XB P [cFp|| 4kxp Al-kxB H
H - a(Qy — ) {Ql *

_ _ 2(1—a) _ _
CF ya k 1—k 1—k k k 1—k 1-k k
I ’A XB AlkxB H 7”14 XB AlkxB H
0, + }] a0 — ) *
< (QZ g Ql) |:{ HA01XB1701 + A1701XB01

’+HAQZXB1*QZ+A1*QZXBQZ

j]

Applications to Special Means

We recall some special means
(1) The arithmetic mean:

Q Q
A(Qy, Q) = 2 “ZL 2 0,,eR
(2) The logarithmic mean:
O — ()
L(O,0) = ————— Q | O, Q 01,0 € R
( 1, 2) ln‘02|—ln|Q]| ‘ 1|#| 2| 1, 2750 1, 2 €

(3) The generalized logarithmic mean:

()1 — ()
(r+1)(Q — M)

1
Lo(Qy, Q) = ] , reR\{-1,0} 04,0 > 0.

Proposition 2. Let g > 1and O3, O € Rsuch that 0 < O < Oy, then the following inequality
holds:

[A(Q1, Q) = Li(Dh, D)

1 1
M =00 [ (26 a1 1o (N (2 e 1] ( Qe [T
< M=) (20 L 210, L) _
= 8 311l +31 2 151 31 2
Proof. The assertion follows from Corollary 4 for the function f(x) = x", a« = 1, B(0) =
B1)=1. O

Proposition 3. Let g > 1and Oy, € Rsuch that 0 < Oy < Oy, then the following inequality
holds:

’A71(01,02) - L71(01,02)‘

1 1
0 -) [ 1 2 N, (1 2 A%
< (281)l<301|q+3‘142(01,02)’ ) + (3|Qz|q+3’A2(Ql,Qz)’ > ]
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O — O <2

1 M
A(9q(D1), 9q(M2)) — m/ @q(u)du

Proof. The assertion follows from Corollary 5 for the function f(x) = <, a« =1, B(0) =
B1)=1. O

4. g-Digamma Function

Let 0 < g < 1, the g-digamma function ¢, is the g-analog of the digamma function ¢
are stated as [41]

) qk+x
99 = —In(l—q)+Ing) ——
k=0 * 1
0 qu
= —ln(l—q)—i—lnqzl =
=0+ 14

For g > 1 and x > 0, g-digamma function ¢, is discussed as

o0 —(k+x)
pq = —In(g—1)+Ing|x—5— q]

2 ) 1— q—(k+x)

= —In(g—1)+Ing s

1 00 qka
x—5-), —kx]
k=0

Proposition 4. Let g > 1 and (), )y be a real number such that 0 < Oy < )y, then the
following inequality holds:

M
1+ 1+ q %

Proof. The assertion follows from Corollary 4 for the function f(¢) = ¢4(¢) and & > 0,
f'(e) = q);(s) is convex (0, +c0),a =1, (0) = B(1) =1. O

/ q 1
og(0n)|" + 3

8

1
AN 21 q 1
2l goion)| + 1

5. Conclusions and Future Work

Fractional calculus is an interesting subject with many applications in the modeling
of natural phenomena. At the moment, we need to strengthen and improve our ability to
generalize several recent results directly related to the topic of fractional calculus. Many
mathematicians have generalized a variety of fractional operators using the techniques and
operators of fractional calculus. Regarding the fractional integral of Caputo-Fabrizio, the
current fractional integral has been used to establish a few new Hermite-Hadamard and
Simpson'’s type inequalities for differentiable mapping for convex functions. Additionally,
we have discussed some applications to matrix and special means with the help of newly
established inequalities. It is a fascinating and new problem that the forthcoming scientists
can obtain calculus inequalities for fractional operators in future work. In the future, we
intend to generalize the theory of inequality for concepts, such as interval valued analysis,
quantum calculus, fuzzy interval-valued calculus, and time-scale calculus.
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