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Abstract: International students play a crucial role in China’s talent development strategy. Thus,
predicting overseas talent mobility is essential for formulating scientifically reasonable talent intro-
duction policies, optimizing talent cultivation systems, and fostering international talent cooperation.
In this study, we proposed a novel fractional-order grey model based on the Multi-Layer Perceptron
(MLP) and Grey Wolf Optimizer (GWO) algorithm to forecast the movement of overseas talent,
namely MGDFGM(1,1). Compared to the traditional grey model FGM(1,1), which utilizes the same
fractional order at all time points, the proposed MGDFGM(1,1) model dynamically adjusts the
fractional-order values based on the time point. This dynamic adjustment enables our model to
better capture the changing trends in the data, thereby enhancing the model’s fitting capability. To
validate the effectiveness of the MGDFGM(1,1) model, we primarily utilize Root Mean Square Error
(RMSE) and Mean Absolute Percentage Error (MAPE) as the evaluation criteria for the prediction
accuracy, as well as standard deviation (STD) as an indicator of the model stability. Furthermore, we
perform experimental analysis to evaluate the predictive performance of the MGDFGM(1,1) model in
comparison to NAÏVE, ARIMA, GM(1,1), FGM(1,1), LSSVR, MLP, and LSTM. The research findings
demonstrate that the MGDFGM(1,1) model achieves a remarkably high level of prediction accuracy
and stability for forecasting overseas talent mobility in China. The implications of this study offer
valuable insights and assistance to government departments involved in overseas talent management.

Keywords: overseas talent; grey model; dynamic fractional order; GWO; MLP

1. Introduction
1.1. Background

With the reform and opening-up policy, and the continued globalization of China’s
economy and the increasing importance of education within Chinese families, a notable rise
in the number of individuals pursuing overseas studies can be observed [1,2]. In the context
of fierce global competition for international talents and the tide of anti-globalization, an
increasing number of overseas students have demonstrated their intention to return to their
home country for development. Talents, especially high-level talents, are important for
China’s innovative development [3]. Their return to China significantly impacts techno-
logical advancement and economic development [4]. Therefore, attracting more overseas
students to contribute to the development of the motherland has become an urgent fo-
cus for China’s pursuit of high-quality development. It is worth noting that government
departments and companies increasingly prioritize managing overseas talents, aiming to
comprehensively understand their mobility patterns [5,6].
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1.2. Overseas Talent Mobility Prediction

Accurate overseas talent prediction is essential for relevant decision-makers to un-
derstand the future trends in overseas talent mobility and develop appropriate policies.
Specifically, it can be beneficial for government departments to understand the trends in
talent mobility so that they can formulate and adjust policies related to studying abroad,
introducing talent, and retaining talent [7]. In addition, understanding the trends in in-
ternational talent mobility can work in favor of relevant organizations, universities, and
enterprises in making effective plans for international exchanges and collaborations [8,9].
Furthermore, since most of the overseas study talent is a high-level talent, accurately
predicting talent mobility can help relevant departments to plan the allocation of human
resources effectively, thereby rationalizing industrial layouts and developing economic
growth [3].

Currently, there are two main categories of research on overseas talent flow trends. In
the first instance, some studies analyze the factors that drive talent flow [10], the factors
affecting students’ willingness to study abroad [11,12], and how to attract [7] and retain
talent [13]. A second aspect is to develop models of talent mobility, although this field is
relatively understudied.

In the field of overseas talent mobility prediction, the grey model is the most popular
model. Based on the limited data available on the number of Chinese students studying
abroad, Ke and Wu utilized the GM(1,1) model to establish a prediction model for the num-
ber of Chinese students studying abroad [14]. Li employed the GM(1,1) model to forecast
Chinese overseas students’ development trends [15]. For the prediction of Chinese overseas
talent mobility, Ren and Jiang apply four form models of GM(1,1) to predict the number
of students studying abroad and returned students [16]. Jiang et al. further proposed a
fractional-order grey prediction model based on change-point detection [17]. Additionally,
some scholars have applied statistical or machine learning models. For example, Feng and
Yu utilized an ARIMA(2,2,2) model to predict the trend of Chinese talent mobility [18].
Olesia constructed five linear trend models based on the different destination countries
for Ukrainian students studying abroad [19]. Yang and Duan developed a quadratic curve
trend model for predicting the number of Chinese students studying abroad [20]. Yang
et al. proposed a hybrid approach, FSDESVR, combining feature selection (FS) and support
vector regression (SVR) with differential evolution (DE) for predicting the number of Tai-
wanese students studying abroad [21]. Bijak et al. compared multiple forecasting models,
including AR, ARIMA, Bayesian models, and Autoregressive Distributed Lag (ADL) mod-
els. The research findings revealed that no single forecasting method could effectively suit
different sets of forecast data [22]. Therefore, some scholars have used combined modeling
to predict overseas talent mobility. For instance, Li proposes a combination model com-
bining multiple linear regression, ARIMA, and support vector regression models, which
outperformed individual forecasting models [23]. Hu constructs a combined model based
on the L1 norm to build the GM(1,3) model and BP neural network model [24]. Also, Wei
proposed a combined prediction model integrating GM(1,1) and BP neural networks [25].

Although combination models are superior to single models, single models serve as
the foundation for forecast combination [26]. Currently, there are relatively few models for
predicting the flow of overseas talent, making it still highly necessary to construct a single
predictive model with high accuracy for forecasting the movement of overseas talent. Based
on the above analysis, considering the good performance of the grey model in predicting
the flow of overseas talent [8], as well as the complexity and limited sample size of China’s
overseas talent mobility, this paper aims to develop a new grey forecasting model for the
flow of overseas talent in China, encompassing the number of Chinese students studying
abroad and those returning to China.
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1.3. Grey Models
1.3.1. Basic Principles of Grey Forecasting Models

The grey forecasting model is one of the main contents of grey system theory proposed
for handling uncertain information [27]. Compared to statistical models requiring data to
conform to statistical assumptions, machine learning models require a large sample size for
fitting [28]. Grey prediction models achieve nonlinear mapping using a limited number of
samples without requiring the data to possess any statistical assumptions [26]. Therefore,
grey prediction models are widely used in energy, transportation, water conservancy,
economy, tourism, and population [29–32]. The grey prediction model stands out from
other prediction models due to its unique approach of utilizing data modeling through the
accumulative generation operation (AGO), rather than directly estimating and modeling
the original data [33]. The basic grey prediction model, GM(1,1), is primarily based on
the first-order AGO (1-AGO). This method generates cumulative sequences, constructs
difference models, and derives the final equation for the time response using the least
squares method and the inverse 1-AGO [27].

In the GM(1,1) model, the first-order accumulation assigns equal weight to all time
point data, which does not comply with the new information priority principle for grey
forecasting models [27]. To address the problem of information priority in the accumulation
sequence, Wu et al. proposed a grey forecasting model based on fractional-order accumula-
tion, namely FGM(1,1) [34]. The weighting of data during the process of accumulation is
influenced by the fractional order, r. As the value of r increases, the weight assigned to old
data increases proportionally, while the weight assigned to new data decreases correspond-
ingly, and vice versa [34]. Compared to the integer order, the fractional order can better
reveal the intrinsic characteristics and behaviors of objects. Therefore, the grey prediction
model based on fractional-order accumulation has gradually attracted the attention of
researchers and has been applied in various fields [35–37].

1.3.2. Advancements in Fractional-Order Grey Prediction Models

Improving the forecasting accuracy of the FGM(1,1) model is a primary research
focus that entails proposing various fractional-order forms [38–40], constructing prediction
models with different fractional-order structures [41–44], investigating the optimal number
of modeling samples [17,45], and integrating other optimization algorithms to determine
the optimal fractional order of the model [28,39,46], among other approaches. Although
existing research has conducted in-depth discussions on the fractional-order grey prediction
model, almost all of them have used a fixed fractional-order value. As mentioned above,
the fractional order assigns different weights to the accumulated data [34]. While the
accumulated data grow over time, the weights determined by the fractional order are also
likely to change in accordance with the growth of the data. Thus, the fractional-order
values should be dynamically adjusted according to the development of the data. Although
there have been several papers discussing the dynamic change in relevant parameters in
response to changes in time to improve prediction accuracy [47,48], there is scarce literature
exploring the relationship between the time points and the fractional order during the
modeling process to adjust the fractional order dynamically. Therefore, we propose a novel
FGM(1,1) model in which the fractional order is dynamically adjusted based on different
time points.

There are two problems that must be solved in order to achieve a dynamic fractional
order. The first is how to determine the fractional order for each time point, and the second
is how to determine the fractional order for future time points.

For the first problem, the current method for determining fractional-order values is
based on the metaheuristic algorithm [39], and the method is also used in this study in
order to calculate the optimal dynamic fractional order. There is no doubt that dynamic
fractional optimization with multiple values to optimize is more difficult and complex
than fixed fractional-order optimization with only one parameter to optimize. The GWO
algorithm has the characteristics of simplicity and flexibility and achieves a proper balance
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between global search and local optimization [49]. It has been proven to perform well in
solving parameters for grey prediction models [39,50]. Therefore, the GWO algorithm is
adopted to optimize and solve the dynamic fractional-order values for the proposed model.

For the second problem, we can construct a model based on dynamic fractional-order
values and datasets, which can be used to predict future fractional orders. Due to the
nonlinear relationship between the optimal fractional order determined by grey wolf
optimization and the given dataset, this model should be a nonlinear model. Given that
the MLP is renowned as a leading nonlinear time series prediction model for its proficiency
in forecasting nonlinear time series [51], the MLP model was thus employed to predict the
fractional-order values based on the given dataset.

Basically, this study aims to propose a dynamic fractional-order grey prediction model
based on the GWO and MLP, namely MGDFGM(1,1), for the flow of overseas talent in
China. The proposed MGDFGM(1,1) model features an adaptive fractional order that
adjusts as the time series data changes. It employs the GWO to optimize the dynamic
fractional order in order to create the most suitable fitting model, and the MLP to make
predictions about future fractional-order parameters in order to prepare an ex-post forecast
of overseas talent in China.

1.4. Contributions

The main contribution of this work is that we have proposed a novel grey model
MGDFGM(1,1) with a dynamic fractional order based on the MLP and GWO. Compared
to the traditional grey model FGM(1,1), which utilizes the same fractional order at all
time points, the fractional-order values of MGDFGM(1,1) are dynamically adjusted with
the change in the dataset. With the dynamic adjustment, MGDFGM(1,1) is better able to
capture the changing trends in the dataset. In addition, the GWO is used in this study for
optimizing the dynamic fractional-order values to build the best fitting model. The MLP
is applied to predict the fractional-order values to make an ex-post forecast of overseas
talents in China. Furthermore, this work takes the flow of Chinese overseas talents as the
experimental subject. In comparing different statistical models, grey models, and artificial
intelligence models, it is demonstrated that MGDFGM(1,1) has a high degree of predictive
accuracy and good predictive stability for predicting Chinese overseas talent mobility, thus
offering a novel approach to predict overseas talent mobility.

The remainder of this work is organized as follows. Section 2 introduces the FGM(1,1),
GWO algorithm, and MLP method, as well as the proposed MGDFGM(1,1) model. Section 3
examines the proposed model for predicting the flow of overseas talent in China. Section 4
discusses the predictions of MGDFGM(1,1) compared to other grey model predictions and
analyzes the advantages of the MGDFGM(1,1) model. The conclusion and future work are
briefed in Section 5.

2. Methodology
2.1. FGM(1,1)

The modeling steps for the FGM(1,1) are as follows:
(1) Set X(0) as an original non-negative sequence:

X(0) = (x(0)1 , x(0)2 , · · · , x(0)n ) (1)

(2) Convert X(r) to the fractional-order accumulation sequence X(r) by Hausdorff
r-order accumulated generating operation (r-AGO):

X(r) =
k

∑
i=1

[ir − (i − 1)r]x(0)i , k = 1, 2, · · · , n (2)
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(3) Set Z(r) as an immediately adjacent mean generating the sequence of X(r)

Z(1) = 0.5 × x(r)k + 0.5 × x(r)k−1, k = 2, 3, · · · , n (3)

(4) The fractional grey differential equation is constructed as

x(0)k + a · z(r)k = b, k = 2, 3, · · · , n (4)

(5) Estimate the parameters a and b by the least squares method

[a, b]T =
(

BT B
)−1

BTY (5)

where

B =


−z(r)2 1
−z(r)3 1

...
...

−z(r)n 1

, Y =


x(0)2

x(0)3
...

x(0)n

 (6)

(6) Obtain the time response series of the grey differential equation,

x̂(r)k =

(
x(0)1 − b

a

)
· e−a(k−1) +

b
a

, k = 2, 3, · · · , n (7)

(7) The final prediction value x(r)k is obtained by reverse r-order AGO:

x̂(0)k =

(
x̂(r)k − x̂(r)k−1

)
ir − (i − 1)r , k = 2, 3, · · · , n (8)

The FGM(1,1) model follows the principle of prioritizing new information when r falls
within the range of 0 to 1. The FGM(1,1) model is equivalent to the GM(1,1) model when r
is equal to one [34].

2.2. GWO

The GWO algorithm is a metaheuristic optimization algorithm proposed by Mirjalili
et al. in 2014, inspired by the social hierarchy and hunting behavior of grey wolves [52].

In the mathematical model of the GWO algorithm, α is considered as the optimal
solution, followed by β, δ, and ω in order. The mathematical model equation is as follows:

→
D = |

→
C ·

→
XP(t)−

→
X(t)| (9)

→
X(t + 1) =

→
X(t)−

→
A ·

→
D (10)

→
A = 2

→
a ·→r1 −

→
a (11)

→
C = 2 ·→r2 (12)

where
→
D represents the distance between the grey wolves and the prey,

→
A and

→
C are

vector parameters,
→
XP represents the current position vector of the prey,

→
X represents the

current position vector of the grey wolves, t denotes the current iteration number.
→
a is the

convergence factor, which linearly decreases from 2 to 0 during the iteration process.
→
r1

and
→
r2 are random vectors in the range [0,1].
During the hunting process, grey wolves can identify and surround the prey’s location.

Let us assume α, β, and δ know the potential prey’s location. Based on α, β, and δ, the
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prey’s location can be determined during the hunting process, assisting other grey wolves
in updating their positions and gradually approaching the prey. The mathematical model
for this phenomenon is expressed below:

→
Dα = |

→
C1 ·

→
Xα −

→
X|,

→
Dβ = |

→
C2 ·

→
Xβ −

→
X|,

→
Dδ = |

→
C3 ·

→
Xδ −

→
X| (13)

where
→
Dα,

→
Dβ, and

→
Dδ represent the distances between α, β, and δ and other grey wolves,

respectively.
→
Xα,

→
Xβ, and

→
Xδ are the current positions of α, β, and δ. The grey wolves adjust

their positions based on the three current best solutions, continuously approaching the prey.
The average value is used as the new position update target. The formula is as follows:

→
X1 =

→
Xα −

→
A1 ·

→
Dα, X2 =

→
Xβ −

→
A2 ·

→
Dβ,

→
X3 =

→
Xα −

→
A3 ·

→
Dδ (14)

→
X(t + 1) =

→
X1 +

→
X2 +

→
X3

3
(15)

When the prey stops moving, the grey wolves begin their attack. If |
→
A| < 1, then the

grey wolves launch their attack. Otherwise, the grey wolves leave the prey and seek an
optimal position. At the same time, in the model, C is a random number within the range
of [0,2], and this randomness prevents the model from becoming trapped in local optimal
solutions, thus obtaining the global optimal solution [53].

2.3. MLP

The MLP is a widely utilized feedforward artificial neural network [54]. The structure
of a three-layer MLP comprises an input layer, a hidden layer, and an output layer. The
input layer usually consists of a group of nodes through which data are fed into the
network. The hidden layer also includes a group of nodes connected to all nodes in the
input layer. These nodes apply activation functions to the input data, resulting in nonlinear
transformations. The output layer typically contains a node connected to all nodes in the
hidden layer, representing the potential output values of the MLP. The mathematical model
of the MLP can be represented as:

Ŷ =
H

∑
k=1

w2
k ·g(

d

∑
j

w1
kjXi,j) (16)

where Ŷ represents the predicted value, H is the number of hidden-layer nodes, d is
the input vector dimension, g(·) represents the activation function, w1

k,j and w2
k are the

weights from the input layer to the hidden layer and from the hidden layer to the output
layer, respectively.

2.4. Proposed MGDFGM(1,1)

This study proposes a novel grey model MGDFGM(1,1) with a dynamic fractional
order based on MLP and GWO. The main modeling process of MGDFGM(1,1) is as follows:

Step I: Establish a dynamic FGM(1,1). Dynamic parameter adjustment enhances the
adaptability of the grey model and improves the accuracy of its predictions [47]; hence,
we have established a grey prediction model with dynamic fractional-order parameter
adjustment. In the traditional FGM(1,1), the fractional order r is the same at different time
points during fractional-order accumulation [34]. However, in the proposed MGDFGM(1,1)
model, the fractional order is associated with the actual values at different time points. The
fractional order at each time point is denoted as rj, where j = 2, 3, . . . , n. Thus,

X(rj) = ∑k
i=1,j=2

[
irj − (i − 1)rj

]
x(0)i , k = 1, 2, · · · , n (17)
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The final prediction result can be obtained through a reverse dynamic fractional order,

x̂(0)k =
(x̂

(rj)

k − x̂
(rj−1)

k−1 )

irj − (i − 1)rj
, k = 2, 3, · · · , n, j = 2, 3, · · · , n (18)

Step II: Solve the fractional order rj. Implement the GWO algorithm to find the optimal
rj by minimizing MAPE as the loss function [39]. The obtained optimal rj is then used
to construct the fitting model in the dynamic FGM(1,1) model. We implement the GWO
algorithm using the EvoloPy framework [49]. The GWO algorithm is configured with
several search agents = 1000, the maximum number of iterative steps = 1000, and dim = 15.
The operator search range is set between the highest value of 1 and the lowest value of 0.
Therefore, rj ranges from 0 to 1, following the principle of prioritizing new information in
the proposed model [24].

Step III: Fractional-order prediction. Because the fractional order rj is related to
the data at the corresponding time point, it is not possible to solve the fractional order
rj+p =

{
rj+1, rj+2, . . . , rj+p−1

}
of the prediction stage by the previous modeling stage. Here,

p represents the number of prediction time points. Hence, the MLP method is employed to
predict the fractional order rj+p in the prediction stage. The input of the MLP is represented

as inputx =
(

x0, x1, . . . , xn−1,xn, x̂n+1, x̂n+2, . . . x̂n+p−1
)T , and the corresponding output is

denoted as outputr =
(
r1, r2, . . . , rj, r̂j+1, r̂j+2, . . . , r̂j+p−1

)T . Here, {x̂ n+1, x̂n+2, . . . x̂n+p−1
}

represent the predicted values of the case data, and { r̂j+1, r̂j+2, . . . , r̂j+p−1
}

denote the
predicted values of the fractional order. The MLP consists of an input layer, a hidden
layer, and an output layer, implemented using Python. The optimal parameters of the
MLP are determined using grid search with time series five-fold cross-validation. The
“lbfgs” solver is used to optimize the weights. The activation functions can be “identity”,
“logistic”, “tanh”, or “relu”; the number of nodes in the hidden layer are set from 2 to 12;
the maximum number of iterations are set to 3000.

Step IV: Future value prediction. Bring the fractional-order predicted value obtained
in the previous step into the dynamic FGM(1,1) model to obtain the future predicted values.

Based on the above steps, we refer to the dynamic fractional-order grey model that com-
bines the MLP and GWO as MGDFGM(1,1). When all the fractional orders in MGDFGM(1,1)
have the same value, MGDFGM(1,1) is equivalent to FGM(1,1). When all the fractional
orders equal 1, MGDFGM(1,1) is equivalent to GM(1,1).

The proposed MGDFGM(1,1) model was compared with several forecasting models,
including the classic and commonly used time series forecasting models NAÏVE and
ARIMA [55], as well as the basic grey models GM(1,1) and FGM(1,1) [34], and three
AI-based models, least squares support vector regression (LLSVR) [56], MLP [54], and
long short-term memory networks (LSTM) [57], to demonstrate its superior performance.
This study adopts NAÏVE as the baseline model for predicting overseas talent mobility.
Compared to other models, Naïve forecasting is easier to implement and does not require
any parameter optimization. Suppose more complex models perform worse than the Naïve
model regarding the prediction performance. In this case, they cannot provide more useful
information and are not recommended as predictive models for overseas talent mobility.

2.5. Model Evaluation Criteria

The MAPE is a widely used method for evaluating the prediction accuracy of grey
models and is commonly employed to assess the overall performance of models [27,39].
However, relying solely on the MAPE as a performance metric may present certain risks [58].
Therefore, we also included the RMSE, another widely used metric for providing a com-
prehensive evaluation of model performance [59]. A lower value of the MAPE and RMSE
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signifies an enhanced predictive accuracy of the model. The respective formulas for the
MAPE and RMSE are as follows:

MAPE =
1
n∑n

i=1

∣∣∣∣ xi − x̂i
xi

∣∣∣∣× 100% (19)

RMSE =

√
1
n

n

∑
i=1

(xi − x̂i)
2 (20)

According to the MAPE accuracy criterion [60], a model is deemed to have a high
prediction accuracy if the error is below 10%, indicating its suitability for prediction, as
shown in Table 1.

Table 1. Accuracy criteria for prediction models (MAPE).

MAPE Prediction Accuracy

<10% High
10%~20% Good
20%~50% Reasonable
≥50% Inaccurate

This study applies STD as a measure to test the stability of the models utilized in this
paper [30] as follows:

STD =

√
1
n

n

∑
i=1

(APEi − MAPEi)
2 (21)

APE =

∣∣∣∣ xi − x̂i
xi

∣∣∣∣× 100% (22)

3. Empirical Results
3.1. Data Description

The main data used in this study include the number of Chinese students studying
abroad and returning to China, which are the two most important predictors for predicting
overseas talent mobility. This period covers 2000 to 2019 due to the constraints of data
availability. The dataset is from the National Bureau of Statistics of China (https://data.
stats.gov.cn/easyquery.htm?cn=C01). Figure 1 presents the dataset employed in this study.
Over the past decade, a noteworthy upsurge in the number of Chinese students pursuing
education abroad and those repatriating to China has occurred.

Figure 1. Time series chart of overseas talent mobility (unit: person).

https://data.stats.gov.cn/easyquery.htm?cn=C01
https://data.stats.gov.cn/easyquery.htm?cn=C01
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3.2. Experiment 1: Students Studying Abroad

Experiment 1 focuses on forecasting the number of students studying abroad. Interna-
tional students are chosen as the subject of study. The model is constructed using data from
2000 to 2016, and data from 2017 to 2019 are used to validate the predictive accuracy of the
model. The specific calculation process using MGDFGM(1,1) in Experiment 1 is as follows.

The number of students studying abroad from 2000 to 2016 is the original sequence X(0):

X(0) = {38989, 83973, 125179, 117307, 114682, 118515, 134000, 144000, 179800,
229300, 284700, 339700, 399600, 413900, 459800, 523700, 544500}

The GWO algorithm is used to optimize the fractional order of MGDFGM(1,1). After
computation, the optimal order rj is determined to be

rj = {0.980, 0.822, 0.902, 0.947, 0.964, 0.946, 0.948, 0.902, 0.853,
0.815, 0.790, 0.770, 0.783, 0.777, 0.765, 0.777}

The corresponding accumulated sequence X(rj) for the order rj is

X(rj) = {81695, 87526, 93575, 100251, 107588, 114628, 122791, 131424,
140505, 150460, 160492, 172243, 184142, 196908, 210520, 226883}

Based on Formulas (5) and (6), parameters â = −0.068 and b̂ = 76312.322 are obtained
through the least squares method. Therefore, it can be concluded that

x̂
(rj)

k = (38989 + 1126421.153) · e0.068·(k−1) − 1126421.153, k, j = 2, 3, · · · , n

Based on the above time response function, the inverse dynamic fractional order is
used to calculate the fitting and predicted value X̂(0).

x̂(0)k = {83967.069, 125020.636, 117267.275, 114508.774, 117995.736, 133996.322,
143845.767, 179572.535, 229223.394, 284402.673, 340433.924, 399299.278,

413978.612, 460217.472, 524650.823, 541626.080}

Finally, using the MLP method for the fractional-order prediction of the next three
years, we obtain rj+t = {0.782, 0.786, 0.790}, and thus, the final predicted values for 2017

to 2019 are x̂(0)k+t = {576005.079, 614179.827, 652201.177}.
Table 2 shows the predicted results of MGDFGM(1,1) and the comparative models.

Figures 2 and 3 represent the predicted performance of all the considered models during
the fitting and forecasting stages of Experiment 1, respectively.

During the model fitting stage, all the considered models demonstrated higher predic-
tion accuracy compared to the naive model. However, only the ARIMA, MGDFGM(1,1),
and MLP models achieved high prediction accuracy, with MAPE values less than 10%.
In comparison, the prediction accuracy of the other models was considered good, with
MAPE values ranging from 10% to 20%. In terms of prediction stability, the stability of the
other seven models is also superior to that of the NAÏVE model. Therefore, considering the
prediction accuracy and stability, the MGDFGM(1,1), ARIMA, and MLP models can be used
as fitting models for the number of students studying abroad. However, the MGDFGM(1,1)
model outperforms the other models in both aspects.

During the model forecasting stage, the ARIMA, GM(1,1), FM(1,1), and MLP models
have a lower accuracy compared to the NAÏVE model. Among these models, the GM(1,1)
model exhibits the lowest prediction accuracy and stability. Therefore, the traditional grey
prediction models GM(1,1) and FGM(1,1) are not suitable for predicting the number of
students studying abroad. In contrast, LSSVR, LSTM, and the proposed MGDFGM(1,1)
model demonstrate superior prediction accuracy compared to the naive model, achieving a
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high level of precision. Specifically, the MGDFGM(1,1) model showcases the highest pre-
diction accuracy. Moreover, regarding the model stability, the STD value of MGDFGM(1,1)
is 0.915%, which is smaller than other models, indicating the highest level of prediction sta-
bility. Therefore, compared to the other comparative models, MGDFGM(1,1) demonstrates
greater suitability for predicting the number of students studying abroad.

Table 2. Comparison results of Experiment 1.

Year Raw Data NAÏVE ARIMA GM(1,1) FGM(1,1)0.996 * MGDFGM(1,1) LSSVR MLP LSTM

2000 38,989 38,972 38,989 38,989 38,989
2001 83,973 38,989 83,925 84,348 83,973 83,967 71,366.6
2002 125,179 83,973 128,957 96,053 95,786 125,021 112,968
2003 117,307 125,179 166,385 109,382 109,181 117,267 121,492 152,380
2004 114,682 117,307 109,435 124,561 124,407 114,509 146,178 131,131 144,757
2005 118,515 114,682 112,057 141,846 141,727 117,996 154,107 135,170 142,203
2006 134,000 118,515 122,348 161,530 161,437 133,996 152,883 134,678 145,932
2007 144,000 134,000 149,485 183,945 183,871 143,846 162,169 156,904 160,957
2008 179,800 144,000 154,000 209,471 209,408 179,573 174,756 163,657 170,785
2009 229,300 179,800 215,600 238,538 238,477 229,223 203,112 216,073 206,504
2010 284,700 229,300 278,800 271,640 271,570 284,403 247,008 269,823 257,169
2011 339,700 284,700 340,100 309,335 309,245 340,434 306,115 330,792 315,399
2012 399,600 339,700 394,700 352,261 352,135 399,299 369,108 386,585 374,476
2013 413,900 399,600 459,500 401,143 400,964 413,979 432,742 449,600 439,746
2014 459,800 413,900 428,200 456,809 456,553 460,217 471,384 437,233 455,448
2015 523,700 459,800 505,700 520,200 519,840 524,651 509,673 505,371 506,007
2016 544,500 523,700 587,600 592,387 591,889 541,626 552,778 569,180 576,499
2017 608,400 544,500 565,300 674,591 673,915 576,005 583,651 568,450 599,465
2018 662,100 608,400 586,100 768,203 767,298 614,180 610,998 600,414 603,235
2019 703,500 662,100 606,900 874,805 873,611 652,201 629,872 629,747 607,004

fit-MAPE 14.926% 7.086% 10.385% 10.365% 0.140% 10.288% 6.560% 11.004%
fit-RMSE 39,040.076 22,790.422 25,839.728 25,809.518 808.903 23,765.415 18,291.157 22,414.081
fit-STD 12.831% 9.509% 8.414% 8.435% 0.144% 8.665% 4.060% 7.811%

pre-MAPE 8.166% 10.765% 17.085% 16.946% 6.618% 7.417% 8.789% 8.025%
pre-RMSE 53,792.379 75,200.111 122,453.680 121,513.661 44,636.843 53,681.188 60,112.866 65,463.477
pre-STD 1.886% 2.760% 5.550% 5.526% 0.915% 2.621% 1.642% 5.038%

* The optimal fractional order of FGM(1,1) is 0.996. The bold font values represent the optimal results.

Figure 2. The predicted performance of all considered models during the fitting stages of Experiment 1.
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Figure 3. The predicted performance of all considered models during the forecasting stages of
Experiment 1.

Figure 4 displays the trend prediction graphs of all the considered models to highlight
the disparities in trend prediction among the models. During the fitting stage, all the
models demonstrate highly accurate predictions that align closely with the actual values.
However, in the prediction stage, the GM(1,1) and FGM(1,1) models produce overestimated
predictions that deviate noticeably from the actual value curve. Conversely, the predicted
values of the other six models are lower than the actual values, and the MGDFGM(1,1)
curve exhibits the closest resemblance to the actual value curve. The predicted value curve
of MGDFGM(1,1) demonstrates greater proximity to the actual value curve compared to
the other comparative models in both the fitting and prediction stages.

Figure 4. The trend of actual and predicted values in Experiment 1 (unit: person).

In summary, based on the comprehensive comparative analysis of the model accuracy
(MAPE and RMSE), model stability (STD), and model trend, it can be inferred that the
proposed MGDFGM(1,1) model outperforms the non-grey models NAÏVE, ARIMA, LSSVR,
MLP, and LSTM, as well as the grey models GM(1,1) and FGM(1,1) in predicting the number
of students studying abroad. Hence, the proposed MGDFGM(1,1) proves to be an effective
forecasting tool for the number of students studying abroad.

3.3. Experiment 2: Returned Overseas Students

Experiment 2 uses the number of returned overseas students for prediction to further
validate the effectiveness of MGDFGM(1,1) in forecasting overseas talent mobility. The
modeling and prediction process in Experiment 2 is similar to Experiment 1, using data
from 2000 to 2016 to build the model, while data from 2017 to 2019 are used to validate the
accuracy of the model’s predictions.



Fractal Fract. 2024, 8, 217 12 of 17

Using the GWO to optimize the order of the model, the calculated optimal order rj is

rj = {0.984, 0.874, 0.911, 0.901, 0.840, 0.841, 0.883, 0.798, 0.724,
0.715, 0.680, 0.631, 0.615, 0.651, 0.665, 0.693}

Thus, the obtained time response function is

x̂
(rj)

k = (9121 + 61252.834) · e0.157·(k−1) − 61252.834, k, j = 2, 3, · · · , n

We employed the MLP method for predicting the scores in the fractional order for
the upcoming three years. The results revealed the values of rj+t = {0.690, 0.724, 0.729}.
Utilizing these outcomes, we derived the final projected values for the years 2017 to 2019
as x̂(0)k+t = {520592.059, 535105.655, 621055.795}.

Table 3 presents the predicted results of the MGDFGM(1,1) model and the comparison
models for the number of returned overseas students. Figures 5 and 6 represent the
predicted performance of all the considered models during the fitting and forecasting stages
of Experiment 2, respectively. For the fitting and forecasting data, the MGDFGM(1,1) model
demonstrates lower MAPE and RMSE values compared to the other seven comparison
models. Regarding model stability, the MGDFGM(1,1) model is slightly inferior to NAÏVE
only during the prediction stage but exhibits the highest stability in all other scenarios.

Table 3. Comparison results of Experiment 2.

Year Raw Data NAÏVE ARIMA GM(1,1) FGM(1,1)0.068 * MGDFGM(1,1) LSSVR MLP LSTM

2000 9121 9117 9121 9121 9121
2001 12,243 9121 12,248 34,537 6789 12,241
2002 17,945 12,243 15,365 42,486 12,794 17,970
2003 20,152 17,945 23,647 52,263 20,152 20,132 19,127
2004 24,726 20,152 22,359 64,291 29,216 24,722 44,202 24,340 37,403
2005 34,987 24,726 29,300 79,087 40,354 35,090 50,551 35,501 45,467
2006 42,000 34,987 45,248 97,288 53,991 42,024 60,850 42,709 55,631
2007 44,000 42,000 49,013 119,678 70,622 44,011 70,737 51,589 65,230
2008 69,300 44,000 46,000 147,221 90,830 69,448 79,232 68,560 78,745
2009 108,300 69,300 94,600 181,102 115,304 108,317 100,032 101,068 97,266
2010 134,800 108,300 147,300 222,781 144,852 134,715 133,752 136,911 119,511
2011 186,200 134,800 161,300 274,052 180,425 185,155 169,655 180,479 153,151
2012 272,900 186,200 237,600 337,123 223,145 271,950 224,884 277,007 212,751
2013 353,500 272,900 359,600 414,708 274,327 350,066 302,361 353,513 282,737
2014 364,800 353,500 434,100 510,149 335,519 360,460 378,376 364,754 351,406
2015 409,100 364,800 376,100 627,554 408,538 407,814 418,206 409,247 420,185
2016 432,500 409,100 453,400 771,979 495,512 431,939 444,275 432,387 472,462
2017 480,900 432,500 455,900 949,642 598,942 520,592 450,457 428,860 500,388
2018 519,400 480,900 479,300 1,168,190 721,753 535,106 454,004 456,216 471,904
2019 580,300 519,400 502,700 1,437,040 867,375 621,056 446,190 455,069 460,205

fit-MAPE 20.69% 11.31% 98.29% 19.20% 0.28% 23.17% 2.93% 20.96%
fit-RMSE 37,402.22 23,277.02 120,732.29 30,798.67 1471.37 23,955.40 3448.65 31,584.52
fit-STD 10.89% 7.87% 53.73% 16.07% 0.34% 24.49% 4.40% 14.99%

pre-MAPE 9.32% 8.76% 123.34% 37.66% 6.10% 14.01% 14.86% 11.30%
pre-RMSE 50,111.94 52,455.60 676,917.27 213,925.81 34,074.24 87,918.34 86,377.43 75,406.59
pre-STD 1.36% 3.42% 20.51% 10.22% 2.23% 6.92% 4.79% 6.96%

* The optimal fractional order of FGM(1,1) is 0.068. The bold font values represent the optimal results.

Figure 7 displays the fitting and forecasting trends of all the considered models for
the number of returned overseas students to highlight the differences in model prediction
trends. The GM(1,1) model exhibits a significant deviation from the actual values even
during the fitting stage. Although the FGM(1,1) model shows a relatively small deviation
from the actual values during the fitting stage, it surpasses the actual value curve during
the forecasting stage. On the other hand, the NAÏVE, ARIMA, LSSVR, MLP, LSTM, and
MGDFGM(1,1) curves closely align with the actual value curve. The MGDFGM(1,1) curve
consistently overestimates the values compared to the actual curve, while the other five
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models consistently underestimate the values. Additionally, the MGDFGM(1,1) curve most
closely follows the actual value curve.

Figure 5. The predicted performance of all considered models during the fitting stages of Experiment 2.

Figure 6. The predicted performance of all considered models during the forecasting stages of
Experiment 2.

Figure 7. The trend of actual and predicted values in Experiment 2 (unit: person).

The comprehensive comparative analysis combining the model accuracy (MAPE and
RMSE), model stability (STD), and model trend indicates that the proposed MGDFGM(1,1)
model outperforms the other comparative models in predicting the number of returned
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overseas students. Therefore, the MGDFGM(1,1) model is shown to be effective in forecast-
ing the count of returned overseas students.

4. Discussion

The results of Experiments 1 and 2 demonstrate that using a dynamic fractional-order
grey forecasting model can effectively improve the prediction accuracy of grey forecasting
models. In Experiment 1, compared to GM(1,1) and FGM(1,1), MGDFGM(1,1) has improved
the MAPE values by 61.264% and 60.946%, and the RMSE values by 63.548% and 63.266%,
respectively, elevating the prediction level from good to high accuracy. In Experiment 2, the
performance of GM(1,1) in fitting and predicting the returnee students is poor, especially
with an MAPE value exceeding 100% in the prediction stage. Although FGM(1,1) improved
the prediction accuracy through the optimized fractional order (r = 0.068), it still falls
short of the desired level and is only considered acceptable. However, with the dynamic
accumulation of the fractional order based on the MLP and GWO, the grey prediction model
significantly improved the accuracy of predicting returnee students. Compared to GM(1,1)
and FGM(1,1), MGDFGM(1,1) has increased the MAPE values by 95.054% and 83.801%, and
the RMSE values by 94.966% and 84.072% respectively, elevating the prediction accuracy
from acceptable to high. Additionally, from the perspective of model stability, whether
in the fitting or prediction stage, the MGDFGM(1,1) model remained stable compared
to GM(1,1) and FGM(1,1). Therefore, the proposed dynamic fractional-order model can
significantly enhance the prediction accuracy and stability of the grey prediction model.

The proposed MGDFGM(1,1) model has the following advantages compared to other
traditional grey models: (1) The implementation of dynamic fractional-order accumulation
enables the fitting of distinct trends within the data, enhancing the modeling capability
with greater flexibility. (2) The model demonstrates high superiority in prediction accuracy
and stability. However, the model still has some limitations, such as the need for assistance
from other models for fractional-order prediction in the forecasting stage. In this study, the
MLP is utilized for prediction, increasing the model’s complexity.

5. Conclusions

As a critical high-quality human resource, effective management of overseas talents is
crucial for China’s talent strategy and labor internationalization. The accurate prediction of
the flow of overseas talents can assist the government and enterprises in formulating more
effective policies for talent attraction and retention, maximizing the potential of talents,
and promoting sustainable economic and social development. Applying a univariate
grey forecasting model is suitable given the limited data and unclear influencing factors
in this study. We have introduced a dynamic fractional-order grey forecasting model,
MGDFGM(1,1), for predicting the flow of overseas talent in China. In this model, the GWO
method is used for fractional-order optimization, and the MLP model is employed for
predicting the fractional order. The model exhibits exceptional accuracy in forecasting
both studying abroad and returning to study in China, achieving an MAPE value below
7% and stability below 3%, outperforming other comparative models. Therefore, we can
conclude that the proposed MGDFGM(1,1) is suitable for predicting the flow of overseas
talent in China. In addition, the proposed fractional-order dynamic optimization method
can improve the prediction accuracy of the traditional grey model by at least 60% in the case
studies of this paper. Therefore, dynamically adjusting the fractional-order accumulation
to enhance the prediction accuracy of the grey model has been proven to be effective.

Due to the impact of COVID-19, the Chinese government has not yet released data
on the number of international students and returning personnel for 2020 and beyond.
This lack of data poses significant challenges and opportunities for predicting the return
of overseas talents. The focus of the research lies in obtaining data from recent years or
using alternative indicators for forecasting the flow of overseas talent. Although some
studies have explored factors influencing the flow of overseas talent, a consensus has not
been reached. Therefore, this study adopts a univariate forecasting model to mitigate
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the influence of other factors on the model. However, exploring multivariate forecasting
models that incorporate relevant influencing factors in predicting the flow of overseas
talent would be a meaningful step. Therefore, a key research direction in the future will be
the development of a multivariable grey forecasting model that incorporates the influence
of exogenous variables on the flow of overseas talent.
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