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Abstract: This work investigates the solvability of the generalized Hilfer fractional inclusion associ-
ated with the solution set of a controlled system of minty type–fuzzy mixed quasi-hemivariational
inequality (FMQHI). We explore the assumed inclusion via the infinite delay and the semi-group
arguments in the area of solid continuity that sculpts the compactness area. The conformable Hilfer
fractional time derivative, the theory of fuzzy sets, and the infinite delay arguments support the solu-
tion set’s controllability. We explain the existence due to the convergence properties of Mittage–Leffler
functions (Eα,β), that is, hatching the existing arguments according to FMQHI and the continuity
of infinite delay, which has not been presented before. To prove the main results, we apply the
Leray–Schauder nonlinear alternative thereom in the interpolation of Banach spaces. This problem
seems to draw new extents on the controllability field of stochastic dynamic models.
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1. Introduction

Strong theoretical visions via fractional calculus are some of the most significant
ways to describe natural models. To our knowledge, fractional calculus is a vast field
with many kinds of fractional differential operators and corresponding integrals. For
examples, see [1–3]. One way to explain the importance of fractional calculus is by gen-
erating classical calculus, which is insufficient for modeling natural phenomena. The
time-fractional operators substantially draw some fantastic results in the fractal topics field
for modelings with memory. Here, we are interested in representing some medical and
physical studies in [4–7]. In particular, see the usefulness of Hilfer fractional operators in
papers on some different diseases [8–10].

The importance of controlled systems has arisen from Zadeh’s work [11] with fuzzy
sets used to understand the behavior of objects with a fractional grade of membership
between zero and one. On the other hand, the controllability of fractional operators through
the solvability region of mixed quasi-hemivariational inequalities has attracted attention
to investigating and updating more results (in particular, with fuzzy sets). Here, we refer
to [12,13]. In 2021, N. V. Hung [14] gave us strong and more worthwhile results on the
generalization of Levitin–Polyak well-posedness for controlled systems of minty type–fuzzy
mixed quasi-hemivariational inequalities (FMQHI). For more readings, it is worth looking
into the engineering, mechanics, and economics literature as well, for example, [15–20].

Among the most robust theories that support stochastic modeling are differential inclu-
sion theories and the continuous infinite delay ones. Many scientific teams have been con-
ducting research on this topic in many different scientific fields. For examples, see [21,22].

Some researchers have presented several results by modeling with control, stochastic,
delay, and memory systems. Many kinds are found in [12,23,24] and the references therein.
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Y. Jiang et al. [13] prove the solvability theory of mild solution sets for multi-valued
Caputo fractional differential initial problems with hemivariational inequality (HVI) with
Clarke generalized directional derivatives.

Dα
c x(t) ∈ Ax(t) + F(x(t), u(t)), t ∈ [0, b], α ∈ [0, 1]

u(t) ∈ Solu(HVI),

x(0) = ψ,

where A is the infinitesimal generator of a norm-continuous and uniformly bounded C0
semi-group {K(ρ)}ρ≥0 and F is a multi-valued map.

X. Pang et al. [25] presented the mild solution of Hilfer differential inclusion under
the solvability constraints of variational–hemivariational inequality (VHVI).

Dν,µx(t) ∈ Ax(t) + (Rx)(t) + F(x(t), u(t)), t ∈ [0, b],

u(t) ∈ Solu(VHVI),

I(1−ν)(1−µ)
0 = x0, ν ∈ [0, 1], µ ∈ (0, 1),

where A represents the infinitesimal generator of a norm-continuous and uniformly
bounded C0 semi-group {K(ρ)}ρ≥0 and F is a multi-valued map. R is a history-dependent
operator and for the order (1 − ν)(1 − µ), I0 defines the fractional order Riemann–
Liouville integral.

N. T. V. Anh [26] focussed on the solvability of optimal control Caputo-fractional
problems with HVI, Clarke-type subdifferentials and nonlocal initial conditions

Dα
c z(τ) ∈ Az(τ) + F(z(τ), w(τ)) + ∂G(τ, z(τ), w(τ)) + Bv(τ),

τ ∈ [0, a], α ∈ [0, 1]

w(t) ∈ Solu(HVI),

z(0) = z0 + ψ(z),

v ∈ Vad,

where Vad is an admissible control set of v(.) and A denotes the infinitesimal generator of
a norm-continuous and uniformly bounded C0 semi-group {K(τ)}τ≥0. F, G are single-
valued maps and ∂G represents the Clarke-type generalized subdifferential operator of G.
B is a bounded linear operator.

The new work comes to define the area that produces the data of fractional order
derivatives with orders between zero and one associated with the one of fuzzy sets with
grades with the same property. We suggest the fractional differential inclusion concerned
with the generalized conformable Hilfer fractional operator depending on τ ∈ R and
α ∈ (0, 1] with τ + α ̸= 0 [2,27]. That will be under the effect of infinite continuous
delay. The reason for choosing this derivative is apparent if we know its benefits in
describing control and diffusive systems and its decent iterating behavior in the order
data α ∈ [0, 1]. This fact was explored in [27] as a conformable fractional derivative. This
type has the ability as a measure to show different straight lines and planes drawing
specific curves and surfaces. A. Has et al. [28] have produced an excellent study on the
physical and geometric implications of the conformable type of derivatives talking about
the attainability of approximating the tangent, which is not available with the classical
type. We can overcome this limitation through the use of substitutional tangents. In
addition, conformable derivatives are definable even if the tangent plane is undefined. For
a general vision, the conformable tangent aircraft is available for all points containing points
with undefined derivatives. On the other hand, the Hilfer derivative was presented as a
generalization of Hilfer–Hadamard, Hilfer–Katugampola, Caputo–Hadamard, Riemann–
Liouville, Hadamard, Hilfer, Caputo, etc., into single-form derivatives that draw a massive
field of natural applications. For more details, see [3].
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Furthermore, we consider the mild solution set of the suggested inclusion in the
solvability region of FMQHI of minty type endowed with the Clarke-type generalized
directional derivative.

The problem considered here will be helpful in modeling heterogeneous natural
systems with memory.

2. Setting of the Problem

Let F (E) = {ω ∈ E|ω : E → [0, 1]} be the family of all fuzzy sets over a given Banach
space E. Then,

(i) ϖ : E → F (E) is called fuzzy mapping, for all ϖ.

(ii) ϖ(r) is fuzzy set on E, ∀r ∈ E and consequently ωϖ(r)(ρ) denotes the membership
function of ρ in ϖ(r).

(iii) Define by the set Mγ = {w ∈ E|ωM(w) ≥ γ}, the γ− cut set of M for all M ∈
F (E), γ ∈ [0, 1].

Let W, C be two reflexive Banach spaces, K ⊂ W be a nonempty closed subset, and
L(W, C) be the space of all linear continuous functions. Let Z be the control reflexive
Banach space and U ⊂ Z be the set of all admissible controls which is nonempty and closed.
Let S : K → F (K) and P : K → F (L(W, C)) be fuzzy mappings and ȷ : K × K → R be a
given locally Lipschitz function. Let h : L(W, C)× K × K → R, satisfying

(1) h(v, w2 − w1, u) = −h(v, w1 − w2, u),

(2) h(v, w − w, u) = 0,

for all w, w1, w2 ∈ K, v ∈ L(W, C), u ∈ U and let f : K × K → R be a function satisfying

f (w, w) = 0, ∀w ∈ K.

We want to study Hilfer fuzzy-type fractional differential inclusion defined by

δ
GH Dβ,θ

a+ x(t) ∈ Ax(t) + Π(t, x(t), xt,Hu), t ∈ [a, T], a > 0 θ, β ∈ [0, 1], (1)

δH
(1−θ)(1−β)
a x(a) =

cΓ(γ)
Γ(ω + γ)

(
tδ − aδ

δ

)ω

, (2)

0 < ω < 1, β + ω = 1, γ = β + θ(1 − β)

x(t) = ψ(t), t ∈ [a − σ, a], (3)

where ψ(a) = 0, δ = τ + α, τ ∈ R, α ∈ [0, 1] and τ + α ̸= 0,

xt(r) = x(t + r), r ∈ [−σ, 0], σ ∈ [a, T),

δ
GH Dβ,θ

a+ , δH
γ
a denote the generalized Hilfer-type fractional derivative and integral, respec-

tively, that their definitions are given later, in Section 3.2. A denotes a generator of compact
C0 semi-groups and Hu defines solutions collection of the minty type FMQHI-controlled
system written as follows.

FMQHI: Find w1 ∈ K ∩ S(w1)β such that

h(v, w2 − w1, u) + ȷ0(w1, w2 − w1) + f (w2, w1) ≥ 0, ∀v ∈ P(w2)θ , ∀w2 ∈ S(w1)β, (4)

where ȷ0 denotes the generalized directional derivative of Clarke type for the function ȷ at
the point w1 ∈ K in the direction of w2 − w1 given by the relation

ȷ0(u, v) = lim
k→u

sup
λ→0+

ȷ(k + λv)− ȷ(k)
λ

, u = w1, v = w2 − w1.

u(t) is a control function and S(w1)β, P(w2)θ are defined, respectively, by
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a: S(w1)β =
{

g ∈ K|µS(w1)
(g) ≥ β

}
,

b: P(w2)θ =
{

g ∈ K|µP(w2)
(g) ≥ θ

}
.

3. Preliminaries and Auxiliary Statements

The main results depend on five important concepts: Hilfer fractional operators, C0
semi-groups, infinite delay, multi-valued operators, and FMQHI. So, we must present some
basic definitions and facts related to these concepts.

3.1. FMQH Inequalities

From [14], we can see the following

Lemma 1. Let u ∈ U and w1 ∈ K ∩ S(w1)β. Then,

Hu = {w1 ∈ K ∩ S(w1)β∥h(v, w2 − w1, u)+J0(w1, w2 − w1) + f (w2, w1) ≥ 0

, ∀w2 ∈ S(w1)β, v ∈ P(w2)θ}

is a nonempty set.

Proof. Since w1 ∈ K ∩ S(w1)β, then w1 ∈ K and w1 ∈ S(w1)β. Taking w2 = w1 = w
implies that h(v, w − w, u) = 0, and f (w, w) = 0. Since ∥ȷ0(w, e)∥ ≤ Le∥w∥ if e = 0, then
ȷ0(w, 0) = 0. While S(w1)β is nonempty and w2 = w1 ∈ S(w1)β exists and satisfies (4), then
Hu is a nonempty set.

Definition 1. Let Hu be the solution set of FMQHI. If

(i) Hu is nonempty,
(ii) every LP approximating sequence {xn} for FMQHI has a subsequence which converges to

some points of Hu,

then we say that FMQHI is LP well posed in the generalized sense.

Let us define the approximate solution set of FMQHI by

H̃u(ϵ) = {x ∈ K ∩ B(S(x)β, ϵ)| h(v, y − x, u)+ȷ0(x, y − x) + f (y, x) + ϵ ≥ 0,

∀y ∈ S(x)β, ∀v ∈ P(y)θ},

for arbitrary positive real numbers ϵ ≥ 0.
We can see clearly that ∀ ϵ ≥ 0, H̃u(0) = Hu and Hu ⊂ H̃u(ϵ).
The following Lemma has been proved in [29].

Lemma 2. Consider that both Banach spaces W, O are reflexive. Let K ⊂ W be a nonempty closed
subset and

L(W, O) = {η|η : W → O, η is linear continuous operator}.

Define the control–reflexive Banach space by Z and assume the nonempty closed subset U ⊂ Z to be
the collection of admissible controls. Suppose two fuzzy mappings S : K → F (K) and P : K →
F (L(W, O)) and a locally Lipschitz function ȷ. Let both functions h : L(W, O)× K × U → R
and f : K × K → R be given. If

(i) S is topologically closed on K and w → S(w)β is l.s.c set-valued mapping with nonempty
compact values on K;

(ii) P is l.s.c;
(iii) ȷ is a locally Lipschitz function and f is u.s.c;
(iv) ∀u ∈ U, h(, , u) is u.s.c.

then, Hu is a compact set for all u ∈ U. Furthermore, H̃u is u.s.c at 0 and for all ϵ > 0, H̃u(ϵ) is
compact.
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Let S̃, P̃ both be set-valued mappings defined, respectively, as follows

(i) S̃ : K → F (K) formed by

S̃(w) = S(w)β, ∀w ∈ K, (5)

(ii) P̃ : K → F (L(W, O)) formed by

P̃(r) = P(r)θ , ∀r ∈ K. (6)

Consequently, we have the following Lemma

Lemma 3. Consider that both Banach spaces W, O are reflexive. Let K ⊂ W be a nonempty closed
subset and

L(W, O) = {η|η : W → O, η is linear continuous operator}.

Define the control reflexive Banach space by Z and assume the nonempty closed subset U ⊂ Z to be
the collection of admissible controls. Suppose two fuzzy mappings S : K → F (K) and P : K →
F (L(W, O)) and a locally Lipschitz function ȷ. Let both functions h : L(W, O)× K × U → R
and f : K × K → R be given. Suppose the following conditions

(i) S̃ : K → F (K) is a compact continuous set-valued mapping defined by (5);
(ii) P̃ : K → F (L(W, O)) is an l.s.c set-valued mapping defined by (6);
(iii) ȷ and f are, respectively, locally Lipschitz and u.s.c functions;
(iv) h(, , u) is u.s.c for each u ∈ U.

Then, the sufficient and necessary condition for FMQHI to be LP well-posed in the generalized sense
is that Hu is a nonempty set.

Proof. See [14].

Definition 2. For FMQHI-controlled systems, we say that g : K → R is a gap function if

(i) g(w) ≥ 0, ∀w ∈ S̃(w);
(ii) The two sentences g(w) = 0 and w ∈ Hu are equivalent.

Lemma 4. Suppose that S̃ and P̃ have compact values in a neighborhood of the reference point. The
function g : D(K) → R, where D(K) =

⋃
w∈K D(w) =

⋃
w∈K{w ∈ K : w ∈ S̃(w)} defined by

g(w) = max
r∈S̃(r)

max
v∈P̃(r)

{h(v, w − r, u)− ȷ0(w, r − w)− f (r, w)}. (7)

is a gap function for FMQHI-controlled systems. Moreover, the sentences g(w∗) = 0 and w∗ ∈ Hu

are equivalent.

Proof. See [14].

Lemma 5. For FMQHI, g is continuous in K if

(i) S̃ and P̃ are compact continuous set-valued maps;
(ii) f is continuous;
(iii) J is a locally Lipschitz function;
(iv) h is continuous, ∀u ∈ U.

Proof. See [14].

Lemma 6. Assume that ϕ : R+ ×R+ → R is a real-valued function satisfying

ϕ(r, s) ≥ 0, ∀r, s ≥ 0, ϕ(0, 0) = 0; (8)

sn → 0, rn ≥ 0, ϕ(rn, sn) → 0 imply rn → 0. (9)
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We can find a function ϕ satisfying (8) and (9) for which

|g(x)| ≥ ϕ(d(x, Hu), d(x, S̃(x))), ∀x ∈ K. (10)

if Hu is LP well-posed in the generalized sense.

Proof. See [14].

3.2. Fractional Calculus

Definition 3 (Conformable Integrable Function). Let [a1, a2] ⊂ [0, ∞), 0 < α ≤ 1 and
τ ∈ R with τ + α ̸= 0. Let x ∈ Lα[a1, a2] = {x(t) :

∫ a2
a1

x(ρ)dαρ < ∞} where dαρ = d(ρα).
Then, the operator Kτ,α

a1 : Lα[a1, a2] → R given by

Kτ,α
a1

=
∫ t

a1

x(ρ)ρτdαρ

represents a conformable fractional integral.

Definition 4 (Generalized Conformable (GC) Integrable Function). For an order β > 0,
the left-side GC fractional integral δH

β

a+1
with 0 < α ≤ 1, τ ∈ R and δ = τ + α ̸= 0 is defined by

δH
β

a+1
(x)(t) =

1
Γ(β)

∫ t

a1

(
tδ − ρδ

δ

)β−1

ρδ−1x(ρ)dρ,

for all conformable type integrable functions x on the interval [a1, a2] ⊂ [0, ∞).

Definition 5 (Generalized Hilfer-type (GH) fractional derivative). Let β ∈ (0, 1), θ ∈
[0, 1], τ ∈ R and 0 < α ≤ 1 such that δ = τ + α ̸= 0. For a conformable integrable function x on
the interval [a1, a2] ⊂ [0, ∞], the left-side GH fractional derivative operator of order β and type θ is
defined by

δ
GH Dβ,θ

a+1
(x)(t) =

[
δH

θ(1−β)

a+1

(
t1−δ d

dt

)
δH

(1−θ)(1−β)

a+1

]
(x)(t).

Lemma 7. Let β, θ, τ, α, δ, and x all be defined as in Definition 5. Then, we have the following
statements

(1) For all ν > 0,

δH
β

a+1

(
tδ − aδ

δ

)ν−1

=
Γ(ν)

Γ(ν + β)

(
tδ − aδ

δ

)ν+β−1

;

(2) for x ∈ C1[a1, a2],
δ
GH Dβ,θ

a+1
δH

β

a+1
(x)(t) = x(t)

(3) for x ∈ C1[a1, a2],

δH
β

a+1

δ
GH Dβ,θ

a+1
(x)(t) = x(t)−

(
tδ − aδ

δ

)γ−1

δH
(1−θ)(1−β)
a x(a),

where γ = β + θ(1 − β)

Proof. In [1]: Lemma 2 and Theorems 5 and 7, take ψ(t) = t(α+τ)

α+τ , n = 1. Then, we obtain
the statements above.

For more details, see [1–3,27,30].
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3.3. Banach and Phase Banach Spaces

Here, we give some properties of Banach and phase spaces that help explore the
solvability of the inclusion problem (1)–(3) with infinite delay.

3.3.1. Processes on Banach Spaces

According to both articles [31,32], the space

Lp[a, b] =
{

ω(t)|
∫ b

a
|ω(s)|pds < ∞

}
, 1 ≤ p < ∞

is a Banach space introduced with the norm

∥ω∥p =

(∫ b

a
|ω(s)|pds

) 1
p

.

and C[a, b] = {ω(t)| ω(t) : [a, b] → R, |ω(t)| ≤ M, f or some M} is endowed with the norm

∥ω∥C = sup
a<s<b

|ω(s)| < ∞.

Accordingly, we have the next theorem

Theorem 1 ([31]). Consider 1 ≤ p, q < ∞ such that 1
p + 1

q = 1, then

(i) Holder Inequality. If ω ∈ Lp and ω∗ ∈ Lq. Then, ωω∗ ∈ L1 and

∥ωω∗∥L1 ≤ ∥ω∥Lp∥ω∗∥Lq .

(ii) Minkowski Inequality. If ω, ω∗ ∈ Lp. Then, ω + ω∗ ∈ Lp and

∥ω + ω∗∥Lp ≤ ∥ω∥Lp + ∥ω∗∥Lp .

(iii) Embedding Theorem. If Ω has a finite positive measure and q ≤ p. Then, LP(Ω) ⊆
Lq(Ω) and

∥ω∥Lq ≤ [µ(Ω)]
1
r ∥ω∥Lp , r > 0 f or which

1
q
− 1

p
=

1
r

.

(iv) limp→∞∥ω∥Lp = ∥ω∥L∞ = ∥ω∥∞ = supt∈Ω|ω(t)| = ∥ω∥C(Ω).

Definition 6. Let W, W0, and W1 be given Banach spaces. Then,

(a) Compatible couple of Banach Spaces consists of two Banach spaces W0 and W1 contin-
uously embedded in the same Housdroff topological vector space V. The spaces W0 ∩ W1 and
W0 + W1 are both Banach spaces equipped, respectively, with norms

• ∥x∥W0∩W1 = max
(
∥x∥W0 , ∥x∥W1

)
• ∥x∥W0+W1 = inf{∥x0∥W0 + ∥x1∥W1 , x = x0 + x1, x0 ∈ W0, and x1 ∈ W1}

(b) Interpolation is the family of all intermediate spaces W between W0 and W1 in the sense that

W0 ∩ W1 ⊂ W ⊂ W0 + W1,

where the two included maps are continuous.

Remark 1. We can understand that:

• The couple
(

L∞, L1)(R) is a compatible couple since L∞ and L1 are both embedded in the
space of measurable functions on the real line, equipped with topology convergence in measure;
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• For all 1 < p < ∞, the spaces Lp(R) are intermediate spaces between L∞(R) and L1(R).
Hence,

L1,∞(R) = L∞(R) ∩ L1(R) ⊂ Lp(R) ⊂ L∞(R) + L1(R).

3.3.2. Phase Banach Space

From [33], denote by B the space of all continuous function mapping [−σ, 0] to R. For
−∞ < a < T, let x : [a − σ, T] → R be defined in (a − σ, T) and continuous on [a, T]. For
all r ∈ [−σ, 0], t ∈ [a, T], define xt : C[−σ, 0] → R by xt(r) = x(t + r), ∀. Note that xt
translates x from [t − σ, t] back to [−σ, 0] and xa = x|[a−σ,a].

Definition 7. The set B is said to be admissible whenever there exist two constants A1, A2 ≥ 0
and a continuous function N : [0, ∞) → [0, ∞) such that if x : [a − σ, T] → R is defined in
(a − σ, T) and continuous on [a, T) with xa ∈ B, then for all t ∈ [a, T] the following statements
all hold:

(a1) xt ∈ B;

(a2) xt is continuous in t with respect to ∥.∥B ;

(a3) ∥xt∥B ≤ A1 maxs∈[a,t] |x(s)|+ N(t − a)∥xa∥B , and N(t) → 0 as t → ∞;

(a4) |v(0)| ≤ A2∥v∥B for all v ∈ B.

Remark 2. In (a2) let A3 > 0 be given. We can see for all r ∈ [−σ, 0], A3 > 0, and t ∈ [a − σ, T]
that s = t − r ∈ [a, T], which implies the following:

x(t) = x((t − r) + r) = xt−r(r),

|x(t)| = |xt−r(r)| ≤ A3∥xs∥B , s = t − r ∈ [a, T]

∥x(s)∥[a,T] ≤ ∥x(t)∥[a−σ,T] ≤ A3∥xs∥B

3.4. Multi-Valued Mappings

Here, we introduce some facts about multi-valued mappings and their properties.
These facts are confirmed in [34–38].

Consider that we have two Banach spaces (W, ∥.∥) and (O, ∥.∥). We say that ϕ : W →
Pcl(W) is convex (closed) multi-valued mapping if ϕ(w) is convex (closed) for all w ∈ W.
If ϕ(B) is relatively compact for every B ∈ Pb(W), then ϕ is completely continuous.

ϕ is said to be upper semi-continuous if E ⊂ W; ϕ−1(E) is a closed subset of W for
each closed subset (i.e., the set {w ∈ W : ϕ(w) ⊆ H} is open whenever H ⊂ W is open). In
contrast, it is lower semi-continuous if ∀Z ⊂ W; ϕ−1(Z) is an open subset of W. By another
meaning, ϕ is lower semi-continuous whenever the set {w ∈ W : ϕ(w) ∩ H ̸= ∅} is open
for all open sets H ⊂ W.

We say that a multi-valued map ϕ : [0, τ] → Pcl(W) is measurable if for every w ∈ W,
the function s → d(w, A(s)) = inf{d(w, a) : a ∈ ϕ(s)} is an L−measurable function.

Given U, V ∈ Pcl(W), the Pompeiu–Housdorff distance of U, V is defined by

h(U, V) = Hd(U, V) = dH(U, V) = max

{
sup
u∈U

d(u, V), sup
v∈V

d(U, v)

}
.

Moreover, the diameter distance of V is given by

δ̂(V) = sup
v1,v2∈V

d(v1, v2).

Note that there exists M > 0 such that δ̂(V) ≤ M if V is bounded.
Suppose we adopt ϕ as a nonempty compact valued completely continuous function.

In that case, [ ϕ is upper semi-continuous] is equivalent to [ ϕ has a closed graph (i.e., if
νn → ν∗ and yn → y∗, then yn ∈ ϕ(νn) implies y∗ ∈ ϕ(ν∗))].
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Definition 8. Consider a multi-valued map Θ : [a, b]× Rn → P(R). Then, Θ is said to be a
Caratheodory if

(1) τ → Θ(τ, {vi}) is measurable, ∀vi ∈ R, n ∈ N.
(2) ({vi}) → Θ(τ, {vi}) a.e τ ∈ [a, b] is upper semi-continuous.

Adding to the assumptions (1) and (2), the map Θ is L1- Caratheodory if for each k > 0, there exists
ϕk ∈ L∞[a, b] satisfying supτ≥0|ϕk(τ)| < +∞ and ϕk > 0 and a nondecreasing map Ł ∈ L1[a, b]
for which

∥Θ(τ, {vi})∥ = sup{|θ| : θ(τ) ∈ Θ(τ, {vi})} ≤ ϕk(τ)Ł({|vi∥}),

for all ∥vi∥ < k, i = 1, . . . , n, n ∈ N, τ ∈ [a, b].

Lemma 8 ([39] (pp. 781–786)). Let Ω be a Banach space,

Θ : [0, L]× Ω → Pcp,cv(Ω)

be a L1−Caratheodory multi-valued map and P be a continuous and linear map from L1([0, L]Ω)
to C([0, L], Ω). Then, the operator:

P ◦ SΘ : C([0, L], Ω) → Pcp,cv(C([0, L], Ω)),

such that:
y 7→ (P ◦ SΘ)(y) = P(SΘ,y)

is an operator with closed graph in C([0, L], Ω)× C([0, L], Ω).
Here,

SΘ,y =
{

θ ∈ L1([0, L],R) : θ(τ) ∈ Θ(τ, y(τ))
}

.

Theorem 2 (Leray–Schauder Nonlinear Alternative Type [40] (p. 169), [41] (p. 188)).
Assuming that Σ is Banach space, E is a convex closed subset of Σ, and Ω is an open subset of E
with 0 ∈ Ω. If Ψ : Ω → Pcp,cv(E) is an upper semi-continuous multi-compact map, then either

(i) there exists ω ∈ ∂Ω, ρ ∈ (0, 1) such that ω ∈ ρΨ(ω), or
(ii) there exists a fixed point ω ∈ Ω.

3.5. Auxiliary Statements

Lemma 9. Take the function η(t) ∈ Π(t, x(t), xt,Hu) for which we have

δ
GH Dβ,θ

a+ x(t) = Ax(t) + η(t), t ∈ [a, T], a > 0 α, β ∈ [0, 1], (11)

δH
(1−θ)(1−β)
a x(a) =

cΓ(γ)
Γ(ω + γ)

(
tδ − aδ

δ

)ω

, (12)

ω ∈ (0, 1), ω + β = 1.

Then, the unique conformable solution is given by

x(t) = Γ(ξ)x0(t)Eβ,ξ

(
A
(

tδ − aδ

δ

)β
)

+
∫ t

0

(
tδ − ρδ

δ

)β−1

Eβ,β

(
A
(

tδ − ρδ

δ

)β
)

η(ρ)dρδ, (13)

where

Eα,β(z) =
∞

∑
j=0

zj

Γ(αj + β)

and
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x0(t) =
c

Γ(ξ)

(
tδ − aδ

δ

)ξ−1

, ξ = γ + ω.

Proof. By applying δH
β
a to both sides of (11) and applying condition (12), one has

x(t) =
c

Γ(ξ)

(
tδ − aδ

δ

)ξ−1

+ δH
β
a [Ax(t) + η(t)]

Take

x0(t) =
c

Γ(ξ)

(
tδ − aδ

δ

)ξ−1

.

So, we obtain

x(t) = x0(t) + δH
β
a [Ax](t) + δH

β
a η(t).

The proof is similar to the proof of the solution in [30]: Theorem 4.
Now, to obtain the conformable solution, define the operator ℑ by

ℑ(x)(t) = x0(t) + δH
β
a [Ax](t) + δH

β
a η(t).

Accordingly, define the sequence (xk)k≥1 by

xk(t) = ℑxk−1(t).

Hence, we obtain the general formula

xk(t) =c
k+1

∑
j=1

Aj−1

Γ(βj + ω + θ(1 − β))

(
tδ − aδ

δ

)βj+ω+θ(1−β)−1

+
∫ t

a

k

∑
j=1

Aj−1

Γ(βj)

(
tδ − ρδ

δ

)βj−1

η(ρ)dρδ.

Take the limit as k → ∞ and apply the changing j → j + 1; we have

x(t) =c
∞

∑
j=0

Aj

Γ(βj + ξ)

(
tδ − aδ

δ

)βj+ξ−1

+
∫ t

a

∞

∑
j=0

Aj

Γ(βj + β)

(
tδ − ρδ

δ

)βj+β−1

η(ρ)dρδ

= Γ(ξ)x0(t)Eβ,ξ

(
A
(

tδ − aδ

δ

)β
)

+
∫ t

0

(
tδ − ρδ

δ

)β−1

Eβ,β

(
A
(

tδ − ρδ

δ

)β
)

η(ρ)dρδ.

Now, define the set-valued map Su,(1,∞)
Π,x such as

Su,(1,∞)
Π,x =

{
η(t) ∈ L1,∞[a, T]| η(t) ∈ Π(t, x, xt,Hu)

}
,
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and define the linear operator ∆η : L1,∞[a, T] → P
(

L1,∞[a, T]
)

for all η(t) ∈ Su,(1,∞)
Π,x by

∆η(t) = cQξ
β

(
tδ − aδ

)
+
∫ t

a

(
tδ − ρδ

δ

)β−1

Q̂β

(
tδ − ρδ

)
η(ρ)dρδ, ∀t ∈ [a, T], (14)

Qξ
β

(
tδ − aδ

)
=

(
tδ − aδ

δ

)ξ−1

Eβ,ξ

(
A(t)

(
tδ − aδ

δ

)β
)

, (15)

Q̂β

(
tδ − ρδ

)
= Eβ,β

(
A(t)

(
tδ − ρδ

δ

)β
)

. (16)

After that, define the operator ∆ψ
η : L1,∞[a − σ, T] → P

(
L1,∞[a − σ, T]

)
by

∆ψ
η (t) =

{
ψ(t), t ∈ [a − σ, a],

∆η(t), t ∈ [a, T]
(17)

where η(t) ∈ Su,(1,∞)
Π,x and then define the operator ℵ : K → P

(
L1,∞[a − σ, T]

)
such as

ℵ(x)(t) =
{

e(t) ∈ L1,∞[a − σ, T]|e(t) = ∆ψ
η (t), η(t) ∈ Su,(1,∞)

Π,x , ψ ∈ L1,∞[a − σ, a]
}

. (18)

Hence,

ℵJ(x)(t) =
{

eJ(t) ∈ L1,∞[a, T]|eJ(t) = ∆η(t), η(t) ∈ Su,(1,∞)
Π,x

}
. (19)

Proposition 1. Let 0 < β < 1, 0 ≤ θ, α ≤ 1, τ ∈ R be given and define γ, ν, δ, respectively,
by γ = β + θ(1 − β), ξ = ω + γ, ν = ξ − β and δ = α + τ ̸= 0. Then, the following statement
is satisfied

δHν
a+

[(
tδ − aδ

δ

)β−1

Q̂β

(
tδ − aδ

)]
= Qξ

β

(
tδ − aδ

)
Proof.

L.H.S = δHν
a+

[(
tδ − aδ

δ

)β−1

Q̂β

(
tδ − aδ

)]

= δHν
a+

[(
tδ − aδ

δ

)β−1

Eβ,β

(
A(t)

(
tδ − aδ

δ

)β
)]

=
1

Γ(ν)

∞

∑
j=0

Aj

Γ(βj + β)

∫ t

a

(
tδ − ρδ

δ

)ν−1( tδ − aδ

δ

)βj+β−1

ρδ−1dρ

=
∞

∑
j=0

Aj

Γ(βj + β)

Γ(βj + β)

Γ(βj + β + ν)

(
tδ − aδ

δ

)βj+β+ν−1

=

(
tδ − aδ

δ

)ξ−1 ∞

∑
j=0

[
A
(

tδ−aδ

δ

)β
]j

Γ(βj + ξ)

= R.H.S
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Now, since A is a generator of compact C0 semi-groups, there exists Mβ > 0 such that∥∥Eβ,β
∥∥ ≤ Mβ and consequently we have the following proposition.

Proposition 2. Let 0 < β < 1, 0 ≤ θ, α ≤ 1, τ ∈ R be given and define γ, ν, δ, respectively, by
γ = β + θ(1 − β), ξ = ω + γ, ν = ξ − β and δ = α + τ ̸= 0. Then, the following statement
is valid. ∥∥∥Qξ

β

(
tδ − aδ

)∥∥∥ ≤
MβΓ(β)

Γ(ξ)
sup

t∈[a,T]

∣∣∣∣∣
(

tδ − aδ

δ

)ξ−1∣∣∣∣∣
Proof. ∥∥∥Qξ

β

(
tδ − aδ

)∥∥∥ ≤ δHν
a+

[(
tδ − aδ

δ

)β−1∣∣∣Q̂β

(
tδ − aδ

)∣∣∣]

≤ Mβ δHν
a+

[(
tδ − aδ

δ

)β−1]

Using [Lemma 7: (1)], one has

∥∥∥Qξ
β

(
tδ − aδ

)∥∥∥ ≤
MβΓ(β)

Γ(ξ)
sup

t∈[a,T]

∣∣∣∣∣
(

tδ − aδ

δ

)ξ−1∣∣∣∣∣.

Define the statement
(PR): For some x ∈ Lp[a − σ, T], we have

max
{
∥x∥1,∞

[a,T], ∥ψ∥B
}
≤ R,

where
∥x∥1,∞

[a−σ,T] = max{∥x∥1,∞
[a−σ,a], ∥x∥1,∞

[a,T]}.

Then, define the set K by

K = {x ∈ B ∩ Lp[a − σ, T]| x satis f ies (PR)}.

It is clear that K is closed in L1,∞[a − σ, T] ⪯ Lp[a − σ, T] and in the phase Banach space B.
Consider the following hypotheses.

(J1) The mappings S̃, P̃, ȷ and f satisfy all conditions given in Lemmas 2 and 3;

(J2) Π : [a, T]× K × B ×Hu → Pcp,cv(R) is Lp− Caratheodory multi-valued mapping
satisfying the below condition;
For each R > 0 there exist ϕR, ϕ̂R ∈ L∞([a, T], R+) and non-decreasing functions
Ł1, Ł2, and Ł3 ∈ L1([a, T], R) such that

∥Π∥1,∞ ≤ ϕR(t)
[
Ł1

(
∥x∥1,∞

)
+ Ł2(∥xt∥B)

]
+ ϕ̂R(t)Ł3

(
δ̂(Hu)

)
,

for all ∥x∥ ≤ R and Hu is compact;

(J3) The mappings S̃, P̃, ȷ and f satisfy all conditions given in Lemmas 2, 4 and 5;

(J4) Π : [a, T]× K × B ×Hu → Pcp,cv(R) is Lp− Caratheodory multi-valued mapping
satisfying the below condition.
For each R > 0, there exist ϕR, ϕ̂R ∈ L∞([a, T], R+) and non-decreasing functions
L1, L2, and L3 ∈ L1([a, T], R) such that
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∥Π∥1,∞ ≤ ϕR(t)
[

L1

(
∥x∥1,∞

)
+ L2(∥xt∥B)

]
+ ϕ̂R(t)L3(ϕ(κ1, κ2)),

for all ∥x∥ ≤ R and Hu is compact, where ϕ is defined by (8)–(10) in Lemma 6 with
κ1 = d(x,Hu) and κ2 = d(x, S̃(x)).

Then, for all t ∈ [a, T], a > 0 we have the following propositions

Proposition 3. Let x ∈ K be given. The operator ℵJ(x)(t) is convex if (J2) holds.

Proof. Let e1
J , e2

J ∈ ℵJ(x)(t); then, there exist η1, η2 ∈ Su,(1,∞)
Π,x subject to

ei
J = ∆ηi, i = 1, 2,

where ∆η is defined by (14)–(16). Let λ ∈ [0, 1] be given. Then, by the linearty of ∆η ,
we obtain

λe1
J + (1 − λ)e2

J =λ∆η1 + (1 − λ)∆η2

= ∆(λη1 + (1 − λ)η2).

By (J2), λη1 + (1 − λ)η2 ∈ Su,(1,∞)
Π,x and then λe1

J + (1 − λ)e2
J ∈ ℵJ(x)(t) which completes

the result.

Proposition 4. Let x ∈ K with xa = ψ be given. The operator ℵJ(x)(t) is completely continuous
if (J1) and (J2) are fulfilled and so are (a1)–(a4).

Proof. To show that ℵJ(x)(t) is equicontinuous, we should prove that ℵJ(x)(t) is bounded
and relatively compact on bounded subsets.

Step 1: Let x ∈ K and eJ ∈ ℵJ(x); then,

|eJ(t)| =|∆η(t)|

≤ |c|
∣∣∣Qξ

β

(
tδ − aδ

)∣∣∣+ ∣∣∣∣∣
∫ t

a

(
tδ − ρδ

δ

)β−1

Q̂β

(
tδ − ρδ

)
η(ρ)dρδ

∣∣∣∣∣.
By using Propositions 1 and 2 and Lemma 7:(1) we have

|eJ(t)| ≤ |c|
MβΓ(β)

Γ(ξ)
sup

t∈[a,T]

∣∣∣∣∣
(

tδ − aδ

δ

)ξ−1∣∣∣∣∣
+
∫ t

a

(
tδ − ρδ

δ

)β−1∣∣∣Q̂β

(
tδ − ρδ

)
η(ρ)

∣∣∣dρδ

≤ |c|
MβΓ(β)

Γ(ξ)
sup

t∈[a,T]

∣∣∣∣∣
(

tδ − aδ

δ

)ξ−1∣∣∣∣∣
+
∫ t

a

(
tδ − ρδ

δ

)β−1

|η(ρ)|dρδ

≤ |c|
MβΓ(β)

Γ(ξ)
sup

t∈[a,T]

∣∣∣∣∣
(

tδ − aδ

δ

)ξ−1∣∣∣∣∣
+

MβΓ(β)

Γ(β + 1)

(
Tδ − aδ

δ

)β

G0
(

R, δ̂(Hu)
)

≤ MβΓ(β)G
(
δ, ξ, β, R, δ̂(Hu)

)
,
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where

G0
(

R, δ̂(Hu)
)
= ∥ϕR∥[Ł1(R) + Ł2((A1 + N∗)R)] + ∥ϕ̂R∥Ł3

(
δ̂(Hu)

)
;

G
(
δ, ξ, β, R, δ̂(Hu)

)
=

|c|
Γ(ξ)

sup
t∈[a,T]

∣∣∣∣∣
(

tδ − aδ

δ

)ξ−1∣∣∣∣∣+ 1
Γ(β + 1)

(
Tδ − aδ

δ

)β

G0
(

R, δ̂(Hu)
)

and N∗ = supt∈[a,T] |N(t − a)|.
Step 2: Suppose that t1, t2 ∈ [a, T] such that t1 < t2 with t1 → t2 and take eJ ∈

ℵj(x), x ∈ K

|eJ(t2)− eJ(t1)| = |∆η(t2)− ∆η(t1)|

≤ |c|
∣∣∣Qξ

β

(
tδ
2 − aδ

)
− Qξ

β

(
tδ
1 − aδ

)∣∣∣ ≡ (I1)

+

∣∣∣∣∣∣
∫ t1

a

(
tδ
2 − ρδ

δ

)β−1

Q̂β

(
tδ
2 − ρδ

)
η(ρ)dρδ − I

∣∣∣∣∣∣ ≡ (I2)

+

∣∣∣∣∣∣I −
∫ t1

a

(
tδ
1 − ρδ

δ

)β−1

Q̂β

(
tδ
1 − ρδ

)
η(ρ)dρδ

∣∣∣∣∣∣ ≡ (I3)

+

∣∣∣∣∣∣
∫ t2

t1

(
tδ
2 − ρδ

δ

)β−1

Q̂β

(
tδ
2 − ρδ

)
η(ρ)dρδ

∣∣∣∣∣∣ ≡ (I4),

where

I =
∫ t1

a

(
tδ
1 − ρδ

δ

)β−1

Q̂β

(
tδ
2 − ρδ

)
η(ρ)dρδ.

It is easy to understand that I1 → 0 as t1 → t2 since Qξ
β is strongly continuous in [a, T].

For I2, we have

I2 =

∣∣∣∣∣∣
∫ t1

a

( tδ
2 − ρδ

δ

)β−1

−
(

tδ
1 − ρδ

δ

)β−1
Q̂β

(
tδ
2 − ρδ

)
η(ρ)dρδ

∣∣∣∣∣∣
≤

Mβ

β
G0
(

R, δ̂(Hu)
)( tδ

2 − tδ
1

δ

)β

−
(

tδ
2 − aδ

δ

)β

+

(
tδ
1 − aδ

δ

)β
.

Hence, I2 → 0 as t1 → t2
Since Q̂β is also strongly continuous in [a, T] and

I3 ≤
∫ t1

a

(
tδ
1 − ρδ

δ

)β−1∣∣∣Q̂β

(
tδ
2 − ρδ

)
− Q̂β

(
tδ
1 − ρδ

)∣∣∣∥η(ρ)∥dρδ,

then we can see that I3 → 0 as t1 → t2.
Finally,

I4 ≤
Mβ

β
G0
(

R, δ̂(Hu)
)( tδ

2 − aδ

δ

)β

−
(

tδ
1 − aδ

δ

)β
,

which shows that I4 → 0 as t1 → t2.
Because of that, I1, I2, I3 and I4 → 0 as t1 → t2, then we obtain the result |eJ(t2)−

eJ(t1)| → 0 as t1 → t2.
According to Steps 1 and 2, we conclude that ℵJ(x)(t) is completely continuous.
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Proposition 5. Let x ∈ K with xa = ψ be given. The operator ℵJ(x)(t) is upper semi-continuous
if (J1), (J2) and (a1)–(a4) are satisfied.

Proof. Since ℵJ(x)(t) is completely continuous, it is enough to claim that it has a closed
graph to obtain the upper semi-continuity of ℵJ(x)(t). Let xn ∈ K, xn → x∗, en

J ∈ ℵJ(xn)

and en
J → e∗J . If en

J ∈ ℵJ(xn), there exists ηn ∈ Su,(1,∞)
Π,xn

such that en
J = ∆ηn . Using the linearity

of ∆ and Lemma 8 shows that ∆ has a closed graph. Thus, en
J = ∆ηn → ∆η∗ , η∗ ∈ Su,(1,∞)

Π,x∗ .
Take e∗J = ∆η∗ , then we obtain e∗J ∈ ℵJ(x∗) which tends to the upper semi-continuity of
ℵJ(x)(t).

4. Main Results

Theorem 3. Consider that hypothesis (J1), (J2) and (a1)–(a4) are valid. Then, problem (1)–(3)
has at least one solution in K if the following condition holds

R
ψ∗ + MβΓ(β)G

(
δ, ξ, β, R, δ̂(Hu)

) ≥ 1,

where xa = ψ

Proof. To obtain the suggested result, we follow all arguments given in Lemma 8 and
Theorem 2 for the operator ℵ(K) over the closed convex subset K.

Step 1: Let x ∈ K, λ ∈ [0, 1], e1, e2 ∈ ℵ(x)(t) and t ∈ [a − σ, T]. We want to claim that
λe1 + (1 − λ)e2 ∈ ℵ(x). So, since e1, e2 ∈ ℵ(x)(t) implies the existence of two elements,

ηi ∈ Su,(1,∞)
Π,x such that

ei = ∆ψ
ηi (t), i = 1, 2,

where ∆ψ
ηi (t) is defined by (14)–(17). Due to the linearty of ∆, we can see the linearty of ∆

and by using Proposition 3 and the convexity of Su,(1,∞)
Π,x , we have

λe1 + (1 − λ)e2 = λ∆ψ
η1(t) + (1 − λ)∆ψ

η2(t)

= ∆(λ+(1−λ))ψ
λη1+(1−λ)η2

(t)

= ∆ψ

λη1+(1−λ)η2
(t) ∈ ℵ(x)(t),

We can understand the proof since ∆ is convex due to Proposition 3.
Step 2: To show that that is completely continuous in K, we need to prove that

ℵ : K → K and is equicontinuous.

(l1) Let x ∈ K, e(t) ∈ ℵ(x)(t). By using Proposition 4 Step 1, one has

|e(t)| =
∣∣∣∆ψ

η (t)
∣∣∣

≤ ∥ψ∥B + |∆η(t)|[a,T]

≤ ψ∗ + MβΓ(β)G
(
δ, ξ, β, R, δ̂(Hu)

)
≤ R.

(l2) Let t1, t2 ∈ [a − σ, T], t1 < t2 with t1 → t2

Case 1: If t1, t2 ∈ [a − σ, a], then by continuity of ψ in [a − σ, a] we obtain

|e(t2)− e(t1)| = |ψ(t2)− ψ(t1)| → 0, as t1 → t2.

Case 2: If t1, t2 ∈ [a, T], then by using Proposition 4 Step 2, one has

|e(t2)− e(t1)| ≤ |ℵJ(x)(t2)− ℵJ(x)(t1)| → 0 as t1 → t2.
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Case 3: If t1 ∈ [a − σ, a], t2 ∈ [a, T] and t1 → t2 , then there exists 0 < ϵ → 0 such
that t1, t2 ∈ (a − ϵ, a + ϵ) which implies that t1, t2 → a. According to Case 1
and Case 2, we have

|e(t2)− e(t1)| ≤ |e(t2)− e(a)|(a,a+ϵ) + |e(a)− e(t1)|(a−ϵ,a) → 0

as t1, t2 → a.

By (l1) and (l2), we conclude that ℵ is completely continuous in K.

Step 3: We still need to explore that ℵ has a closed graph to see the upper semi-
continuity of ℵ. In the vision of Proposition 5 and the continuity of ψ, we understand the
upper semi-continuity of ℵ.

Step 4: For the set K, we choose

R = ψ∗ + MβΓ(β)G
(
δ, ξ, β, R, δ̂(Hu)

)
+ 1.

By Theorem 2 and Step 1–Step 4, we conclude the solvability of problem (1)–(3).

Theorem 4. Consider that hypotheses (J2)–(J4) and (a1)–(a4) are satisfied. Then,
problem (1)–(3) has at least one solution in K if the following condition is valid.

R
ψ∗ + MβΓ(β)G(δ, ξ, β, R, g∗)

≥ 1,

where g∗ = ∥g∥,

G0(R, g∗) = ∥ϕR∥[L1(R) + L2((A1 + N∗)R)] + ∥ϕ̂R∥L3(g∗);

G(δ, ξ, β, R, g∗) =
|c|

Γ(ξ)
sup

t∈[a,T]

∣∣∣∣∣
(

tδ − aδ

δ

)ξ−1∣∣∣∣∣+ 1
Γ(β + 1)

(
Tδ − aδ

δ

)β

G0(R, g∗)

and xa = ψ.

Proof. Similarly to the proof of Theorem 3, we take

R = ψ∗ + MβΓ(β)G(δ, ξ, β, R, g∗) + 1.

5. Applications

Example 1. Consider that J1 holds and

Π(t, x, xt,Hu) =

[∫ 0

−σ
Bi(t, r)xt(r)dr

]∞

i=1
+ χHu(x);

∞

∑
i=1

|Bi(t, r)|xt(r)dr ≤ 1 (20)

and

χHu(x) =

{
1, x ∈ Hu;

0, x /∈ Hu (21)
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Hence, if B = C[−σ, r], one has

|Π| ≤ ∥xt∥B
∫ 0

−σ
|Bi(t, r)dr|+ 1

≤ A1∥x∥1,∞ + N(t − a)∥xa∥B + 1

≤ ∥x∥1,∞ + N∗∥ψ∥B + 1

≤ (A1 + N∗)R + 1

.

Take ϕR = ϕ̂R = 1, Ł1 = 0, Ł2 = I(identity map) and Ł3 = 1. So, we obtain Γ0(R,Hu) =
(A1 + N∗)R + 1.

Furthermore, assume that β = 1 → ω = 0 tends to ξ = γ = 1, which implies

Eβ,ξ(z) = Eβ,β(z) = E1,1(z) = exp(z).

If we take z = A(t)
(

tδ−ρδ

δ

)
= −λ

(
tδ−ρδ

δ

)
, λ ∈ R+, then we obtain

exp(z) ≤ 1 = M1, ∀ρ ∈ [a, t].

Moreover,

G
(
δ, ξ, β, R, δ̂(Hu)

)
= G

(
δ, 1, 1, R, δ̂(Hu)

)
= |c|+

(
Tδ − ρδ

δ

)
G0
(

R, δ̂(Hu)
).

Take R = ψ∗ + G
(
δ, 1, 1, R, δ̂(Hu)

)
+ 1; then, by Theorem 3 the problem (1)–(3) associated

with (20) and (21) has at least one solution.

Example 2. Consider that J3 holds and

Π(t, x, xt,Hu) =

[∫ 0

−σ
Bi(t, r)xt(r)dr

]∞

i=1
+ WHu(x);

∞

∑
i=1

|Bi(t, r)|xt(r)dr ≤ 1 (22)

and

WHu(x) =

{
inf |g(x)|, x ∈ Hu;

0, x /∈ Hu (23)

and similarly β, z in Example 1. Then, if B = C[−σ, r], one has

|Π| ≤ ∥xt∥B
∫ 0

−σ
|Bi(t, r)dr|+ g∗

≤ A1∥x∥1,∞ + N(t − a)∥xa∥B + g∗

≤ ∥x∥1,∞ + N∗∥ψ∥B + g∗

≤ (A1 + N∗)R + g∗

.

Take ϕR = ϕ̂R = 1, L1 = 0, L2 = L3 = I(identity map); we obtain

Γ0(R, g∗) = (A1 + N∗)R + g∗.
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Moreover,
G(δ, ξ, β, R, g∗) = G

(
δ, 1, 1, R, δ̂(Hu)

)
= |c|+

(
Tδ − ρδ

δ

)
G0(R, g∗)

.

Take R = ψ∗ + G(δ, 1, 1, R, g∗) + 1; then, by Theorem 4 the problem (1)–(3) associated
with (22) and (23) has at least one solution.

6. Conclusions

This article is devoted to the mild solution of Hilfer fractional inclusion with infi-
nite delay. The solution set intersects with the solution set of FMQHI. We present two
theorems according to Lemmas 1–6. We proved these theorems due to the compactness
in interpolation of Banach spaces. We first look at the properties of the solution set in
Propositions 1–5. After that, we apply the Leray–Schauder Nonlinear Alternative Theorem
with phase Banach space rules to the suggested solution set. Finally, we presented some
examples related to the proven theorems. We hope to study the stability of this model in
subsequent work using the Ulam–Mittage–Lefller test.
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