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Abstract: This paper investigates a general class of variable-kernel discrete delay differential
equations (DDDEs) with integral boundary conditions and impulsive effects, analyzed
using Caputo piecewise derivatives. We establish results for the existence and uniqueness
of solutions, as well as their stability. The existence of at least one solution is proven using
Schaefer’s fixed-point theorem, while uniqueness is established via Banach'’s fixed-point
theorem. Stability is examined through the lens of Ulam-Hyers (U-H) stability. Finally, we
illustrate the application of our theoretical findings with a numerical example.

Keywords: impulsive and integral boundary conditions; fractional piecewise derivatives;
nonlinear methods; variable kernel; discrete delay differential equations; existence and
stability results

1. Introduction

Non-integer-order calculus and its applications have gained significant attention in
engineering and physical sciences due to its ability to describe both global and nonlocal
behaviors. This facilitates the understanding and controlling of the behavior of natural
and physical phenomena (see [1,2]). For a considerable period, many scientific disciplines
have incorporated the fundamentals of fractional calculus into their curricula. Aeronautics,
astronautics, bioengineering, chemical engineering, mechanical engineering, and marine
engineering are among the fields in which it is applied (see [3]). A significant amount of
research focuses on its applications (see [4]). Additionally, the tools of fractional calculus
have been employed to study various problems in nonlocal elasticity [5], mechanics [6],
solid mechanics [7], and diffusion processes [8]. Given the above importance and applica-
tions, researchers have extensively studied the theoretical and numerical aspects of various
fractional-order problems (see, for instance, [9,10]).

Over time, new concepts in fractional calculus have been introduced. For example,
Caputo and Fabrizio proposed fractional differentiation (FD), incorporating an exponential
decay kernel [11], while Atangana and Baleanu introduced definitions based on the Mittag—
Leffler kernel [12]. This field has also found applications in various disciplines.

Certain physical systems rely on dynamics with memory effects, causing them to
behave differently over time and even transition from one fractional order to another. As
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a result, the piecewise derivative was introduced [13-15]. With the piecewise derivative,
short-memory principles that enhance productivity and efficiency have been examined.
Piecewise fractional derivatives generalize classical fractional derivatives, allowing the
order of differentiation to vary over different intervals. This provides greater flexibility
in modeling complex systems with multiple scales. In summary, this type of operator
plays a crucial role in equations and mathematical modeling, particularly in describing
complex phenomena that exhibit non-integer, nonlocal, or anomalous behavior. Due to
their significance, piecewise derivatives with non-integer orders have been widely studied
in recent years (see [16,17]). Fractional DEs corresponding to impulsive situations also
have significant and intriguing applications in many scientific domains. Impulsive DEs,
for instance, are used to model physical phenomena that exhibit discontinuous jumps and
abrupt changes (see [18,19]).

In the literature, researchers have investigated numerous mathematical models with
singular, non-singular, and constant kernels. Fractional derivatives and integrals with
variable kernels are particularly interesting due to their adaptability in modifying the
kernel (see [20]).

Moreover, implicit DEs are essential for modeling many physical phenomena. The
literature contains numerous studies on implicit DEs. Similarly, DEs subject to integral
boundary conditions describe various physical processes, including nonlinear gas propa-
gation and biological problems. The author of [21] introduced new results for a Caputo
non-integer-order derivative of a function concerning another function. Researchers [22]
have examined fixed-time sliding mode control for robotic manipulators using non-integer-
order derivatives. More recently, the authors of [23] studied a coupled system of DEs
involving a power-law kernel and piecewise order, deriving theoretical conditions for
their solutions.

In general, delay DEs exhibit more complex dynamics. Time delays can cause pop-
ulation fluctuations and contribute to unstable equilibrium states. Numerous scientists
have incorporated various types of time delays into biological models to simulate feeding
cycles, resource regeneration durations, maturation periods, and reaction times. We refer
to important articles [24-27] discussing biological models of general delay DEs.

On the other hand, integral boundary value problems hold significant importance.
Such problems arise in electromagnetic applications, fluid mechanics, and hydrodynamical
phenomena. For further applications in seismology, microscopy, radio astronomy, electron
emission, X-ray radiography, atomic scattering, and radar ranging, we refer to [28].

Certainly, the dynamics of evolutionary processes are sometimes subjected to sud-
den changes, such as shocks, harvesting, natural disasters, and earthquakes. The con-
cept of impulsive differential equations (DEs) plays a significant role in modeling such
processes. When the derivatives involved in impulsive problems are expressed using
fractional calculus concepts, the operators exhibit global behavior compared to integer-
order derivatives. However, traditional integer-order and conventional fractional-order
derivatives have proven insufficient in accurately capturing the multi-faceted behaviors of
dynamical systems.

To achieve more realistic representations, researchers have recently employed frac-
tional piecewise derivatives. Moreover, incorporating a variable piecewise order extends
the concept of fixed piecewise fractional-order derivatives. This approach provides a more
precise description of crossover behaviors in evolutionary processes. In [29], researchers ex-
plored existence results and numerical methods, along with asymptotic stability conditions,
for piecewise fractional-order problems. Additionally, the authors of [30] applied fractional
variable-order chaotic systems for fast image encryption, while the authors of [31] utilized
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the piecewise concept to study short-memory non-integer-order DEs in the design of novel
memristors and neural networks.

Inspired by the cited work, in this research, we consider a general integral boundary
value problem of variable-kernel discrete delay differential equations (DDDEs) subjected
to impulsive effects:

C D”‘t](t)e(t)), teV=1[0t),
o(t—A),C D"‘“)e(t)), te (b, T4},

where the functions g1 : VXRXR =R, ¢ :VXRxRxR =R, and h:V — R are
given to be continuous. In the following, functions g; and g will be denoted by g.
Also, A < t; stands for the discrete delay that represents the time lapses after which
the past values of 6 affect the current behavior of the system. W : R—-R, j=12,...,m,
where £ holds inequalities 0 = tg) < t; < tp < -+ < ty <ty = T, AG(t]-) =
o) —o(t7) = o(t7) —o(t) = wi(e(t7)), () = timeo-0(t +x), and
0 (t;) —lim,_o0(t; + ).

It is important to note that our proposed framework and results hold for both delay
and non-delay systems. Specifically, in the absence of time delay, the system remains well
defined, and the derived stability conditions still apply, reducing to the special case where
A = 0. This generalization highlights the flexibility of our approach in modeling various
dynamical behaviors.

Our work uses a novel approach to modeling complex systems incorporating the
impulsive effects using piecewise fractional derivatives. The model can handle sudden
changes and memory effects, leading to more accurate predictions. Unlike the traditional
methods, our approach handles the non-integer order and nonlocal behavior of complex
systems, providing a more accurate and comprehensive understanding of their dynamics.
The main motivation for carrying out this research is to develop more accurate models. Be-
cause many real-world systems exhibit complex, nonlinear dynamics cannot be accurately
captured with the traditional integer-order or fractional-order models.

We define
g, 0<t<ty,

a, L <t<th

a(t) = : 2)
am, tm <t<T,
where a; € (0,1] is a finite sequence of real numbers, with j = 0,1,..., m. For non-negative
increasing functions yo, y1, . . ., ¥m, we define

CDE(])'yoe(t), 0<t<t,

CDUMO(1), t<t<t

ooy =4 3)

CD'E;’]”’y"ZB(t), tn <t <T,
where € D[]0 (t) represents the variable CFD of order aj of 6(t) with respect to y;. In (3),
we observe that the order of the derivative changes and is defined for m subintervals;
therefore, our problem can be treated as a problem of piecewise derivatives.
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The remainder of this manuscript is structured as follows: In Section 2, preliminary
results are presented. In Section 3, an auxiliary result providing a solution representation is
given. In Section 4, the main results concerning the existence of solutions are discussed.
In Section 5, stability results are derived. In Section 6, the obtained results are applied
to a general problem to validate their effectiveness. Finally, in Section 7, the conclusion
is presented.

2. Basic Results

In this section, some results and basic definitions are given. We define

E={0:V—R:0€C(VR) and 0t ), 0(t;) exist so that A0(t) = 0(t7 ) —0(t;),

(4)
for g =1,2,...,m}.

As mentioned above, [0,T] =: V, while Vj is the set of impulsive points. The space
(E,|| 6 |g) is a Banach space with the norm || 0 || = max;ey|0(t)]. We set V' :=

V\{t1, ... tm ]}

Definition 1 ([1,2]). The usual fractional-order integral of function 6 € C[0, T| in Riemann—
Liouville sense is defined by

© o(t) = r(la) /Ot(t — ) 0 du, 5)

Definition 2 ([21]). The fractional-order integral of a function 6 € C|0, T| with respect to the
function y € C[0, T| in Riemann—Liouville sense is defined by

B9 = £y ¥ 00 () — ()" e,

Definition 2 can be generalized to variable order by replacing the constant order «
with a function « : [0, T] € RT — (0,1), [32].

Definition 3 ([1,2]). The usual fractional-order derivative of function 6 € C[0, T| in Caputo sense
is defined by
1

CDE. 6(t) = W/o (t— )" 100" (u)du,

where n — 1 < a < n. Moreover, for « € (0, 1], we have

CDE, 6(t) = ml_a) /Ot(t —u) O (u)du.

Definition 4 ([21]). The fractional-order derivative of 8 € C[0, T| with respect toy € C[0, T| in
Caputo sense is defined by

1

CDRAO) = iy [, ¥ 0)0) vl 0w,

where n — 1 < a < n. Further, if « € (0,1], then one has

CORAO) = g [, (D) — () 0wy
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Definition 4 can be generalized to variable order by replacing the constant order «
with a function a : [0, T] C RT — (0,1), [32].

Lemma 1 ([21]). Let 6 € C|0, T]. Then, for 0 < a < 1, one has
oy [t = e(e),

and
Y [Cpgfe(t)} = 0(t) — 0(0).

In addition, CDg;y 6(t) = 0 iff the function 6 is constant.

Lemma 2 ([21]). For « € (0, 1], the problem

CDylo(t) = d(t),
0(0) = 6o,

has the following solution:

G(t) =600+ T
where @(t) € C[0, T].

Theorem 1 ([33]). Let M be a closed and non-empty subset of a Banach space, say X. If
N : M — M is a contraction, then there exists a unique fixed point of N'.

Theorem 2 ([34]). Let S be a norm linear space and W be its convex subset with 0 € W.
Assume that N : W — W is a completely continuous operator. Then, either the set X =
{0 €W :0=_N6; 0<¢ <1} isunbounded or N has a fixed point in W.

3. Solution Representation of Problem (1)

Lemma 3. Let « € (0,1] and let @ : V — R be continuous. A function 6 € E is the solution of
the fractional integral equation

(T h(0(w))due + ks fo o () (o) — yo(w))™ !
. ®(u)du, if te[0,t],

b0+ Jo Trig—h(6(u ))du+r(ao) o b () (vo(t1) — yo ()"

O (u)du + W ftl 5 () (ya (1) = ya (w)™
D(u)du+Wio(ty), if te (t,t),

oo+ [T (T;u);—lh(e(u))dwz 11/\/9( )+zj 1r(,§ >
ft y]1 (y]1<> y] ())/” D (u)du
ft ( y‘i( )) ®<”)duf

lf te(tq, q+1] 9=12,.
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if and only if it is a solution of (7):

o(t), tel0,T\{t;}, 9=12,....,m

—0(t;) =wip(t), a=12...,m,

) q
6(0) = Ji T h(B(u))du + o,

0 T

where [t] = tg ift € (tg,tg11], §=0,1,...,and tg = 0.
Proof. Assume that 6 satisfies (7). If t € [0, t1], then

D76t = (1), [1] =0,

Using Lemma 2, we obtain
6-1

o) = oo+ [ r o)+ i [0 (olt) = vo (1)~ @(u)n.

This gives

_ 1 b
o) =t + [ T —ntowan + s [ v 0(0) = yo() @)

Applying the impulse 0 (t; ) = 6() — W16(t; ), we obtain

RS H
o(uf) =t + | Lm0+ s [ v () = o)™ @)+ Wro ).

If t € (t1,t2], then

CDH Yg(t) = d(b), [t] = t.

Using Lemma 2, we obtain

0(5) = 0(H) + oy i v () (1 (1) = ya ()" D ()
= (‘)+W19(‘>+ﬁ LY ) (1 (1) — y1 ()" D (u)du
= 0o+ Jy T5h h(e(u)>du+”0) o v () (yo(tr) — yo(u)) ™~ @ (u)du
iy Sy Y3 (0 (1 (8) = ya ()17 D (u)du + W16 (8.

This gives

0(t;) = 90+ﬂ%h<<>>du+w Jo (1) (o (t1) — wo (1)) @ (1) du

+ ey S v ) (v (b2) = (u - 1<1>< )du+W19(tl‘).

Applying the impulse 6(t, ) = 6(t;) — Wh0(t, ), we obtain

0(t5) = 90+f0T T;““h( < Ddi+ ks i o) wo(t1) — yo())* D)
ffzyi (f2) = y1 ()" D(u)du + Wb (1) + Wab (1)

!X]) 1

Ift e (t2, t3], then

CDﬁyze( )y =d(b), [t] =t

Using Lemma 2, we obtain
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0() = 0(t5) + ry L Yo (1) (ya(t) = ya ()™ @ (u)du
0(t;) + sz)(t;) + tia S V(1) (v2(t) — 2 ()" @ () du

=+ fy TR h<9<u>>du+r<;0)1 o116 bol1y) ~wola) M@
+ ey S ) (k) = ya ()T () du + iy [ ya () (va(t) — y2 () @ (u)du
+ WB(t7) +Wab(ty),
which implies that
0(t5) = eo+ff (T h(0(u))du + s it yplu )(yo(tl):yo(“))ao_lq’(“)d” 1
+ tfyi( )(yl(fz)—yl(u))“lflq’( wdu + s fi Yo () (v2(ta) = y2 ()™ @ (u)du
+ W19( )+W29( )
Applying the impulse 0 (t; ) = 6(t ) — W56(t; ), we obtain
o) = oty Trz;) 0+ iy ' (00 0 (11) — o))" ()

+tay I 2y () (ya (B2) — v (u ))“1 1@( )d“+r( o vy () (ya(ts) — y2 (1)) @ (u)du
+W19( )+W29( )+W3 (t3)

Let

S
/N
~~
=}
N———
I

6o+ W16 (r) +Wh0(87) + Wib(t5) + -+ Wy (1)

S TR0 (0))du + s ot () (o) — o() ™~ @(u)d

e :fya< )1 (t2) — y1 ()"~ @ (u)du + tf;y’z( )(yz(f3)*yz(u))a2_1q>(”)d“
ot r(chfl) ﬁﬂ*l yl?—l( )(y‘?—l(tQ) — Yo 1( )aq b

+ o+ +

Then, inductively, for t € (4,t,11], we have

CD"e(t) = @(b), [t] =

[t tg.

By Lemma 2, the solution becomes
-1
o) = o(t)+; ) (g (F) — yg ()™ '@ (u)du
T (Tfu)Fl

= 0o+ Jy TRg—h(O(u ))du+ZW9(t])

+ érm ft Y () (1 () — vj—a () D (u)du
iq ft u) (yq(t) = yq(u))* 7L (u)du.

Hence, (6) holds.
Conversely, if 0 satisfies (6) with t € [0,t1], then 6(0) = 6 since CD'[Xt(t) is the left

]
inverse of H‘[tht)‘ Therefore, Lemma 1 yields

CD0(t) = @(t), t € [0,).
Ift € [ty tgs1),9=1,...,m, then

CD‘E;’WG( ) = D(t).
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We can infer that

() -o(i) = Wi ) 0 =1

Corollary 1. In light of Lemma 3, we give the solution for problem (1) as

b0+ Jy rid—h(O))du + s o vo(w) (o) — yo(u) !
xg(u,@(u),c D'E‘If]”)e(u))du, if te|0,t],

6o+ f, = “) "o ( du+r fo )(yo(t1) — yo(u)) ™!
g (1,0(u), 0 = 1),C DY 6() Jadu + s t1y1< W) (w1 (8) = ()"
xg (1, 0(14), (1 CD"‘<“>9 )du+W1 ), te (hhl, (8)

0o+ Jo T h(0(u))du + 5] 1we( )+l T

@ 1)
ﬁ 8 ><yj (‘)_yjf())” g (1,6(u), 004 — 1), D6 (u) ) du
(

u) (yq(t) —yq(u)) q_lg(u 0(u),0(u —/\),C D‘[Xu}”)Q(u))du,
te (tytgr1], 9=1,2,.

4. Existence of Solutions
In this section, we investigate two main existence results, which are at least one
solution and one unique solution of the proposed problem. We proceed with defining an

operator \V as

0+ fo T h(6(u))du + s o v () (o(£) — yo ()
xg(,0(u),C D\ 0(u) )du, if te o),

0+ fy %h(ex du+r 5 St () (yolt) = yo(w))** ™!
xg (1,6(u), 6(u— 1), >e<u)du+m Ji 5 ) (8) = ya ()
xg(1,0(u), 0(u A)CD[(] )G(u))du—i—Wl()(l), te (t,tl, ©)

oo+ |7 Lh(e(u))du +ELwie () + 2 o)

ﬁ, Y >(yf 1t -) —y]-- 1)) g (1, 0(), 0 — A) € D0 (w) )
Ry 500 (g (8) =y (1) g (1, 0(u), 0(u = A).C D 0(w) ) s,

te (tytgra], 9=1,2,...,m

For simplicity, we use the following notation:
Yo(t) = g(£,0(), Dy 0(t) = g(£,0(¢), v (1)),

v (t) = g(,0(t),0(t — 1), D" 0(t) = g(1,0(2),0(t — 1), v(t)).

Next, we assume the following:
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(H1) For function g, the constants ¢1, {3, k1, ky > 0 satisfy the Lipschitz condition
18(t,0(t),vg(t)) — g(t,07(t),vp+(£))| < £1|0(t)—07 (£)[+L2|vp(t) — vo-(t)],
g(t,6(t), (f —A),vp(t)) — &(¢,67(t), 07 (t — 1), vp- ()]
<k (|0(t)—=0*(t)| + |6(t — A)—0*(t — A)|) + ka|vg(t) — vg(t)],for each t € V, 6,0" € R.
For the term |0(t — A)—60*(t — A)|, we use the following relations:
[0(t—A)=0*(t—A)| < sup{|0(z) —0*(z)|: t —A <z <t} (10)

(Hz) Let W, : R — R be continuous such that

(Wa(8) = Wy(6%)| < kw0 —0%|; kw >0, g=1,...,m, for 6,6 € R.

(H3) There exist bounded functions 71, ¥2, 73, 1, 42, #3 € C(V,R) such that

lg(£,0(8),ve(t))] < Y1(t) + v2(£)|0(F)| + v3(t)|vg(£)], for each t € V and 6,vy € R,

|g(t,0(t),0(t—A),v9(t))| < pr(t) + pa(t)(|0(t)| +10(t — A)|) + ps(t)|vg(t)], for each t € V and 6,vy € R,

where 7] = sup,.y71(t), 73 = sup,cy72(t), and v = sup,.y3(t) < 1. And

similarly, 7 = sup, .,y p1(t), p3 = sup,cyp2(t), and u3 = sup,.yus(t) < 1.

(H4) There exist 11, > 0 such that
IW,y(0)| <m+ml6], g=1,2,...,m, 6 €R
(Hs) There exists constant k;, > 0 such that
[1(0(1))] < ks

(Hg) We assume that
[1(6(t)) — h(6"(t)) <kp|6 —07[; Ky > 0.

Theorem 3. Let ¢ : V x R x R — R be continuous and assume that (Hz) — (Hy) hold. If

max(vé(yo(T)—yo(O))”“’m 20 i(yf(T)_yf(tf))“j><1. 1)

* 4 172 + *
(1—73)T(ag+1) (1-p3) = Tla+1)
then problem (1) has at least one confirmed solution in E.
Proof. The proof of this result is based on Schaefer’s fixed-point theorem. For

khT + 77 (Wo(T)—yo(0
(1- 73)I’(oc0+1

Facl

(T) t
|90| ‘|‘m171+ r(()Jrl) + ( )Z;] 0 (y] y( ))

J;wo( wo) 7 (D)7 '
B (= ey (’”’72 + ( ) Yiz0 ™ (1)
weset B ={0cE:| 6|y <}
Step 1:

By (9), for 0 € B;, we have

WO < (Bl + fy TE ()t ks i v () (0 8) — yo(w)) M Yo(w)ldu, 1 € [0,14].
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By assumption (Hs), we have
Yo ()| = [g(£,6(t),v6(t))] < ’(Yl(t) +72(8)[6(8)] + 73(f))|Ye(t)|
sup;cy 71 (£)+sup,cy12(H)|0(1)]
|Y9(t)| < = 1fsuptevt'€y;/(t) (12)

(ri+2m)
(1-13) ~

Also, using assumption (Hs), we have
[h(6(£))] < k.
Thus, we write

5 * * / ag—1
18] + K foT T’ g, OFF3) )y g

NB(H)] < = o =
< |60l + 7 5+1) T (?;Q;)H (vo(t1) — ¥0(0))™
< |eo|+r"gil)+(1 v Wo(T) = y0(0))"
+€W(%() y0(0))"
< ¢

Also, for interval (tg,t,11], §=1,2,...,m, we have

T (T—u)’!
O] < 1ol + Jo gm0 () du+ | qu ()]

1 ey I a0 (51 () ~ vy (0) (o)

j=1

gy i 00 (0 (8) = 90" o)

Using assumptions (H3) and (Hs) and result (12), we have

o < ol s ()
+£ m ft; EIOIUEG) _yj—l(u))“f*171 <H1<u>1+_21;§8\9(u)\) Ju
g ftq 0 50 <m<“>rfziiz§'9<”ﬂ>du

(i yj1 r o 1+(11)1)) o (yq(tr)(;ﬂlt;))m

(1 +2130)
<16o| + r(5+1) +m(n +1m20) + ((ll_ﬂj)

x(g (s a ) (-t
j=1

&; 1+1) T(ag+1)

kT & (D-yi()Y
>~ |90| + muq + F(g+l) + (l 1}[3) ]; ! F(Dé]'j*l)]

q
o )
g

Thus, || V6 ||z < ¢. This shows that A" maps B; into itself.
Step 2:

IN -+
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IN

IN

IN

IN

Consider a sequence {6s}scn such that 6; — 6 on B;. The continuity of g, W;(6),
and h(0) implies that g(-,0s(t), Yo s(£)) — g(-,0(t), Yo(t)), g(-,6s(t),0s(t —A),vp4(t)) —
g(-,0(t),0(t — A),vg(t)), and Wy(0s) — W;(0) h(6s) — h(f) ass — cocand g = 1,...,m
Moreover, for each t € [0, 1],

[N () — NO(t)]

T (T—u)’! xp—1
< fy (s () = h(6()) du + i [ v () (vo(t) = yo(w))
X Yo (1) — Yp(u)|du
* T(T u 0(0—1 (13)
< kK ||9s GHEd“‘meo}/o Yo(t) —yo(u))
X HG —9||Edu
< gyl 6 — 0 || + AU 0O g, — g |
Also, fort € (tg, ty41], 4 =1,2,...,m,
NBs(t) = NB()
o1
- fOT%Uz(GS(u))—h(()(u))|du+0<t qu () =i (17)|
q -
= T Va0 (- () = vy (0) 7 o () — v () e
om) ftqu (yq< ) =g ()™ [og,s (1) — v(u)|du
<k*fo 1 0= 0 s+ 1 W) = WO [ 1)
]_
q R
k) It am ft,ly; L) (-1 () = ¥ ()77 65— 0 |[gdu
NG é’“ i 500) (v (8) = g 1)) €5 — 6 1z
< ol e - e||E+2||W»es<~>—w'9<~> g
% )—y;(t
iy 1Y F(WS;” =0 I

As s — o0, 85 and W, (0s) are convergent to 6 and W;(6),q = 1,...,m, respectively.
In combining (13) and (14), it follows that || N6; — N6 ||y — 0, as s — co. Thus, NV is
continuous.

Step 3: For arbitrary 73, 7 € [0,1], T3 < Tp, we have

Na() -~ No(e)
lea {yo 0(1) ™ = (o) — yo(u))* ™| Yo (u)|du

) () — ) ¥

M Jl o) [(yom) — y0()* ™ = (yol2) — yo ()0 du

s (15)
_|_((71+72H9H sz () (yo(T2) — yo(u))“ofldu

m [(90() — 10(11))" + (0(1) = 10(0)" = (yo(2) — 10(0))"]

D () — o ()

) o) — wol(m)) (16

Since yy is continuous, |N 6() —N6(t1)| — 0 as 1» — 7. Similarly, for a large interval
(tg tg+1], 9 =1,2,...,m, we obtain the accompanying inequality
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|N9(Tz) No(T)|
iy 4500 () =m0} = () )]

o) s 20 (2 — ) o)

P‘1+2P‘25 [ (
oc +1

IN

(17)

IN

—Yq Tl))q
e () G )= s (t)""] + S [y (2) ()]

%( () — yy(m))"-

Since y; (g = 1,2,...,m) is continuous, |[N8(1) —NO(1)] = 0as & — 7.

Hence, N6 is equi-continuous on V.

On the other hand, according to Step 1, AB; C B is uniformly bounded. Thus, N is
completely continuous, and hence, problem (1) has a solution. [J

IN

Theorem 4. Assume g : V x R x R is continuous. If (Hy), (Hy), and (Hg) hold with

.f Ky (yo(t1) —yo(0)™ k;T° 2k & (1) —yi(t))"Y
Y= max(r(5h+1) +h (1—£2)r(a0+1)’r(5h+ IR sy Jg : F(ocj—f—Jl)] ) <l a8

then problem (1) has a unique solution in E.

Proof. The operator N : E — E is well defined by Theorem 3.
For arbitrary 6,0" € E and t € [0, t1]. Then, we obtain

NO() ~NO O] < f TEI h(0()) — (0 () ldu + s fi vo() (o () — o))
x[Yo(u) - Y9*<u>|du
< I SO o) — 0% ()l + gl b () (wo(t) — vo(u) !

X [6u) = 0" (u )Idu

* t 0))"0 *
< ikl 00" I+ R o -6 .

Thus,
| N0~ 6" || < Y[ 06" || on [0,11] (19)

Similarly, for t € (tg,tg41], 4 =1,2,...,m, we have
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INO(t) — NO*(1)]
T (T—u)’! . ol
< fy L —n(6(u)) — n(e (u))|du+0<t qu ( )qug (tq))

+ z ﬁ] 1y] 10 (51 () =y ()" op () = vge (u)) |du

tX]1

(i t ) (Yq (£) — yq(u ))aq_ |vg (1) — vg= (u)|du
i Jy e |9 W) =8 (ldut X Twle() e (1)

%%ft] 1]/] 1 () (yj- 1( i) —yj-1(u ))aj’171|9(u)—9*(u)|du
1 kikl ft 1) (Yq(t) — yq(u ))aqil|9(u)—9*(u)|du

* k *
|+ k| 6 — 6% || + 2yl 6 — 67 |

« % (= () =2 (45-0))70 L (e =wa (4))"

T(aj_1+1) T(ag+1)

IN

IN

=

< (?Z o + 2 3 U ””)ne—e*«

T(aj+1)

Thus,
| N6~ N6" [|g < Y[ 6~ 6" || on (tg,ty1], =1,2,.. (20)

Inequality (24) with (19) and (20) shows that V is a strict contraction on E. By applying
Theorem 1, we obtain the result. (I

5. Ulam-Hyers (U-H) Stability

In the current section, we analyze the U-H stability of the proposed problem (1). We
adopted the following U-H stability definitions from [35].

Definition 5. The solution 0 of problem (1) is U-H stable if we find a constant Ng > 0 such that
for any € > 0 and any solution 6 € E of the inequality

8() —g(£0(H,C DB ) < e, te[o,tn
300 —g (L0000 - 1 DBM) <€ teln, TN} @D
|AB(t)) —W]-(g(t]f))\ <e j=12,---,m

their exists a unique solution 6 of problem (1) in E such that the following relation satisfies

| 86 | <Nge.

Definition 6. The solution of problem (1) is G-U-H stable if we find

¢:(0,00) = (0,00), ¢(0) =0,
so that for any solution of inequality (21), the following relation satisfies

119—6 | <Ng(e).
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Remark 1. 0 is the solution in E for inequality (21) iff there exists a function s« € E, which depends
on 0, so that for any t, the following hold:
(@) BB <e |=(b) <€ [5]<e
y alt
(if) CD[tﬁ (1) = g(1,0). DB(H) ) + 9(1),

Da(t) = g(1,8(1),8(t — 1), DA ) + (1);

(iii) M8(t) = W;(0(1)) + 5, j=12,0..,m

By Remark 1, we have

Do) =g E 0(6),€ Df Vo )) L), teloh),

D B(t) = g (£,0(1),8(t - 0),C D} B¢ >) (), te Ty}
j=12---,m 0<ua(t)<1, (22)
AB(tj) = ( ]‘))+%, —1,2,---,m,

9(0) = [T { 1 (8(w))du + By,

Lemma 4. The solution of perturbed problem (22) is given by

0o+ fy Tr— ” (§(u))du+ 5 Jo vo ) (o (8) = yo(u))™ ™ Yg(u)du
+ra0 fo Yo(u) (yo(t) — ( )0 O(u)du, if t€[0,h],
90+f0 Tru (5(“))‘1”""1"(“0) ftl o()(yo(tr) — yo(u))™~ 17’5(”)‘1“
) ftlyl(u)(yl B =y ()™ lva(“)d“+W19( 1)+
ooy Jo Yo () (o) — o)™~ se(ur)du
b 1/1( )(yl(t) y1(u))™™ 1%(M)du if te (b, bl
o(t) = : (23)
B0+ Jy Trig- @(6( ))du+27:1wj9(t )+z] 1% +XL 1% y
ftjj,l y;'—l )(y] 1( ) Yi- 1(”)) *( )du
) (v (£) = yq ()" "o <>
LT ft,ly, 1 (u )(y] 1(t) = yj-1(w)™"
oy i Vo) (yq<> o))" se)du, if L€ (1, m 7=12.
where Y (t) = g(t,é( )€ Df Bt )) and vg(t) = g(t,é(t),é(t— )€ DjyY G(t))
Proof. We exclude the proof as it is easy. [
Theorem 5. Assume g : V x R x R is continuous. If (Hy), (Hy), and (Hg) hold with
_ kT (o(t) —yo(0)™ _K;T° 2k & (y(T) — ()"
Y= max(r( ) O - T+ ) TEED) T U=k & Tt ) <t e

then problem (1) is U-H stable.

Proof. The Banach fixed-point theorem applies the Ulam-Hyers stability property due to

the retraction—displacement condition (see [36]).
Let 0 be any solution of the set of inequalities (21) and 6 be the unique solution of

problem (1). Then, from integral Equations (8) and (23), we have
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S TR (8(w)) — h(0()) [durt s fo v () (o (8) — yo (1)) Y1) — Yo () du
iy Jo Y600 Wo(®) — yo(w) 18w du, if € [0,11],
o TR 1(B(u)) = B0 () [du-+s 57 6 () (o (h1) = yo ()™ og(ue) — v (1) |du
1y S Y0 1 (8) = ya ()™ og () — v (u ldu W8 (i) —0(1 )| + Joal
+ a7 Jo Yo () (Wo(h1) — o (1))~ 5¢(u) |du
+ 1 Jo YA () (a (8) =y (u ))“1—1|z<u>|du if t€ (t,t],

B(t) — 6(t)] < : (25)
S O (@) — (o) ldut Sy WiB (1) — (6 ) 1+ 2Ly 154
+271r )fjly]l )( () i ()" og(u) — vp () |du

00y oy V400 (0 (8) = ya ()" o5(1e) — o ()
+z‘7 1”31 Sl ¥ >(yj-1<t]-)—yj_1<u>> 7 ()
ft ( yq( )) - |%( )du, if te (tqr q+1} q9=12,.
Hence, for t € [0, t1], we have
0(t) - o(t)|
< Jo T (@) = h(O0(w)ldut ks fo vo(w) (o (t) — yo ()™ Yg(u) — Yo(u)|du
+ ooy 0y0< ) (o(t) = yo ()™ " [8(u) |du (26)
<k, ”Tr(”o) [6(u) — 6(u)|du + gimey Jo vo() (Wo(t) = yo ()~ B(u) — (u)|du
157 Jo Y6 (1) (o ) — o ()™ du.
This implies
18- le
g0 4 (o(t) —y 50 e(yo(t) 9 (0)"0
5+1 I (yo(fl)H;Eo(_:—)o(l o) a0+1) “| e + =) )

T (ag+1)

1-( kT +41(y0(t1),y0(0>)“0>

I(o+1) (1-£)T (g +1)

Fort € (tg,t341],9=1,2,...,m, we have
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6(t)— 6(t)]
< [T <T;(u§>;” 1 (8(1)) — h(6(u))|du+ g wile(t ) - 9(t}.‘)|+jé 154
+]é ) B y] L) (-1 () — yima ()97 fog (1) — vg () |du
ey diy V000 (0 (6) = g (0)) |v9 u) — g (1) |du
+]é% I ly,l 0 <t]> () e
T )ftqu ( (1)) |<(u0) | du
LR -t ) o)
+,~é(1kz§k1a]1fa Y () (i1 () = yioa () [8() — 0(u) | du
+(1%quq 1) (yg(£) — yq (1)) |B(u) — O(ut)|du »

+q€+ E ‘X l ft] ly] 1 )(y]*l(t]) —y]‘fl(u))“]'—lfldu
]_
) (v (£) = g ()" e
k*T"

9 . & _
- < <6+1>+’”kw+<12k1 ,2( <,+(1>))]>”99”

0
+qe + Z (; ft Y (W) (v (t) — —1(“))%7171‘1”
1 =17

1) (yq () — yg (1)) du

kT 2k q 't &j _
< (F(gﬂ)+mkw+ 2 2( o +(1))) >||9—9||

(‘7"‘ )y W)e
({,H-):L?: WMW>€

r(a/-+1)

k* —yi(t
- <<5“>+m"w+< e (51(13)) )

This confirms that problem (1) is U-H stable. U

= Nge.

Corollary 2. Problem (1) is G-U-H stable. In this case, we set ¢p(€) = Ng(€); ¢(0) = 0.

6. Application

In this section, we apply the main results to the following general problem to illustrate

their applicability.
Example
CD'[Xt](t)G(t‘) =4 <t %> <sin(|9(t)\) +sm(| D[t] o(t )\)), te [0 t1), t >0.30
l —
Dy "o(t) = 5 + <t s) (sin(16(8)]) + 5541520y + sin( Do) )

0(0) = rrazy Jo (1= 9)" ggippeyyds +0.022,

(29)
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et t— 4
f1(t,6(t),09(1)) = = + ( 203) (sin(|9(t)|)+sin(CD‘[’;§t>9(t)|)), te[0t], + >030
— 7t t—1 .
g2(t,0(8), (¢ = A), va(t)) = 5 + ( 203> (00 + 1515 o =gy +sn(CDEe) ) e [
Wi(0) = 51—09;9 eRT,j=1,2,
and
0
ho) = 357 0]

Assuming m = 2 (g = 1,2), we have

CDOYR(t), 0<t<ty,
Dio(t) = { DO, h<t<th
CD20(t), th<t<1

«a(t) is the variable piecewise order defined as

060:%, 0<t§%,
a(t) = oq:}I, %<t§%,
0622%, %<t§1.
5t
wo(t) =5, 0<r<y,
— exp(4t)
v =9 n® = (3) , l<t<),

Lett € [t1,1]. Then,

0(t = A),09(t)) — 82(t,0(t), 0(t — A), vg(t)) |

|92(t,6(t) ! )
< L) sm(6<t>|>—sm<|e<>|>\+| o-030) B (1-030)

15+[0(f—0.30)] ~ 15+8 (1—0.30)]

+[sin (| “Dj" 6(1)]) - sin (1D} "8(1))) )

ﬁ(|e ) —8(t |+|9t—o.3o)—§(t—0.30)|+‘CDf;](”e(t) UP?()’).

(30)

By (Hj), we obtain k; = k, = 45, as well as by (H,). Similarly, for t € [0, 1), we obtain

h=Ih=4
Wi -w@)| < o]

implies that kyy = 51—0.

By (Hg), we have

1(0) —h(0)| = ’18ﬁ|9\ - 18+|§|
18]0—0|

S (18+\9\)(18+|9\) = 18

5/0 -],
which implies kj, = ig For the above derived values, one may examine that

k;, I

KT t1)—y0(0))°0 2% &
Y= max(r(g+1) + 0 By e+ mhw + iy &
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Recall and apply Theorems 4 and 5, respectively. Then, problem (29) has a unique solution
and is U-H stable.

7. Conclusions

In the present paper, we investigated a general problem of variable-kernel discrete
delay differential equations (DDDESs) subjected to integral boundary conditions and im-
pulsive effects. This topic is particularly intriguing due to the flexibility provided by the
variable kernel.

In our main findings, we presented the solution representation of the proposed prob-
lem and derived fixed-point criteria for the existence and uniqueness of solutions using
Schaefer’s fixed-point theorem and the Banach contraction principle, respectively. Similarly,
using U-H stability analysis, we established conditions ensuring the system’s stability.

To validate and demonstrate the applicability of our results, we applied a numerical
example. Our findings suggest that employing piecewise fractional derivatives enables the
modeling of complex systems across multiple scales, making the results more general and
widely applicable. Through the incorporation of impulsive effects, the model effectively
captures sudden changes and memory effects, leading to more accurate predictions.

Thus, investigating the existence, uniqueness, and stability of the studied systems
using the proposed theorems provides a more comprehensive, accurate, and general
framework for analyzing complex systems. Furthermore, the proposed framework and
results remain valid for both delay and non-delay systems. When the delay parameter
is set to zero, our derived conditions reduce to the classical case of piecewise fractional
differential systems without time delay.

In the future, our proposed system of differential equations can be extended to more
complex fractional differential systems with multiple delays. Additionally, future research
may explore numerical schemes for solving delay fractional systems in higher dimensions.
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