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Abstract: In this study, we explore various fractional integral properties of R-matrix
functions using the Hilfer fractional derivative operator within the framework of fractional
calculus. We introduce the θ integral operator and extend its definition to include the R
matrix functions. The composition of Riemann–Liouville fractional integral and differential
operators is determined using the θ-integral operator. Additionally, we investigate the
compositional properties of θ-integral operators, and we establish their inversion, offering
new insights into their structural and functional characteristics.

Keywords: fractional integral and derivative; generating matrix function; integral
representation; matrix ρν-transform function
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1. Introduction
Fractional analysis, a branch of mathematics concerned with generalizations of classi-

cal calculus to non-integer orders, has garnered significant attention in recent decades. Its
foundation lies in extending the concepts of differentiation and integration to fractional,
real, or even complex orders, thereby enabling the modeling of phenomena characterized
by memory, hereditary properties, and anomalous diffusion. This mathematical framework
finds applications in diverse fields, including physics, engineering, biology, and finance [1].
Fractional analysis has a profound connection with special functions, as many solutions
to fractional differential equations are expressed in terms of such functions. For instance,
Mittag–Leffler functions: Often regarded as the “fractional exponential function”, Mittag–
Leffler functions naturally emerge as solutions to fractional-order differential equations [2].
They generalize the exponential function, providing a broader framework for modeling
phenomena like anomalous relaxation and viscoelasticity, and hypergeometric Functions
are frequently encountered in fractional calculus, particularly in the study of integral
transforms and solutions to fractional differential equations [3]. Furthermore, the Wright
Functions are used in analyzing fractional processes; Wright functions generalize both
exponential and Mittag–Leffler functions.

Recall the definition of the pRq(φ1, φ2; z) function as given in [4]:
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pRq(φ1, φ2; z) = pRq

(
u1, . . . , up

v1, . . . , vq

)
φ1, φ2; z

)

= ∑
n≥0

1
Γ(φ1n + φ2)

(u1)n . . . (up)n

(v1)n . . . (vq)n

zn

n!
,

where p, q are positive integers and φ1, φ2 are complex numbers where Re(φ1), Re(φ2),
Re(ui), Re(vj) are all positive for i = 1, 2, . . . , p and j = 1, 2, . . . , q. The expression (u)n is
referred to the Pochhammer symbol, and given as

(u)n =

u(u + 1) . . . (u + n − 1) = Γ(u+n)
Γ(u) , n ≥ 1

1, n = 0.

In recent years, the extension of special functions into the matrix setting is one of the
crucial and efficient topics which has attracted many researchers on the last decades. There
are matrix equivalents classes of special functions in Lie group theory, group representation
theory, number theory, statistics, and medical imaging (see [5–8]).

In addition, orthogonal matrix polynomials and special matrix functions are intricately
connected, as evidenced by their relationship through matrix differential equations and
the Frobenius method, particularly in the case of well-known matrix polynomials such as
Laguerre, Hermite, and Gegenbauer [8–12].

In [13–15], Jódar and Cortèes studied the gamma, beta and Gauss hypergeometric
functions in the matrix setting. The generalization of special matrix functions in one variable
to n variables was introduced by Dwivedi and Sahai [16,17]. Many polynomials in one
variable or several variables have been discussed in the context of matrices (see [18–21]).

In [22], R. Sanjhira and R. Dwivedi introduced a new type of matrix function, named

pRq(P, Q; z), and determined some of its characterizations including regions of convergence,
some contiguous matrix function relations, integral representations, and differential formulas.

In this study, we extend the framework of fractional calculus by introducing the θ-
integral operator and investigating its interplay with R-matrix functions. Additionally, we
explore the relationship between the θ-integral operator and Wright functions, uncovering
new compositional and inversion properties. The results not only generalize existing
theories, but also provide novel tools for analyzing fractional differential equations that
incorporate R-matrix and Wright functions.

The current study not only contributes to the theoretical advancement of fractional
calculus, but also broadens its application potential, particularly through the innovative
use of Wright functions in conjunction with the θ-integral operator. These results represent
a significant step forward in understanding fractional systems, and open new avenues for
future research.

Overall, this study contributes to the ongoing advancement of fractional calculus by
uncovering new properties of R-matrix functions and introducing innovative operator-
based methodologies. These findings open avenues for further research into fractional
systems and their applications in modeling complex phenomena.

This paper is devoted to deriving an integral equation evolving two multiplied R-
matrix functions associated with power functions that can be attained by employing the
ρν-transform convolution theorem. Subsequently, we propose a recurrence relation and
some integral representations of the R-matrix function. Additionally, the operator for the
Hilfer fractional derivative and the Riemann–Liouville fractional integral and derivatives
are composed R-matrix functions are used.
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The paper content is outlined briefly as follows. Section 2 provides brief introductory
discussions of special matrix functions that are necessary for further development of the
paper. The integral equation for which the multiplication of two R-matrix functions is
introduced in Section 3 by using the convolution theorem of ρν-transform. Moreover,
more results are provided where we combine the R-matrix functions, Hilfer fractional
derivative matrix operator, and Riemann–Liouville fractional integrals and derivatives.
In Section 4, we shall obtain the composite of fractional calculus operators with θ-integral
operator. In Section 5 are several applications on integral operators associated with R-matrix
functions. Concluding remarks and future work have been displayed in Section 6.

The flowchart in Figure 1 outlines the key steps and procedures used to derive the
results presented in this paper.

Figure 1. Description of this paper (theoretical and applications).

2. Notations and Basic Formulas
Throughout this paper, the spectrum σ(P) is the set of eigenvalues of the matrix P in

Ch×h. Suppose that

µ(P) = max{Re(z) : z ∈ σ(P)}, ν(P) = min{Re(z) : z ∈ σ(P)}. (1)

Let I and 0 denote the unit matrix and the zero matrix, respectively. The matrix P is
called positive stable if and only if β(P) > 0.

Consider the two holomorphic functions Φ(z) and Ψ(z), which are defined on the
open set Ω ⊂ C. Now, consider P to be a matrix in Ch×h for which σ(P) belongs to Ω, then
using the properties of the matrix sunctional analysis [9,16], we conclude the following:

Φ(P)Ψ(P) = Ψ(P)Φ(P). (2)

It is known that the reciprocal Gamma function, Γ−1(z) = 1
Γ(z) , represents an entire

function of z. The matrix Γ−1(P), which refers to the image of Γ−1(z) acting on the matrix
P, is well-defined. Moreover, the matrix P + nI is invertible for all integers n ≥ 0.

Let P be a matrix in Ch×h. As in [16], the matrix argument’s Pochhammer symbol is
given in the form

(P)n =

{
P(P + I) . . . (P + (n − 1)I) = Γ−1(P)Γ(P + nI), n ≥ 1,
I, n = 0.

(3)
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Assume that P and Q are two positive stable matrices in Ch×h. The authors of [14,16]
defined the Gamma matrix function and the Beta matrix function, respectively, as follows:

Γ(P) =
∫ ∞

0
e−ttP−Idt, B(P, Q) =

∫ 1

0
tP−I(1 − t)Q−Idt, (4)

where tP−I = exp((P − I) ln t). If P, Q ∈ Ch×h are commutative matrices for which the
P + nI, Q + nI and P + Q + nI are invertible matrices for every n ≥ 0; then [14,16],

B(P, Q) = Γ(P)Γ(Q)[Γ(P + Q)]−1. (5)

In [14], Jódar and Cortés showed that

Γ(P) = lim
n−→∞

(n − 1)![(P)n]
−1nP, (6)

where n ≥ 1 is an integer. The 2-numerator and 1-denominator hypergeometric matrix
function for |z| < 1 is defined by the matrix power series as (see [14,23]). Consider the
matrices P, Q, and S in Ch×h, where S + nI is invertible matrix for every n ≥ 0. Then,

2F1(P, Q, S; z) = ∑
n≥0

(P)n(Q)n[(S)n]−1zn

n!
. (7)

The authors of [22] conducted a study recently on the matrices that arise in the
series form of the extended hypergeometric matrix functions pRq(P, Q; z), with matrices
appearing in its series representation and they investigated several of their characterizations.
The notation (P) was used in [22] to express an array of p × p matrices P1, P2, . . . , Pk for
some k ∈ N.

Definition 1. Assume that P, Q, Si and Dj in Ch×h are positive stable matrices, such that 1 ≤
i ≤ p, 1 ≤ j ≤ q and Dj + kI are invertible for all integers k ≥ 0. The matrix function
pRq(P, Q : (S), (D); z) is given in the form

pRq(P, Q : (S), (D); z) = pRq

(
S1, . . . , Sp

D1, . . . , Dq

)
P, Q; z

)
= ∑

n≥0
Γ−1(nP + Q)(S1)n . . .

(
Sp
)

n

× (D1)
−1
n . . .

(
Dq
)−1

n
zn

n!
= pRq

[
Sp

Dq

∣∣∣∣P; Q; z

]
, (8)

if the series is absolutely convergent where Sp = S1, . . . , Sp, Dq = D1, . . . , Dq.

Moreover, the series is absolutely convergent; if p ≤ q + 1, we have all finite values
of |z|. However, if p = q + 2, then the series converges only when |z| < 1. Note that
for the values |z| = 1, the series converges absolutely when ν(D1) + · · · + ν

(
Dq
)
>

µ(S1) + · · ·+ µ
(
Sp
)
.

Theorem 1. [24] Suppose that P, Q, Sp and Dq are in Ch×h such that Dj + kI 1 < j < q is
inevitable for all k ∈ Z where k ≥ 0. The R-matrix function have the following differential property:
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(
d
dz

)k
(

zQ−I
pRq

[
Sp

Dq

∣∣∣∣P, Q; wzP

])

= zQ−(k+1)I
pRq

[
Sp

Dq

∣∣∣∣P, Q − kI; wzP

]
(9)

(
d

dw

)k
(

zQ−I
pRq

[
Sp

Dq

∣∣∣∣P, Q; wzP

])

= zkP+Q−I [(Sp)n][(Dq)n]
−1

pRq

[
Sp + kI
Dq + kI

∣∣∣∣P, kP + Q; wzP

]
(10)

3. The R-Matrix Function’s Integral Representation and Recurrence Relation
The emphasis of the current section is directed to deriving certain integral formulas,

including the multiplication of two R-matrix functions by using the ρν-transform. More-
over, we deduce a recurrence relation of the R-matrix function, and one of its integral
representations is provided.

The ρν-transform is defined in [25,26] as

ρν[ f (t), s] = F(s) =
∫ ∞

0
[1 + (ν − 1)s]

−t
ν−1 f (t)dt, ν > 1 (11)

with
lim

ν→1+
[1 + (ν − 1)s]

−t
ν−1 = e−st. (12)

The Laplace transform (L[., .]) is generalized by this transformation, which can be
seen from

lim
ν→1

ρν[ f (t), s] = L[ f (t), s]. (13)

Now, we can defined the ρν-matrix transform as follows.

Definition 2. The ρν-transform of tP−I for any P ∈ Ch×h is given by

ρν[(tP−I); s] =
∫ ∞

0
[1 + (v − 1)s]

−t
v−1 tP−Idt. (14)

Lemma 1. The ρν-transform of the power matrix tP−I is defined by

ρν

[
tP−I ; s

]
=

(
ν − 1

ln[1 + (ν − 1)s]

)P
Γ(P), (15)

where µ(P) > 0 and ν > 1.

Proof. By using (14) and substituting t = ν−1
ln[1+(ν−1)s]u and simplifying, we obtain the

result in (15).
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Lemma 2. Let P, Q, Sp and Dq be in Ch×h, for which Dj + kI, 1 < j < q are invertible for all
k ∈ Z where k ≥ 0. Then, the ρν-transform of R-matrix functions is given by

ρν

[
tQ−I

pRq

[
Sp

Dq

∣∣∣∣P; Q; ztP

]
; s

]
=

(
ν − 1

ln[1 + (ν − 1)s]

)Q

×p Fq

[
Sp; Dq; z(ν − 1)P ln[1 + (ν − 1)s]−P

]
(16)

Proof. By using (9) and (14), we obtain

ρν

[
tQ−I

pRq

[
Sp

Dq

∣∣∣∣P, Q; ztP

]
; s

]

=
∞

∑
n=v

Γ−1(nP + Q)[(Sp)n][(Dq)n]
−1 zn

n!
× ρν

[
tnP+Q−I ; s

]
.

Therefore, owing to (15), the proof is accomplished.

Remark 1. If we take limit ν → 1 in (16), then it reduces to

L

[
zQ−I

pRq

[
Sp

Dq

∣∣∣∣P, Q; ztP

]
; s

]
= s−Q

pFq

(
Sp; Dq; zs−P

)
. (17)

Theorem 2. Let P, Q, H, Sp, Dq, Gp and Fq be in Ch×h such that Dj + kI, Gj + kI, 1 < j < q is
inevitability for every integer k ≥ 0. Then,

∫ x

0
(x − t)Q−I

pRq

[
Sp

Dq

∣∣∣∣P, Q; z(x − t)P

]
× tH−I

pRq

[
Gp

Fq

∣∣∣∣P, H, ztP

]
dt

= xQ+H−I
pRq

[
Sp + Gp

Dq + Fq

∣∣∣∣P, Q + H; zxP

]
(18)

Proof. From the convolution of ρν− transform as

ρν

[∫ x

0
k(x − t) f (t)dt

]
(s) = ρν[k(s)](s) · ρν[ f (x)](s) (19)

and owing to Lemma 2, it follows that

ρν

[ ∫ x

0
(x − t)Q−I

pRq

[
Sp

Dq

∣∣∣∣P, Q; z(x − t)P

]

× tH−I
pRq

[
Gp

Fq

∣∣∣∣P, H; ztP

]
dt; s

]

=ρν

[
xQ−I

pRq

[
Sp

Dq

∣∣∣∣P, Q; zxP

]
; s

]
ρν

[
xH−I

pRq

[
Gp

Fq

∣∣∣∣P, H; zxP

]
; s

]

=

(
ν − 1

ln[1 + (ν − 1)s]

)Q+H ∞

∑
n=0

∞

∑
m=0

(Sp)n
(
(Dq)n

)−1

×
(
Gp
)

n

[(
Fq
)

n

]−1 zn+m

n!m!

(
(ν − 1)P(ln[1 + (ν − 1)s])−P

)n+m

=

(
ν − 1

ln[1 + (ν − 1)s]

)Q+H
(Sp + Gp)n

[(
Dq + Fq

)
n

]−1 zn

n!

×
(
(ν − 1)P(ln[1 + (ν − 1)s])−P

)n

. (20)

By using the inverse ρv-transform, the result in (18) follows.

We now provide some theorems involving the recurrence relations and integral repre-
sentations of R-matrix functions.
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Theorem 3. Suppose that P, Q, H, Sp and Dq are in Ch×h, where Dj + kI 1 < j < q is
inevitability for every integer k ≥ 0. Then, the following recurrence relation

pRq

[
Sp

Dq

∣∣∣∣P, Q + H + I; z

]
− pRq

[
Sp

Dq

∣∣∣∣P, Q + H + 2I; z

]

=z2P2 d2

dz2

{
pRq

[
Sp

Dq

∣∣∣∣P, Q + H + 3I; z

]}
+ zP

(
P + 2(Q + H) + 2H

)
× d

dz

{
pRq

[
Sp

Dq

∣∣∣∣P, Q + H + 3I; z

]}
+ (Q + H)(Q + H + 2I)

×pRq

[
Sp

Dq

∣∣∣∣P, Q + H + 3I; z

]
(21)

holds.

Proof. Using the properties Γ(P + I) = PΓ(P) in (9), we obtain

pRq

[
Sp

Dq

∣∣∣∣P, Q + H + I; z

]

=
∞

∑
n=0

Γ−1(nP + Q + H + I)(Sp)n
[
(Dq)n

]−1 zn

n!

=
∞

∑
n=0

(nP + Q + H)−1Γ−1(nP + Q + H)(Sp)n
[
(Dq)n

]−1 zn

n!
. (22)

Therefore, we have

pRq

[
Sp

Dq

∣∣∣∣P, Q + H + 2I; z

]

=
∞

∑
n=0

(
(nP + Q + H)−1 − (nP + Q + H + I)−1

)
Γ−1(nP + Q + H)(Sp)n

[
(Dq)n

]−1 zn

n!

= pRq

[
Sp

Dq

∣∣∣∣P, Q + H + I; z

]
−

∞

∑
n=0

(nP + Q + H + I)−1 Γ−1(nP + Q + H)

× (Sp)n
[
(Dq)n

]−1 zn

n!
(23)

and by computing the last term of (23), it follows that

W =
∞

∑
n=0

(nP + Q + H + I)−1 Γ−1(nP + Q + H)(Sp)n
[
(Dq)n

]−1 zn

n!

= pRq

[
Sp

Dq

∣∣∣∣P, Q + H + I; z

]
− pRq

[
Sp

Dq

∣∣∣∣P, Q + H + 2I; z

]
. (24)
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The sum W can be expressed as

W =
∞

∑
n=0

(nP + Q + H)Γ−1(nP + Q + H + 3I)(Sp)n
[
(Dq)n

]−1 zn

n!

+
∞

∑
n=0

(nP + Q + H)(nP + Q + H + I)Γ−1(nP + Q + H + 3I)

× (Sp)n
[
(Dq)n

]−1 zn

n!

=P
∞

∑
n=0

nΓ−1(nP + Q + H + 3I)(Sp)n
[
(Dq)n

]−1 zn

n!

+ (Q + H)
∞

∑
n=0

Γ−1((nP + Q + H + 3I)(Sp)n
[
(Dq)n

]−1 zn

n!

+ P2
∞

∑
n=0

n2Γ−1(nP + Q + H + 3I)(Cp)n
[
(Dq)n

]−1 zn

n!

+ U
∞

∑
n=0

nΓ−1(nP + Q + H + 3I)(Sp)n
[
(Dq)n

]−1 zn

n!

+ V
∞

∑
n=0

nΓ−1(nP + Q + H + 3I)(Sp)n
[
(Dq)n

]−1 zn

n!
(25)

where U = 2PQ + 2PH + P, V = (Q + H)2 + (Q + H). Through the evaluation of each
R.H.S. term in Equation (25), we obtain

d2

dz2

{
z2

pRq

[
Sp

Dq

∣∣∣∣P, Q + H + 3I; z

]}

=
∞

∑
n=0

(n + 1)(n + 2)Γ−1(nP + Q + H + 3I)
(
Sp
)

n

[(
Dq
)

n

]−1 zn

n!

=
∞

∑
n=0

n2 Γ−1(nP + Q + H + 3I)
(
Sp
)

n

[(
Dq
)

n

]−1 zn

n!

+ 3
∞

∑
n=0

n Γ−1(nP + Q + H + 3I)
(
Sp
)

n

[(
Dq
)

n

]−1 zn

n!
. (26)

Similarly, we obtain that

d
dz

{
z pRq

[
Sp

Dq

∣∣∣∣P, Q + H + 3I; z

]}

=
∞

∑
n=0

(n + 1)Γ−1(nP + Q + H + 3I)
(
Sp
)

n

[(
Dq
)

n

]−1 zn

n!
(27)

or

z

{
d
dz pRq

[
Sp

Dq

∣∣∣∣P, Q + H + 3I; z

]}

=
∞

∑
n=0

nΓ−1((nP + Q + H + 3I)(Sp)n
[(

Dq
)

n

]−1 zn

n!
. (28)
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Therefore, from (27) and (28), it follows that

∞

∑
n=0

n2Γ−1(nP + Q + H + 3I)(Sp)n
[
(Sp)

] zn

n!

= z2 d2

dz2 pRq

[
Sp

Dq

∣∣∣∣P, Q + H + 3I; z

]
+ z

d
dz pRq

[
Sp

Dq

∣∣∣∣P, Q + H + 3I; z

]
. (29)

Taking Equations (25), (27), and (29), we obtain

W = P2z2 d2

dz2 pRq

[
Sp

Dq

∣∣∣∣P, Q + H + 3I; z

]
+ z(P2 + P + U)

d
dz pRq

[
Sp

Dq

∣∣∣∣P, Q + H + 3I; z

]
+ (P + H + V)

pRq

[
Sp

Dq

∣∣∣∣P, Q + H + 3I; z

]
. (30)

By substituting the values of U and V into (30), the recurrence relation (21) holds.

Theorem 4. Suppose that P, Q, H, Sp and Dq are in Ch×h, for which Dj + kI 1 < j < q are
inevitable for all k ∈ Z where k ≥ 0; then,

∫ 1

0
tQ+H

pRq

[
Sp

Dq

∣∣∣∣P, Q + H; tP

]
dt

= pRq

[
Sp

Dq

∣∣∣∣P, Q + H + I; 1

]
− pRq

[
Sp

Dq

∣∣∣∣P, Q + H + 2I; 1

]
. (31)

Proof. Putting z = 1 in (23) implies

pRq

[
Sp

Dq

∣∣∣∣P, Q + H + 2I; 1

]
= pRq

[
Sp

Dq

∣∣∣∣P, Q + H + I; 1

]

−
∞

∑
n=0

(nP + Q + H + I)−1 Γ−1(nP + Q + H)(Sp)n
[(

Dq
)

n

]−1 1
n!

. (32)

One can observe that

zQ+H
pRq

[
Sp

Dq

∣∣∣∣P, Q + H; zP

]

=
∞

∑
n=0

Γ−1(nP + Q + H)(Sp)n
[(

Dq
)

n

]−1 znP+Q+H

n!
. (33)

By integrating both sides with respect z, it follows that

∫ t

0
zQ+H

pRq

[
Sp

Dq

∣∣∣∣P, Q + H; zP

]
dz

=
∞

∑
n=0

∫ t

0
Γ−1(nP + Q + H)(Sp)n

[
(Dq)n

]−1 znP+Q+H

n!
dz

=
∞

∑
n=0

(nA + B + H + I)−1 Γ−1(nA + B + H)(Sp)n
[
(Dq)n

] tnP+Q+H+I

n!
. (34)
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If putting t = 1 in (31), we find that

∫ 1

0
tQ+H

pRq

[
Sp

Dq

∣∣∣∣P, Q + H; tP

]
dt

=
∞

∑
n=0

(nP + Q + H + I)−1Γ−1(nP + Q + H)(Sp)n
[
(Dq)n

]−1 1
n!

. (35)

By using (33) and (35), the representation in (31) yields.

Remark 2. For an arbitrary complex number u, if H = uI in (21) and (31), we obtain the result
mentioned in [24]. Also, if u, v, h are arbitrary complex numbers, and by using P = uI, Q = vI
and H = hI such that Sp and Dq are scalar in (21) and (31), we obtain the scalar case of the result
in [27].

4. Composition Fraction Calculus Operation with R-Matrix Function
In the context of Riemann–Liouville, the derivative and integral of fractional order µ

and χ > 0 of an operator such that Re(µ) > 0 are provided in the form (see [28,29])

(Iµ
a f )(χ) =

1
Γ(µ)

∫ χ

a
(χ − t)µ−1 f (t)dt. (36)

Moreover,

Dµ
a f (χ) = In−µ

a Dn f (χ), D =
d

dχ
. (37)

Hilfer [30,31] contributed to generalizing the Riemann–Liouville fractional derivative
operator Dγ

a+ by introducing a right-sided fractional derivative operator Dγ,µ
a of order

γ ∈ (0, 1) and type µ ∈ [0, 1], which is called the Hilfer derivative and given by

(Dγ,µ
a )(χ) =

(
Iµ(1−γ)

a
d

dχ
(I(1−µ)(1−γ)

a f )
)
(χ). (38)

Bakhet [29] studied the fractional order integrals and derivatives using the
operators (36) and (37) as follows.

Definition 3. Assume that P is a stable positive matrix with the properties Re(µ) > 0 and µ ∈ C.
The fractional integrals of order µ in the Riemann–Liouville sense are defined as

Iµ(χP) =
1

Γ(µ)

∫ χ

0
(χ − t)µ−1tPdt. (39)

Lemma 3. Assume that Q in Ch×h is a positive stable matrix where Re(µ) > 0. Then,
the Riemann–Liouville integrals fractional of order µ have the form

Iµ(χQ−I) = Γ(Q)Γ−1(Q + µI)χQ+(µ−1)I . (40)

In this section, we establish the composition of the Hilfer fraction derivative operation
using matrix R-function and matrix Riemann–Liouville fractional integrals and derivatives
as follows.
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Theorem 5. Suppose that the matrices P, Q, Sp and Dq are positive and stable in Ch×h, for which
DiDj = DjDi, 1 ≤ i, j ≤ q and Re(µ) > 0; then, the fractional integral of the R-matrix function
has the form

Iµ

[
zQ−I

pRq

[
Sp

Dq

∣∣∣∣P, Q; wzP

]]
(χ)

= χQ+(µ−1)I
pRq

[
Sp

Dq

∣∣∣∣P, Q; wχP

]
. (41)

Proof. The left hand side of (41) implies that

Iµ

[
zQ−I

pRq

[
Sp

Dq

∣∣∣∣P, Q; wzP

]]
(χ)

= Iµ

(
∞

∑
n=v

Γ−1(nP + Q) [(Sp)n] [(Dq)n]
−1 wn

n!
znP+Q−I

)
(χ) (42)

=
∞

∑
n=0

Γ−1(nP + Q) (Sp)n
[(

Dq
)

n

]−1 wn

n!

(
Iµ(z)nP+Q−I

)
(χ) (43)

Therefore, by applying Lemma (3), the result follows.

Theorem 6. If P, Q, Sp, and Dq are positive stable matrices in Ch×h, such that DiDj = DjDi,
1 ≤ i, j ≤ q. For Re(µ) > 0, then the fractional differential of the R-matrix function has the form

Dµ

[
zQ−I

pRq

[
Sp

Dq

∣∣∣∣P, Q; wzP

]]
(χ)

= χQ−(µ+1)I
pRq

[
Sp

Dq

∣∣∣∣P, Q − µI; wχP

]
. (44)

Proof. By using (37) and (41), we find

Dµ

[
zQ−I

pRq

[
Sp

Dq

∣∣∣∣P, Q; wzP

]]
(χ)

=

(
d

dχ

)n
(

In−µ

[
zQ−I

pRq

[
Sp

Dq

∣∣∣∣P, Q; wzP

]])
(χ)

=

(
d

dχ

)n
(

χQ+(n−µ−1)I
pRq

[
Sp

Dq

∣∣∣∣P, Q + (n − µ)I; wχP

])
(χ) (45)

and using Equation (9), the result follows.

Theorem 7. If P, Q, Sp and Dq are positive stable matrices in Ch×h, for which DiDj = DjDi,
1 ≤ i, j ≤ q, then for Re(µ) > 0 and γ ∈ (0, 1), the Hilfer Fraction derivative operation with
matrix R-function is given by

Dγ,µ

[
zQ−I

pRq

[
Sp

Dq

∣∣∣∣P, Q; wzP

]]
(χ)

= χQ−(γ+1)I
pRq

[
Sp

Dq

∣∣∣∣P, Q − γI; wχP

]
(46)
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Proof. Owing to the left hand side of (46), it follows that

Dγ,µ

[
zQ−I

pRq

[
Sp

Dq

∣∣∣∣P, Q; wzP

]]
(χ)

= Dγ,µ

(
∞

∑
n=0

Γ−1(nP + Q) (Sp)n [(Dq)n]
−1 × wnznP+Q−I

n!

)
(χ)

=
∞

∑
n=0

Γ−1(nP + Q) (Sp)n [(Dq)n]
−1 × wn

n!

(
Dγ,µ(znP+Q−I)

)
(χ) (47)

=
∞

∑
n=0

Γ−1(nP + Q) (Sp)n [(Dq)n]
−1
(

Iµ(1−γ) d
dχ

(I(1−µ)(1−γ) (znP+Q−I))

)
(χ).

Consequently, by using Lemma 3 and then by differentiation, the proof is completed.

5. Application on Integral Operators Associated with R-Matrix Functions
In the following, we define the θ(P,Q)-integral operator associated with R-matrix

functions, and then we explore several applications employing the obtained operator.

Definition 4. If P, Q, Sp and Dq are positive stable matrices in Ch×h, for which DiDj = DjDi,
1 ≤ i, j ≤ q. Then, we define the θ(P,Q)-integral operator as follows:

(
θ(P,Q) f

)
(χ) =

∫ χ

0
(χ − z)Q−I

pRq

[
Sp

Dq

∣∣∣∣P, Q; w(χ − z)P

]
f (z)dz. (48)

where χ > 0.

Before we begin to conclude the results of the current section, we deduce the
following result.

Lemma 4. If P, Q, H, Sp and Dq are positive stable matrices in Ch×h, for which DiDj = DjDi,
1 ≤ i, j ≤ q, then (

θ(P,Q)zH
)
(χ) =Γ(H) χQ+H−I

× pRq

[
Sp

Dq

∣∣∣∣P, Q + H; wχP

]
. (49)

Proof. From definition (48) and Equation (9), we have

(
θ(P,Q)zH−I

)
(χ) =

∫ χ

0

[
∞

∑
n=0

Γ−1(nP + Q) (Sp)n
[
(Dq)n

]−1

× wn(χ − z)na+B−I

n!

]
zH−Idz

=
∞

∑
n=0

Γ−1(nP + Q) (Sp)n
[(

Dq
)

n

]−1 wn

n!

×
∫ χ

0
(χ − z)nP+Q−I zH−Idz. (50)



Fractal Fract. 2025, 9, 82 13 of 17

By replacing z by χz and simplifying the Equation (50), we obtain

(
θ(P,Q)zH−I

)
(χ) =

∞

∑
n=0

Γ−1(nP + Q)
(
Sp
)

n

[(
Dq
)

n

]−1 wn

n!

× χnP+Q+H−I B(nP + Q, H). (51)

Further simplification yields (48).

We now establish the theorem the composition of the Riemann–Liouville fraction
integral operator Iµ with θ-integral operator as

Theorem 8. If P, Q, H, Sp and Dq are positive stable matrices in Ch×h, for which DiDj = DjDi,
1 ≤ i, j ≤ q, then, for Re(µ) > 0, the relation of the Riemann–Liouville fraction integral operator
Iµ with the θ-integral operator can be given as

Iµ
(

θ(P,Q) f
)
=
(

θ(P,Q+µI) f
)
= θ(P,Q)Iµ( f ). (52)

Proof. Using (9) and (48), we obtain

Iµ(θ(P,Q) f )(χ) =
1

Γ(µ)

∫ χ

0
(χ − u)µ−1du

∫ u

0
(u − z)Q−I

× pRq

[
Sp

Dq

∣∣∣∣P, Q; w(u − z)P

]
f (z)dz

=
∫ χ

0

1
Γ(µ)

[ ∫ χ

z
(χ − u)µ−1(u − z)Q−I

× pRq

[
Sp

Dq

∣∣∣∣P, Q; w(u − z)P

]
du

]
f (z)dz

=
∫ χ

0

[
1

Γ(µ)

∫ χ−z

0
(χ − z − s)µ−1sQ−I

pRq

[
Sp

Dq

∣∣∣∣P, Q; wsQ

]
(53)

ds

]
f (z)dz.

=
∫ χ

0

[
Iµ

(
sQ−I

pRq

[
Sp

Dq

∣∣∣∣P, Q; wsP

]
dr
)]

(χ − z) f (z)dz. (54)

By applying (41), we find that

Iµ(θ(P,Q) f )(χ) =
∫ χ

0
(χ − z)O+(µ−1)I

× pRq

[
Sp

Dq

∣∣∣∣P, Q + µI; w(x − z)P

]
f (z)dz

=(θ(P,Q+µI) f )(χ). (55)

It completes the first relation’s proof (52), and can also demonstrate the second relation.

Theorem 9. If P, Q, H, Sp and Dq are positive stable matrices in Ch×h, such that DiDj = DjDi,
1 ≤ i, j ≤ q, then, for Re(µ) > 0, and for any continuous function f ∈ [a, b], the relation of
fraction differential operator Dµ with θ-integral operator is given as

Dµ
(

θ(P,Q) f
)
=
(

θ(P,Q−µI) f
)

. (56)
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For the case when k ∈ N, we have(
d

dχ

)k
(θ(P,Q) f ) = θ(P,Q−kI) f . (57)

Proof. By using (37), (48), (52), and replacing µ by n − µ, it follows that

Dµ(θ(P,Q) f )(χ) =
(

d
dχ

)n(
Dn−µθ(P,Q) f

)
(χ)

=

(
d

dχ

)n(
θ(P,Q+(n−µ)I) f

)
(χ)

=

(
d

dχ

)n ∫ χ

0
(χ − z)Q+(n−µ−1)I

pRq

[
Sp

Dq

∣∣∣∣P, Q + (n − µ)I; w(χ − z)P

]
f (z)dz, (58)

As the integrand in (58) is continuous function [a, b], and by applying the derivative

d
dχ

∫ χ

0
f (χ, z)dz =

∫ χ

0

∂

∂χ
f (χ, z)dz + f (χ, χ), (59)

it follows that

Dµ
(

θ(P,Q) f
)
(χ) =

(
d

dχ

)n−1 ∫ χ

0

∂

∂χ

[
(χ − z)Q+(n−µ−1)I

× pRq

[
Sp

Dq

∣∣∣∣P, Q + (n − µ)I; w(χ − z)P

]]
f (z)dz

+ lim
z→χ

[
(χ − z)Q+(n−µ−1) I

× pRq

[
Sp

Dq

∣∣∣∣P, Q + (n − µ)I; w(χ − z)P

]]
f (z)dz

=

(
d

dχ

)n−1 ∫ χ

0

[
(χ − z)Q+(n−µ−2)I

× pRq

[
Sp

Dq

∣∣∣∣P, Q + (n − µ − 1)I; w(χ − z)P

]]
f (z)dz. (60)

By differentiating (9) by and (60), the result follows.

Next, we obtain the compositions of the Hilfer derivative operator Dγ,µ with the
θ-integral operator asserted by the following result.

Theorem 10. Suppose that P, Q, H, Sp and Dq be positive stable matrices in Ch×h, such that
DiDj = DjDi, 1 ≤ i, j ≤ q. Then, for Re(µ) > 0 and γ ∈ (0, 1), we find the relation of Hilfer
Fraction derivative operation Dγ,µ with θ-integral operator

Dγ,µ
(

θ(P,Q) f
)
= θ(P,Q−γI) f (61)

holds true for any Lebesgue measurable function f ∈ L(a, b).
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Proof. We shall make use of the composition relation asserted by Theorem 9, and we
find that

Dγ+µ−γµ
(

θ(P,Q) f
)
= θ(P,Q−(γ+µ+γµ))I f . (62)

From the Hilfer derivative operator (38), we have

Dγ,µ
(

θ(P,Q) f
)
=Iµ(1−γ)

(
Dγ+µ−γµ

(
θ(P,Q) f

))
=Iµ(1−γ)

(
θ(P,Q−(γ−γµ)I f

)
=
(

θ(P,Q−γI) f
)

, (63)

which completes the proof.

Theorem 11. Let P, Q, H, Sp, Dq, Gp and Fq be positive stable matrices in Ch×h, such that
Dj + kI, Gj + kI and 1 < j < q is inevitable for all integers k ≥ 0. Then, the following result:(

θ(P,Q) f
)
+
(

θ(P,H) f
)
=
(

θ(P,Q+H) f
)

(64)

is valid for any summable function f ∈ L(a, b). In particular,(
θ(P,Q)

)
+
(

θ(P,Q)−Sp f
)
= IQ+H . (65)

Proof. By using (48) and applying the Dirichlet formula, we obtain

(
θ(P,Q) + θ(P,H)

)
f (χ) =

∫ χ

0
(χ − u)Q−I

pRq

[
Sp

Dq

∣∣∣∣P, Q; w(χ − u)P

]
du

×
∫ u

0
(u − z)H−I

pRq

[
Gp

Fq

∣∣∣∣P, H; w(u − z)P

]
f (z)dz

=
∫ χ

0

[ ∫ χ−r

0
(χ − z − s)Q−I

pRq

[
Sp

Dq

∣∣∣∣P, Q; w(χ − z − s)P

]

× sH−I
pRq

[
Gp

Fq

∣∣∣∣P, H; wsP

]
ds

]
f (r)dr

=
∫ χ

0
(χ − z)(Q+H−I)

pRq

[
Sp + Gp

Dq + Fq

∣∣∣∣P, Q + H; w(χ − z)P

]
f (z)dz, (66)

which yields Equation (64).

Remark 3. If u, v and h are arbitrary complex numbers and by using P = uI, Q = vI, and
H = hI, such that Sp and Dq are scalar in Theorem 8-11, we obtain the scalar case of the result
in [27].

6. Conclusions and Future Work
In the present paper, we apply the fractional calculus approach employing Hilfer

fractional derivative operator to establish the R-matrix functions. In this study, we have
systematically explored the fractional integral properties of R-matrix functions using the
Hilfer fractional derivative operator. By introducing the θ-integral operator and extending
its framework to include R-matrix functions, we have provided a new perspective on
fractional calculus and its applications. Notably, the composition of Riemann–Liouville
fractional integral and differential operators was determined via the θ-integral operator,
offering a robust mathematical foundation for analyzing complex fractional systems. Addi-
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tionally, the inversion and compositional properties of the θ-integral operator have been
established, deepening our understanding of their structural and functional characteris-
tics. These findings not only enhance the theoretical framework of fractional calculus, but
also highlight the utility of R-matrix functions in solving intricate mathematical problems.
The insights gained through this research are expected to have broad applications in areas
such as quantum mechanics, numerical analysis, and systems governed by fractional dynamics.

The presented work paves the way for potential explorations as follow:

• Numerical applications: developing numerical methods and algorithms based on
the θ-integral operator to solve fractional differential equations arising in physics
and engineering.

• Kinetic equations: extending the methodology to address kinetic equations and other
statistical models, particularly in systems with memory effects or nonlocal interactions.

• Quantum mechanics: investigating the application of R-matrix functions in frac-
tional quantum mechanics, including the modeling of wave functions and quantum
transport phenomena.

• Generalization: generalizing the θ-integral operator to multidimensional spaces and
studying its impact on higher-order fractional systems.
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