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Abstract: This paper reports the use of rubber—Polybutadiene as an intermediate adhesive layer 
for improving the adhesion between polyimide (PI) and silicone polydimethylsiloxane (PDMS) 
which is required for a reliable fabrication of flexible/stretchable body patches for various 
applications. The adhesive bond initiated by the butyl rubber (BR), apart from being extremely 
strong, is also chemically resistant and mechanically stable as compared to the state of the art 
processes of improving adhesion between PI and Silicone. 
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1. Introduction 

Medical interventions in new technology is making way for novel ideas. One of them is to 
incorporate ultrasound transducers on a large flexible and stretchable body patch for on-body 
applications such as therapy, monitoring etc. This ‘flexible substrate’ or a ‘body patch’ can be of large 
surface area for instance to monitor the entire abdominal region, or smaller to monitor one specific 
area of the body. The materials to be used in the fabrication of such devices have to be themselves 
flexible, and in some cases stretchable in nature. These materials in this paper are a stack of 
polyimides and silicones (PI 2611 and PDMS, Sylgard).  

The fabrication of the patch however has a set of requirements of which adhesion between the 
flexible and stretchable layers being used, PI and PDMS (silicone) respectively, is the most important 
one. Previously, there have been adhesion improvement methods reported in the literature [1,2] by 
the use of techniques like sputter etch and/or making use of several intermediate layers like SiC and 
SiO2 for a good adhesion. However, these approaches require extensive and expensive fabrication 
methods, which may not always be easily accessible. 

PDMS is a very good window material for the transmission and reception of ultrasound waves, 
and hence an ideal material for our applications. However due to its inherent hydrophobic nature, it 
makes it extremely difficult to adhere to PI. One of the mechanisms reported in the literature to 
enhance the bonding properties of PDMS to PI is by exposing it to a short oxygen plasma which 
makes the surface active, and thus more chemically reactive to the polyimide surface [3]. However, 
this only holds for cases where pre-cured PDMS is bonded to cured PI. Whereas in most process 
flows, including the one presented in this paper, the PDMS is spin coated/casted as the last step of 
the process. In these cases there are very limited solutions to improve the adhesion. 

Polybutadiene is a type of rubber that has low permeability to gases and moisture, as well as 
chemicals, and is thus being exploited for its good barrier and chemical properties in applications 
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such as packaging of devices. In this paper, another aspect of its property is presented which has not 
been previously reported.  

2. Experiments 

2.1. Wafer Preparation  

In order to test the adhesion between these layers 4 test substrates (sample A, B, C and D) were 
prepared. A layer of 5.2 μm PI (2611) is spin coated and cured at 300 °C on all the test samples. Sample 
A is kept as a reference wafer without any surface modification of the PI layer to compare the 
adhesion with the treated samples. 

All the other samples were casted with 15 g of butyl rubber (~86% n-heptane as the solvent, 4% 
anti-oxidant and 10% butyl rubber) each. From previous experiments it was known that the adhesion 
of PDMS to PI, using BR as the intermediate layer, strongly depends on the amount of cross linking 
of the BR layer. In order to address this issue, the samples B, C and D were treated differently 
(explained in the next sub-section). All the samples were then casted with a 10:1 ratio of 11 g PDMS 
(Sylgard) as a last step and baked for 30 min at 90 °C to achieve a thickness of ~1 mm. 

2.2. Butyl Rubber Preparation 

Halogenated polybutadiene rubber is used in this process which is formed by the 
polymerization of 1, 3- butadiene with a few units of isoprene [4]. The catalyst used in the 
polymerization process can be either Nd, Co or Li which results in a mechanically stable linear 
structure of the rubber. This material is typically used in the manufacturing of car tires, however, 
with an increase in the percentage of solvent (n-heptane), thin spreadable layers can be created that 
can be used in MEMS applications. 

As a short loop, a thick layer of butyl rubber (>100 μm) was casted on samples B, C and D. In 
future this can be replaced with thinner layers, by spin coating the BR. Once BR is casted, the solvent 
n-heptane with a very low vapor pressure immediately starts diffusing out of the casted layer. After 
the extraction of n-heptane, the molecules of the rubber undergo entanglement with each other, but 
their cross linking only occurs when the double bonds in their structure are broken by applying 
external energy like heat or UV. To study the difference in adhesion of PDMS with completely cross-
linked BR, and non-cross linked BR, the samples B, C and D were processed differently. Sample D 
was completely cross linked by baking it at 90 °C for 4 h in ambient environment. 

In case of samples B and C, the samples were treated just so as to extract the n-heptane solvent 
from them. The n-heptane solvent evaporation rate was determined by measuring the decrease in the 
weight of the wafer at regular intervals of time after casting BR. This was done at atmospheric 
pressure (sample B) and in a vacuum desiccator (sample C). Within 60 min the n-heptane had been 
removed from sample C, thus making vacuum desiccation as the preferred method to remove solvent 
from BR. The texture of samples B and C were observed to be “tacky” after the solvent evaporation, 
while sample D was completely cross-linked and formed a solid layer. 

2.3. Peel Measurements  

Peel measurements were carried out on a Zwick 1474 Tensile Testing Machine using a load cell 
of 100 N. An incision, 10 mm wide on a 1 mm thick PDMS sample was made in each sample from the 
PDMS side cutting through the BR interface and the underlying PI layer. The PDMS layer was peeled 
from the PI layer over a distance of 30 mm on each sample with a speed of 10 mm/min. The force 
required to peel the PDMS from the BR/PI interface was measured for all the samples (Figure 1).  
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Figure 1. Comparison of forces measured to peel PDMS from the PI show in (a) between non- cross 
linked BR sample and no surface treatment sample, and in (b) between cross linked BR and no 
treatment PI surface. The negative forces in the graphs represent the stiffness of the PDMS which 
pushes against the load cell in the beginning before giving stable force values. 

3. Results and Discussion 

The peel force for sample A, PI-PDMS interface without any surface treatment or intermediate 
layer is measured to be 0.02 N (Figure 1a). While the force measured for samples B and C, with non-
cross linked BR increases up to ~3.5 N. However, when the BR is completely cross linked in Sample 
D the force is measured to be as low as 0.06 N (Figure 1b).  

Such small forces result in smaller work of adhesion in the cases of samples A and D. The work 
of adhesion W (energy per unit area) is defined as the work done to separate two adjacent surfaces. 
This is expressed in equation 1 as formulated by Rivlin [5] for the peeling of a polymer film from a 
rigid substrate:  

W = (F/b)2 × 1/(4Ed) (1)

Here, F is the mechanical force applied on the PDMS-BR interface to peel it from the substrate, b 
is the width of the peeled film, d is thickness of the film material and E is the young’s modulus of the 
PDMS (1.84 × 106 Pa). The calculated work of adhesion for peeling PDMS from the rigid substrate is 
16.64 J/m2 for samples B and C, with non-cross linked BR as the intermediate layer. Whereas, the 
value of W in Equation (1) for the untreated samples and the cured BR samples are 5 × 10−4 J/m2 and 
4 × 10−3 J/m2 respectively.  

According to literature, there are several mechanisms that can play a role in adhesion such as 
mechanical, chemical, electrostatic, diffusive and dispersive bonding [6]. The reason why the 
improvement in the adhesion with the BR as the intermediate layer is observed is because of the two 
phenomenon’s explained below:  

3.1. Chemical Bonding 

The structure of butyl rubber (Figure 2a) has several double bonds. The double bonds get 
oxidized in ambient environment to form –OH groups that react with the PI layer to make polar 
bonds. The interaction between PI and BR is completely chemical, and hence always consistent 
irrespective of the crosslinked or non-cross linked state of the BR. In case of a BR-PDMS interface, 
there are two mechanisms, which can play a part in the adhesion. As depicted in Figure 2 the cross 
linker used in the silicone interacts with the free double bonds of the non-cross linked BR structure, 
while forming a bridge with the free H atoms in the vinyl terminated polydimethylsiloxane. This 
reaction would not be possible if the BR is cross linked, because there are no free double bonds for 
the linking to begin, resulting in a poor adhesion. In Figure 3, it can be seen that the cross linked BR 
sample shows a poor adhesion as compared to a non-cross linked sample, yet it is still slightly better 
than a no-surface treated sample likely due to the presence of a few not cross linked BR chains 

(a) 
(b) 
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interacting with the cross linker, and by extension with the PDMS. However, the scale and the 
differences in the peel force of these two samples is too small to make any strong conclusions. 

(a) (b) 

Figure 2. (a) Equation depicting the cross linking mechanism between PDMs and Butyl Rubber;  
(b) 90° peel measurement of PDMS from BR-PI interface depicting stringing effect [7]. 

3.2. Diffusive Bonding  

Another mechanism that fits well with the interaction of BR-PDMS is diffusive bonding, which 
describes the mechanical locking between materials at molecular level [7]. According to this bonding 
regime, the adhesion is a result of interdigitation between the free chains of two polymers. This type 
of bonding is therefore heavily dependent on the freedom of the polymer chains to interlock with 
each other. In case where one of the polymers are cross linked, their ability to interdigitate is affected, 
leading to a reduction in adhesion or even a poor adhesion (Figure 1b). One effect associated with 
diffusive bonding, which was also observed in our experiments, is the stringing effect when PDMS 
is peeled off from the BR-PI stack (shown in Figure 2b). This effect is as a result of bridge formation 
by the molecules of the two materials instead of crack formation when the separation begins. 
According to literature, stringing can apply to both chemical and diffusive bonding regimes, which 
complies with two mechanisms we propose.  
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