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Abstract: This study concerns the development of two molecularly imprinted polymers (MIP) based 
electrochemical sensors for glyphosate detection. In both cases polypyrrole (PPy) was chosen as 
matrix and glyphosate molecules were the templates. The main difference between the two 
strategies is related to the investigated electrode: gold surface in the first case, and ZnO nanorods 
vertically grown on ITO diazonium modified substrates in the second case. The limits of detection 
(LOD) of these sensors were about 10−13 M and 10−10 M respectively. 
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1. Introduction 

Glyphosate is the most frequently used herbicide worldwide. Its hazard potential is unclear, as 
it possesses amino acid-like structures which might interfere with the formation of amino acids and 
other chemicals in plants. Among the major concerns, glyphosate was found to affect the human 
hormonal system, chromosomal changes, tumors in the pancreas, and increased risk of skin cancer 
[1]. These health concerns have motivated the development of numerous analytical methods to track 
glyphosate in the environment as well as in body fluids. Despite their highly sensitive and accurate 
detection, many of the developed methods are costly, complicated, time-consuming or require 
extensive instrumentation. 

An interesting alternative approach consists in the design of molecularly imprinted polymer 
(MIP) based electrochemical sensors [2,3] for the selective detection of glyphosate. The rationale for 
making MIPs, is that they are low-cost, sensitive and powerful analytical tools capable of determining 
low concentrations of this herbicide, inferior to the limits required by the European standards (EU 
limit in drinking water is 0.1 μgL−1 (5.9 × 10−10 M) [4].To achieve high sensitivities and low limits of 
detection, a promising route consists in increasing the specific surface area of the sensors by 
incorporating ZnO nanorods, which have ultra-high surface/volume ratio, and coating them with the 
PPy-MIP [5,6]. 
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2. Materials and Methods  

2.1. Chemicals 

Pyrrole, lithium perchlorate, glyphosate, omethoate, methanol (MeOH), acetic acid (AcCOOH) 
H2SO4 (95%) and H2O2 (30%), zinc acetate dihydrate (Zn(CH3COO)2 2H2O, 99.99% of purity), sodium 
hydroxide (NaOH, purity ≈ 97%), hexamethylenetetramine (C6H12N4, 99% purity) and ITO electrodes 
were purchased from Sigma Aldrich. Absolute ethanol was supplied by VWR Prolabo; Zinc nitrate 
hexahydrate (Zn(NO3)2, Purity ≈ 99%) was from Merck. Pyrrole was purified before its use by filtering 
through basic alumina column and stored in dark under argon at −4 °C. Lithium perchlorate was 
used as a supporting electrolyte for electrochemical measurements. Glyphosate and omethoate were 
used as received. 

2.2. Electrochemical Measurements 

Electrochemical measurements were performed at room temperature with a CHI 
650electrochemical workstation. A conventional three-electrodes system was used with a steel grid, 
a saturated calomel, and gold (or ITO) substrates as auxiliary, reference and working electrodes 
respectively. 

2.3. Atomic Force Microscopy 

Atomic force microscopy measurements were carried out at room temperature, with a Nanosurf 
(Liestal, Switzerland) easyScan 2 Flex AFM system in the dynamic force mode, with cantilever’s 
resonance frequency of about 165 kHz. Commercially available tips with typical curvature radius of6 nm 
were used (ACLA silicon AFM probes, from AppNANO, Mountain View, CA, USA).  

2.4. Design of MIP Based Senors 

Two routes were investigated to design the MIP based sensors (Figure 1). Prior to any 
electrochemical process, the working electrodes were cleaned and activated by a drop of a piranha 
solution (98% H2SO4/30% H2O2 1:1 V/V), during 20min.  

For the first route, the films were electrodeposited by chronoamperometry (CA) to control their 
growth. A thin polypyrrole blocking layer was deposited by CA before MIP electrosynthesis to 
prevent the formation of glyphosate complexes with gold electrodes (Figure 1a).  

In the second strategy, MIP coated ZnO nanorods were considered to attempt enhancement of 
sensitivity to glyphosate. ZnO nanords were prepared as follow [7]: first, 75mM of zinc acetate were 
mixed homogenously and stirred during 6h at 75°C with 100mM of NaOH in 75mL of ethanol to 
obtain ZnO nanoparticles which were deposited by spin coating on Gold (ITO) surfaces modified by 
diazonium salts. The further growth step was carried out by immersing the electrodes in a beaker 
which contains 500mL of water, 30mM of zinc nitrate hexahydrate and 30mMof 
hexamethylenetetramine (HMT). The mixture was heated up to 95 °C and stirred for 5 h. Finally, the 
samples were rinsed with deionized water and dried at 120 °C.  

 
Figure 1. Schematic representation of MIPs preparation (a) PPy electropolymerized MIP and (b) ZnO-
MIP based sensors.  

(b)(a)
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3. Results and Discussion 

3.1. Electrochemical Measurements 

Square wave voltammetry (SWV) was used to record the sensors response to glyphosate at 
different concentrations varying from10−13M to 10−4M. Results presented in Figure 2 indicate that the 
current peaks values increase with glyphosate concentration and that the peak corresponding to the 
lowest concentration remains clearly distinguishable, with respect to the response to the blank. This 
value is three orders of magnitude lower than the limit value set by the EU for drinking water. 

Figure 2. Follow up of glyphosate concentration variation, by square wave voltammetry (left), and 
current variation versus glyphosate concentration (right). 

Selectivity tests were performed with omethoate, an organophosphorous pesticide widely used 
in the EU. Figure 3 shows that the sensors’ response for omethoate at concentration as high as 10−4M 
is comparable to that for glyphosate at concentration of 10−13M. These results are encouraging and 
other pesticides are under test. 

 

Figure 3. Current variation versus potential corresponding to glyphosate and omethoate detection by 
MIP based sensor (left); chemical structure of the two pesticides (right). 

3.2. New Route and Perspectives  

To reach high sensitivities and low LOD values, we chose to increase the specific surface area of 
the MIP by incorporating ZnO nanorods, due to their ultra-high surface/volume ratio. The 
preliminary experiments show that is possible to create nucleation sites on nonflexible electrodes 
(ITO or gold) for vertical growth of ZnO nanorods (Figure 4c). Nevertheless, by coating ZnO 
nanorods electrochemically with PPy-glyphosate-MIP, we do not reach the expected enhancement of 
sensors’ metrological performances. Indeed, the LOD obtained in this case, of about 10−10M, is in the 
same order of magnitude as the EU recommendations but largely superior to that obtained with the 
first strategy (10−13M).The main reasons lye in the distribution density and inclination of the ZnO 
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nanorods, as shown in AFM images (Figure 4c). Optimization of these crucial parameters and 
nanorod spacing, essential for significant improvement of the sensors performances. 

 
Figure 4. AFM images (3×3 μm2) of (a) bare ITO electrode; (b) After deposition of ZnO nanoparticles; 
(c) after further ZnO nanorods growth. 
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