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Abstract: We realized a non-invasive wearable device able to record muscle activity using patch 

electrodes positioned on the skin over the muscle. It is an integrated system-on-board developed 

for the detection of several physical and physiologic human parameters which includes specific 

circuits for detecting the surface electromyography signal and algorithms for the real-time data 

processing optimized to low computational load. In real time, the proposed system dissipates only 

26 mW and guarantees 20 h battery autonomy. The system exhibits performance comparable with 

those achieved with state-of-art wired equipment used in the hospitals, but with the advantage of 

being an embedded wearable wireless device.  
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1. Introduction 

Application of ICT and sensor technologies to healthcare is an innovative strategy to treat the 

diseases and help doctors in managing specific diseases in all those situations in which the 

conventional methods of medicine is poorly effective. In this frame, wearables devices and body 

sensor networks are attracting most attention for the treatment of chronic diseases of elderly, who 

need monitoring of the symptoms and adjustment of pharmacological therapies [1,2].  

The surface electromyography (sEMG) is a diagnostic technique that detects in real time the 

muscle activity using patch electrodes properly positioned on the skin over the studied muscle. This 

technique is not invasive, as opposed to the fine wire EMG, and is more comfortable and tolerated 

by patients. It is extremely useful in those cases in which it is necessary to monitor for (relatively) 

long time the muscle activity and to detect and distinguish voluntary contractions of muscles. This is 

the case of neurodegenerative diseases involving motor disorders. Cramps, muscle contractions, 

abnormalities in neuromuscular functions and a variety of symptoms related to the progression of 

neurodegenerative diseases can be studied objectively and quantitatively by sEMG. Currently, sEMG 

is performed by means of laboratory wired equipment. This poses a number of problems. First of all, 

the test needs to be performed during outpatient visits and therefore it can last a few minutes at most; 

second, the presence of wires implies space limitations in the sense that the patient cannot walk or 

make any free movement; third, wires introduce movement artifacts and last but not the least, noise 

of the power supply at 50 Hz, which lies exactly in the most meaningful portion of the spectrum.  
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To overcome these problems, we realized a wireless wearable embedded system able to record 

sEMG signal for long time, perform the signal processing, save data on a microSD (monitoring 

operation) or transmit them to a PC via Bluetooth Low Energy. 

2. The System 

Hardware. To get reliable clinical and physiological information from neuromuscular 

functionality, the sEMG needs to detect the exact timing and duration of the muscle activities. The 

typical raw sEMG signal is sketched in Figure 1. Regardless of the type of physical connection used 

(fine wires or patch electrodes), the frequency components are typically in the band between 3 and 

500 Hz with a main content between 10 and 250 Hz. In the case of the sEMG amplitude is typically 

between 0.1 and 2.0 mV (which rises up to 5.0 mV in very special cases as for athletes) [3]. 

 

Figure 1. Sketch of a typical raw EMG signal recorded with fine wires or patch electrodes. 

The starting point of the hard device was an integrated system-on-board (Bio2Bit Move) 

developed for the detection of several physical and physiologic human parameters (shown in Figure 

2). The Bio2Bit Move contains an ultra-low power active front end for the acquisition of EMG signal, 

an ultra-low power MP ARM Cortex M4 at 32 bit, a Bluetooth Low Energy, a 592 mWh battery, a 

micro-USB connector. In general, the blocks of a circuit for sEMG signal acquisition are displayed in 

Figure 2c. 

The distance between the electrodes is equal to 20 mm according to international consensus of 

the SENIAM (a European concerted action in the EU Biomedical Health and Research program). The 

electrodes clips are integrated into the device package so that the distance remains fixed (as shown 

in Figure 2a). This avoids artifacts in the sEMG signal due to wire movement. 

 

Figure 2. Sketch of the Bio2Bit Move: (a) the electrodes; (b) case of use; (c) blocks for sEMG signal 

acquisition. 

Software. The choice of algorithms can be brought back to two main categories depending on 

whether or not it is required that the processed signal is known a priori. To be more general, we 

decided to implement an algorithm independent of the a priori knowledge, because it gives greater 

flexibility and is not related to any specific muscle. In fact, in the case of voluntary muscle 

contractions, the sEMG signal is stochastic and denotes a sudden variation of both amplitude and 

frequency, deriving from the activation of the action potential. Therefore, we focused onto the Teager-

Kaiser Energy Operator (TKEO), which puts in evidence the instantaneous increase of the action 

potential and reduces the baseline noise [4]. A threshold algorithm was then implemented in TKEO’s 

domain for detecting muscle activity, taking into consideration the minimum period of muscular 

activity, the minimum period of muscle inactivity and the margin of accuracy in the estimation of 
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such measures [5,6]. An example of TKEO normalization is shown in Figure 3. The signal processing 

chain is shown in Figure 4. Signal processing of the sEMG signal was based on the FIR DC and HP 

filtering, the TKEO normalization and the RMS smoothing. 

 

Figure 3. Raw and TKEO EMG signal, on the same time and amplitude scale. 

 

Figure 4. Data processing chain. 

For the determination of the threshold (T), the period of muscular inactivity before a contraction 

was studied. Then, we defined: T = mean(EMG(tw)) + j∙std(EMG(tw)), to distinguish the muscle activity 

time periods from inactivity ones. In that equation, mean is the average value, std the standard 

deviation, j a dynamic factor, tw the time window (in this case is of 500 ms). Figure 5a shows the 

detection of the muscle activity with RMS (blue) and dynamic threshold factor j (green) in tw = 200 

ms. An example of the processed sEMG signal is displayed in Figure 5b in the same tw. 

 

Figure 5. (a) The RMS signal (blue) and factor j (green); (b) An example of the EMG signal in the  

same tw. 

Tests and Performances. Systematic tests were performed recording contemporarily the sEMG 

signal with our wearable device and a state-of-art commercial wired equipment (Digitimer D360, 

Digitimer Ltd., Welwyn Garden City, Hertfordshire, UK), as shown, for example, in Figure 2b. First 

of all, we noticed that the Digitimer exhibited a much worse baseline due to the electrical grid noise 

(especially for the muscles of small dimension, as the abductor pollicis brevis), as shown in Figure 

6a, where a zoom of the two synchronized trace baselines is displayed. However, if the Digitimer 

Notch filter at 50 Hz was activated, the information around 50 Hz was lost and this is very penalizing 

since 50 Hz lies in the mid of the meaningful spectrum. This is shown in Figure 6, where the FFT of 

signals are displayed. As a result, our wearable device showed excellent performance in terms of 

sensitivity and specificity in muscle activity detection and timing. In fact, the traces obtained with 

our wearable device were always perfectly superimposed on the time scale with those obtained with 

the Digitimer D360, as demonstrated in the two examples reported in Figure 7. 

Finally, we wish to make some consideration about power consumption. The algorithm takes  

41 ms for processing 104 samples acquired at 512 MHz (which is approx. 20% of the CPU load), uses 

25 KBytes ROM and 16 KBytes RAM. In these conditions, the wearable device in monitoring 

operation (i.e., saving data on the memory without transmitting via Bluetooth) dissipates 26 mW. 
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The device battery features 592 mWh, which means that the system has more than 20 h operation 

autonomy. 

  

Figure 6. (a) Zoom of the baselines of the wearable device (red line) and the Digitimer D360 equipment 

(blue line); (b) FFT of the signals recorded with the Digitimer D360 and (c) our wearable device. 

 

Figure 7. Filtered sEMG traces recorded with the wearable device (red line) and the Digitimer D360 

equipment (blue line) in the case of: (a) brachial biceps contraction; (b) abductor pollicis brevis 

contraction. 

In conclusion, the proposed wearable device is the first one embedding the sEMG data 

processing and performing continuous non-invasive monitoring of the muscle activity with high 

accuracy and long-time battery autonomy. It exhibits sensitivity and specificity in the detection of 

muscle activity comparable with those achieved with state-of-art wired equipment conventionally 

used in the hospitals, but with the advantage of being wireless and comfortably wearable.  
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