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Abstract: Features of solute-solvent intermolecular interaction establishing hydrogen bonds were 
studied in view of proton sharing in the O---H+–O moiety that is the prerequisite for proton moving 
through water. Liquid microcrystals are expected to be formed due to the protons moving through 
water confined in their precursors. Among the different oxygen-containing organic solvents 
well-dissolved in water, tetrahydrofuran (THF) has been found the most suitable since it forms a 
molecular complex with carbon dioxide dissolved in water producing the ions H+ and (HCO3)−. 
This three-component complex exhibits in infrared spectra vibrational bands characterizing the 
complex and the proton sharing in the O---H+–O moiety. Assemblies consisting of mono- 
protonated meso-tetraphenylporphine (TPP) dimers self-organized into submicroscopic particles in 
solution and water with 0.86 mol·L−1 THF have been investigated by infrared spectroscopy, SEM, 
and AFM in thin layers. Earlier found tight water covering the submicroscopic particles is proved 
to exhibit an ordered and non-ordered local areas on the surface. Molecular characteristics 
estimated for the three-component complex involving THF suggest that the complex together with 
the TPP dimers partakes in the crystallization process providing protons moving through water. 

Keywords: liquid microcrystals; solute-solvent interactions; hydrogen bonding; proton sharing; 
THF·(HCO3)−·H3O+ complex 

 

1. Introduction 

Liquid crystals have a wide application in photonics, sensors, telecommunication, liquid crystal 
displays, mobile phones, digital cameras, in development of tunable photonic devices, and so on, so 
many books and publications are devoted to liquid crystals [1–5]. Physical nature of the formation of 
liquid crystals is usually connected with rod-like organic molecules, which on cooling can change 
their orientation with the transition from isotropic to anisotropic liquid, wherein hydrogen bonds 
are often formed between the molecules [5]. Liquid microcrystals can be also formed on the base of 
self-organized molecular systems consisting of water and a porphyrin dimers, namely meso- 
tetraphenylporphine (TPP) whose molecules are connected to each other in the dimer via hydrogen 
bonds of small-size protonated water cluster [6]. The latter mode seems to be very perspective 
because the engineering of liquid nanocrystals is possible too that may be depending on the physical 
nature of liquid crystal formation. Such nanocrystals are very likely found in thin layer earlier [7]. In 
this connection, the physical nature of the formation of liquid crystals, micro- and nano-crystals 
acquires important significance for future development of the research field. New developments 
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based on liquid crystals considerably extend the application area [8], but the physical nature of the 
liquid crystal phenomenon is remained unclear. The understanding of this phenomenon on 
molecular level is extremely desirable to outline all applications of the liquid crystals of a wide range 
of their size. The findings of key role of water in the crystallization of the self-organized assemblies 
of protonated TPP dimers and Zundel cation (H2O---H+–OH2) operation [6,9] imply the formation of 
liquid crystal state due to proton moving through water confined in the assemblies. However, role of 
water-soluble organic solvent was remained unclear because the organic solvent was expected to be 
evaporated together with the excess of hydrochloric acid and water. Thus, the work was aimed on 
elucidation of the role of water-soluble organic solvent in the processes of liquid crystals formation 
including the study of the solute-solvent interactions separately using infrared spectroscopy. 

2. Results 

Thin layers of different solvents well-dissolved in water were tested by IR spectroscopy to 
elucidate features of the solute-solvent molecular interactions, since the organic solvent influences 
on the morphology of the self-assembled domains [10]. 

2.1. Infrared Spectroscopy of Solvents and Submicroscopic Particles Consisting of TPP Dimers and Water 

Among the organic solvents such as dioxane, dimethylformamide, tetrahydrofuran (THF), and 
acetic acid, the IR spectra of THF containing water were found the most interesting, thin layers of 
which exhibit three-peaked bands around 2344, 2680, and 3508 cm−1 shown in Figure 1. Obviously 
the band at 2344 cm–1 testifies the presence of atmospheric CO2 dissolved in water, the other at 3508 
cm–1 characterize O–H stretching vibrations, and the band at 2680 cm–1 is the evidence of proton 
sharing in the O---H+–O moiety [7]. As known, CO2 dissolved in water can produce H+ and (HCO3)–. 
The band of H–O–H bending vibration around 1634 cm–1 is red shifted by 8–10 cm–1 in Figure 1 
relatively that at 1640 cm–1 indicating a stronger hydrogen bonding in THF/water solution than in 
pure water. 

 

Figure 1. Infrared spectrum of THF containing water (blue line), a drop crashed between CaF2 plates 
(left-upper scale); the 1722 cm–1 band attests the presence of H+(HCO3)– in the solution; black line cuts 
two intense bands. Inset shows IR spectrum (pink line) obtained after full evaporation of 3.6 mol L–1 
aqueous THF in the presence of 0.4 N HCl in the solution producing the lusterless spot, which during 
5–10 s absorbs water vapor from air forming the aqueous surface on CaF2 plate (right-lower scale). 
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Such solvents as THF and aqueous hydrochloric acid are known as well-evaporating liquids. 
Their solution gives a lusterless spot after the complete evaporation, however the spot was almost 
instantaneously transformed into liquid, IR spectrum of which is shown in Figure 1, inset. The main 
bands of the letter are O–H stretch at 3400 cm–1 of water with a shoulder around 3200 cm–1 and H–O–
H bend at 1634 cm–1. The small bands attest the features of local interactions between the molecules. 
The shoulder around 3200 cm–1 matches the small three-peaked band at 3207 cm–1 observed in the 
spectrum in Figure 2 of THF containing water. Thus, a complex formed by THF and CO2 dissolved 
in water, structure of which is depicted in Figure 2, inset according to characteristic bands around 
2344, 2680, and 3508 cm–1, is present in THF containing water. 

The oxygen-oxygen distance (RO–O) in the O---H+–O moiety of the complex can be evaluated 
with a correlation obtained for small-size water clusters, where ω is the observed wavenumber [11]. 

ω = 6205 × RO–O – 13107 (1) 

With ω = 2680 cm−1 of the three-peaked band characterizing proton sharing depicted in Figure 2, 
inset (below) the calculated RO–O = 2.54 Å that is close to 2.56 Å found earlier for the N–O distance in 
the N–H---O moiety of the protonated water cluster embedded between TPP units in the dimer [7]. 

 
Figure 2. Infrared spectrum of THF containing water with enlargements of local regions, a drop 
crashed between CaF2 plates. Insets show formation of the complex with carbon dioxide dissolved in 
water (upper); and proton sharing in the moiety containing THF (below) that provides proton 
moving through water. 

The three-component complex is also formed in the presence of hydrochloric acid, the lusterless 
spot of which is proved very hygroscopic. However, in the presence of HCl the complex contains 
non-dissociated carbonic acid instead of bicarbonate ion. The Cl– ion is most likely does not involved 
in the structure of the complex as depicted in Figure 2, inset. 

A doublet nearby 1000 cm–1 observed in IR and resonance Raman spectra of self-assembled 
mono-protonated TPP dimers has been identified with proton sharing in the N–H3O+---O moiety [9]. 
The resonance structures corresponding to the components of the resonance Raman spectrum 
displayed in Figure 3, inset illustrate the change of the hydrogen bond location in N–H3O+---OH2 
under the proton moving. As we can see, the peaks at 1000 and 1025 cm–1 differ from each other that 
implies somewhat different localized states, whose characteristics can be evaluated (see below). 
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Figure 3. Resonance Raman spectrum of meso-tetraphenylporphine dimers, (TPPH)22+ that exhibits 
λmax = 437 nm in 50% aqueous acetone (v/v) (λex = 441.6 nm, a spectral slit width for the registration 
was 4 cm–1, He-Cd laser [12]); blue lines show the width at the half of the height and red shows 
baseline. Inset shows the illustration of proton motions in the N–H3O+---O moiety of the protonated 
water cluster embedded between TPP units in the dimer [7]. 

The effect of the support on the self-assembled mono-protonated TPP dimers found earlier in IR 
spectra [12] is shown in Figure 4. On the solid CaF2 plate, the bands of water confined in the 
assemblies of the TPP dimers are strongly narrowed in comparison with those on liquid support of 
oil. This effect has been discussed earlier [12] and it should be noted that the amplitude of the 
vibrations in the quasi-crystal structure are strongly restricted, while proton moving through the 
confined water can take place most likely in both cases because the structure self-organization occurs 
on the solid support too [6,7]. 

 

Figure 4. Infrared spectra of mono-protonated TPP dimers self-assembled into submicroscopic 
particles in 0.86 mol·L–1 aqueous THF in the presence of 0.4 N HCl recorded after the solvent 
evaporation: (1) thin layer on CaF2 plate (right scale); and (2) the same sample collected from the 
plate in Vaseline oil (left scale); an asterisk (*) marks the oil bands. The TPP/H2O molar ratio is 
approximately 1/600 ÷ 1/630 [13]. 
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Thus, the proton sharing that takes place in the complex involving THF and CO2 dissolved in 
water provides the intermolecular interactions required for the formation of liquid microcrystals. 
Note that proton sharing is the prerequisite for proton moving through water confined in the 
submicroscopic particles or aggregates [9]. This molecular complex and the protonated TPP dimers 
provide proton moving through water as during the structure self-organization in solution and most 
likely in the course of the crystallization in thin layer. The other solutions of water with dioxane, 
dimethylformamide, and acetic acid did not show up similar vibrational characteristics. 

2.2. AFM-SNOM of Submicroscopic Particles in Thin Layer Covered by Tight Water 

The submicroscopic particles or the particles of microscopic proportions are usually covered by 
a layer of tight water because a sample tested by non-contact and contact AFM showed up the 
different images [14]. Non-contact AFM exhibits the particles of microscopic proportions as 
displayed in Figure 5, while contact AFM of the same sample previously revealed nanoparticles of 
200–400 nm size [14]. The simultaneous SNOM image shown in Figure 5 outlines the shape of the 
particles seen by AFM, but all the particles are completely transparent for the light that is in fair 
agreement with the TPP/H2O = 1/600 molar ratio. 

The detailed study of the tight water surface as displayed in Figure 6 showed up two different 
areas, one of them with an ordered structure and the other is non-ordered. The tight water contains a 
large amount of the salt [14], which is most likely concentrated in the non-ordered areas. Arrows in 
the AFM image of Figure 6a mark the border between these different areas. As found previously, the 
engineering of microcrystals based on the self-organized protonated TPP dimers requires three acts 
of the engineering actions for the fabrication of 30–35 µm green crystals [7] and two acts for the 
microcrystals of ellipsoid shape of ca. 1.7 × 2.4 µm size measured at a half of the height [6]. One from 
those actions is the application of gaseous water to initiate the crystallization in order to Zundel 
cations (H2O---H+–OH2) action in the surface layer could occur [6,7]. 

 

Figure 5. Simultaneous non-contact AFM (10 µm × 10 µm), top view, z-scale: 600 nm (to the left) and 
shear-force SNOM, z-scale: voltage 0.5 V (to the right) scans of a thin layer, which was prepared by 
solvent evaporation from mainly di-protonated TPP dimers self-assembled in 2 N aqueous HCl with 
0.86 mol L–1 THF and the cross-sections A and B of different domains of the assemblies. 
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Figure 6. Simultaneous non-contact AFM and shear-force SNOM images (top view) of the thin layer 
as displayed in Figure 5; AFM: (upper, 1.6 µm × 1.6 µm and lower, 0.8 µm × 0.8 µm), top view, 
z-scale: 300 nm (to the left); SNOM: z-scale: voltage 0.2 V (to the right); (c,d) are the enlargements of 
the squares shown in (a,b), respectively; the SNOM image does not exhibit an ordered area like the 
AFM image that is why the further study with SNOM did not performed. 

The ordered areas apparently contain the salt too but in considerably less amounts because they 
demonstrate crystalline structure as displayed in Figure 7. The cross-section exhibits a regular 
structure on the surface with the step width of 28.6 nm. It should be noted that the resolution of the 
measurements was the same as found earlier [15], namely (10.3 − 10.6) ± 0.08 nm with the reliability 
of 99%. The latter admits to consider these ordered areas should not be artifacts, although the 
finding requires further detail research in the future. 

The invariable sharp angle (α = 46.2°) between the strands can be the next evidence of the 
reliability of the ordered areas on the surface. Although the latter angle is somewhat different from 
the theoretical α = 52.4° predicted by the model of proton moving through water [9], but similar 
deviation has been found for self-assembled mono-protonated TPP dimers with the use of distilled 
water (see below). Besides, the dissolved carbon dioxide involving THF in the complex does not 
possess similar hydrophobic affinity like TPP, mono-protonated dimers of which are self-organized 
due to proton moving through water that results in the experimental angle 55° ± 3° of a slanting 
cross on the surface with the use of de-ionized water [9,12]. 

Thus, the three-component complex formed by hydronium ion (H3O+), THF, and carbon 
dioxide dissolved in water, which has been converted into carbonic acid, should provide proton 
moving through water too. This complex is located in the tight water covering the submicroscopic 
particles and exhibits proton sharing in the O---H+–O moiety like the other one formed in the 
aqueous THF according to the three-component band at 2680 cm–1. 



Proceedings 2018, 2, 1112 7 of 14 

 

 

Figure 7. Non-contact AFM image taken from Figure 6c, blue square, 0.5 µm × 0.5 µm (top view) with 
the cross-section; letter marking the cross-section line drawn in the top-view shows the origin of the 
cross-section here and below; a director indicates forward and backward proton moving directions 
through water; the sharp angle α = 46.2°; the calculated distance 7d = 200 nm, d = 28.6 nm; see details 
in the text. 

2.3. Crystallization Process of the Submicroscopic Particle Self-Organized into Domain in Thin Layer 

According to theoretical model of proton moving through water via intermediate states with 
proton sharing between the neighboring water molecules, there is a threshold of the O–O distance of 
2.45 Å when the probabilities of proton sharing and its moving through water (or delocalization) are 
equal [9]. In that model there is also a peculiar assuming that the proton bypasses the neighboring 
hydrogen-bonded water molecule to explain the sharp angle of (55 ± 3)° between the tracks on the 
surface like those shown in Figure 8. These tracks are originated because of protons moving along 
the axis of the aggregate length in the forward and backward directions generating the inner structure 
self-organization in the water-porphyrin matrix [9]. Therefore, the corresponding director shown in 
Figure 8 indicates the forward and backward proton moving through water confined in the aggregates. 

 

Figure 8. SEM images of the self-organized assemblies containing mainly mono-protonated TPP 
dimers and water after the removing of weakly bound water by evaporation of 0.86 mol L–1 aqueous 
THF in the presence of 0.4 N HCl: (A) and (B) were obtained with somewhat different porphyrin 
concentrations; the sharp angle α = 43.2°. An arrow indicate proton moving direction through water 
confined in the aggregates at forward and backward directions. The proton moving direction 
coincides with the axis along that each proton is shared according to the theoretical model [9]. 
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However, in fact there is a deviation from the director that is due to proton hopping steps 
bypassing the neighboring water molecule [9]. So that the deviation is arisen because of proton 
moves along the tetrahedral network of hydrogen bonds surrounding the wires (or rods) of the TPP 
dimers contacting by phenyl rings [10]. As a result, the theoretical and experimental angles of the 
deviation of proton hopping steps relatively to the direction of proton moving (or director) were 
found to be 52.4°/2 = 26.2° and 55°/2 = 27.5° with the use of de-ionized water, respectively [9,12]. The 
less angle α = 43.2° is found for the aggregate in Figure 8B, when distilled water was used for the 
preparation of the assemblies that gives the less deviation, α/2 = 21.6°. To quantify how much order 
is present in the material an order parameter (S) is defined as follows [5]. 

S = (1/2) <3 cos2 θ − 1> (2) 

where θ is orientational deviation of the molecules from the director, θ = α/2. With θ = 26.2°, 27.5°, 
and 21.6° the calculated orientational order parameters are S = 0.71, 0.68, and 0.797, respectively. 
With θ = α/2 = 46.2°/2 for the ordered areas in Figure 7 the calculated S = 0.769 that is close to S = 
0.797. Thus, the three-component complex orientation is consistent with that of the wires (or rods) of 
the protonated TPP dimers of Figure 8. In both cases the distilled water was used for the preparation 
of the samples. The background of the SEM images (see Figure 8 and Appendix A) attests the 
destroying of many nanoparticles in vacuum [10,12], so only the assemblies possessing a structure, 
which are covered by a thin metal film, are remained undestroyed on the plate in the vacuum. 

Similar protons moving should take place during the crystallization process producing the 
particles of ellipsoid shape since they are formed in the thin layer under water vapor action on the 
self-organized domains. These particles found with a light Zeiss microscope are actually the 
micro-crystals [6]. The precursor of the microcrystal observed with contact AFM [6] is shown in 
Figure 9 which certainly has the crystalline appearance. Note that the bulk modulus (Bm) estimated 
for the microcrystals is found to be 3.72 GPa that is between Bm = 12.7 GPa of the solid thin film, IR 
spectrum of which is shown in Figure 4, curve 1, and Bm = 2.174 GPa of liquid water [6]. Hence, these 
particles produced by the precursors in the thin layer have been identified as liquid microcrystals. 

 

Figure 9. 2D image of microcrystal precursor obtained by contact AFM (2.5 µm × 2.5 µm, top view, 
z-scale is 1000 nm) produced by the assembly of mono-protonated TPP dimers and water 
self-organized into domain after evaporation of 0.86 mol L–1 aqueous THF in the presence of 0.8 N 
HCl (to the left). Inset shows the cross-sections A and B, where A demonstrates the contact angle φ = 
34−35°; and 3D image of the precursor exhibiting germ prolongation (to the right). 

The final step of the crystallization process is the microcrystal precursor condensing, which is 
accompanied by disappearing of the prolongated part of the germ, while the germ located on the top 
is remained unchanged. The precursor and the microcrystal both are shown in Figure 10A,B, 
respectively. The precursor’s facet, on which the prolongated part of the germ is located, has the 
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contact (φ) angle of approximately 35° as displayed in Figure 9, inset, while the completely formed 
microcrystal shown in Figure 10B has the contact angle of 45.2° of the corresponding facet [6]. 

 

Figure 10. AFM image of: (A) the microcrystal precursor as displayed in Figure 9; and (B) the liquid 
microcrystal (3 µm × 3 µm, top view, z-scale is 1300 nm) obtained by contact AFM after completion of 
the crystallization process. The self-organized assemblies consisting of mono-protonated TPP dimers 
and water were prepared like previously [6,16], i.e., in 0.86 mol L–1 THF with 0.8 N aqueous HCl. 

Thus, the compression of the inner water-porphyrin matrix of the microcrystal precursor that is 
accompanied by the disappearance of the prolongated part of the germ occurs together with the 
action of the surface tension created by the aqueous surface layer, which gives larger contribution 
under the less contact angle. 

3. Discussion 

Water soluble organic solvents usually contain water as an admixture, so that even fresh 
distilled THF exhibits in IR spectrum a number of small bands like those in Figure 2, but not well 
resolved. Similar non-resolved small bands can be seen in IR spectrum of THF in Ref. [17] too. With 
the increase of water amounts in THF, these bands become well resolved and the most intense 
three-component 2680 cm–1 band attests the formation of the complex involving hydronium ion 
(H3O+) [7]. This three-component band matches a 2766 cm–1 band found in IR spectrum of a thin 
layer formed by the assemblies of protonated TPP dimers, which attests proton sharing in the N–
H+---O moiety of water cluster embedded between TPP units in the dimer [7]. The proton sharing is 
identified with a doublet nearby 1000 cm–1 observed in IR or resonance Raman spectra with an 
energy gap of 16–18 cm–1 or ca. 25 cm–1, respectively [9,12]. Therefore, the characteristic 2680 cm–1 
band attests proton sharing too but between oxygen atoms in the O---H+–O moiety. In the sample of 
Figure 2, the H2CO3 acid has mainly been dissociated into ions H+ and (HCO3)–, since the 
three-component 2680 cm–1 band is significantly larger in the magnitude than that at 3207 cm–1. In 
contrast, as evidenced by the shoulder at 3200 cm–1 in the sample of Figure 1, inset (thin aqueous 
layer), the carbonic acid is present in the non-dissociated state, because of hydrochloric acid has not 
been evaporated under the sample preparation. As known in pure water, the majority of the CO2 is 
not converted into carbonic acid because the hydration equilibrium constant (Keq = [H2CO3]/[CO2]) is 
ca. 1.7 × 10–3 at 298 K. Therefore, the three-component complex formation in the samples of Figure 1, 
inset and 2 is mainly caused by proton sharing arisen because of the hydrogen bonding. Thus, the 
structure of both these complexes should be the same including the O–O distance in the O---H+–O 
moiety, despite of the spectrum in Figure 1, inset exhibits the unstructured shoulder in the presence 
of a high concentration of hydrochloric acid. 

It should be noted that proton sharing usually occurs between hydrogen-bonded water 
molecules in the excited state that requires an energy of 0.81422 eV in the case of vibrational mode of 
proton sharing [18,19]. Similar proton motion between the hydrogen-bonded molecules that is 
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accompanied by the proton spin turnover as depicted in Scheme 1 requires considerably less energy, 
which occurs because of spin-orbit coupling between the electron and proton establishing the 
hydrogen bond [20]. In this case, the spin-orbit coupling parameter β = 1.19100654 is almost 
non-dependent on quaternary molecule coordination like under X-ray absorption [19]. Note that the 
O–O distance estimated above in the O---H+–O moiety of the three-component complex is valid for 
similar complex formed in the presence of HCl because RO–O = 2.54 Å is defined by the spin-orbit 
coupling parameter but not ionized/non-ionized carboxyl group. 

 

Scheme 1. Illustration of proton motion between the hydrogen-bonded water molecules 
accompanied by the change of the nucleus spin direction to the opposite resulting in the forward 
proton moving [20]. The difference (ћω − ћω’) = 1.41153 cm–1 arisen because of spin-spin interaction 
between the coupled proton and electron establishing the hydrogen bond is estimated with the 
hydrogen’s Lamb shift [21]; oxygen atoms and electrons are depicted by red and pink, respectively, 
blue lines show the bonds and hydrogen bonding. Inset shows similar transitions in the moiety of 
THF and H2CO3 of the three-component complex. 

Thus, in both cases the proton sharing provides hole polaron moving through water, which 
generates longitudinal optical (LO) photons in the case of the water-TPP molecular system [6,16]. 
The generation of LO phonons occurs even at 77 K in a vitreous solid [22] that implies the proton 
moving through water takes place in the film on the solid support of Figure 4, curve 1. While on the 
liquid support (Figure 4, curve 2), the proton collisions with oxygen atoms of water molecules 
generate the vibrations strongly increased in the magnitude. 

An estimate of the frequency of proton sharing that takes place in the small-size protonated 
water cluster embedded between TPP units can be performed using characteristics of the doublet at 
1000, 1025 cm–1 (Figure 3), where base line for the peaked bands is depicted by red. This small-size 
water cluster has hydrogen bonding connections with the network surrounding the TPP dimer [7]. 
Hence, the meta-stable resonance states are most likely depending on the oscillations of tetrahedral 
hydrogen bonds. As known, the width (Гms) of the resonance produced by a meta-stable state is 
usually given by the relation, where τr is the lifetime of the resonance and ћ is the reduced Planck 
constant. 

Гms = ћ/τr (3) 

The width (Δνm) measured for the meta-stable structure depicted in Figure 3, inset (to the right) 
is 21.786 cm–1. To find proton sharing frequency, we should exclude spin-orbit coupling (namely 
(√β)2) for both electrons coupled with the same proton that is depicted in Scheme 1. Then Гms = Δνm/β 
gives Гms = 18.293 cm–1 (or 3.6338 × 10–22 J), and the calculated τr = 0.29021 ps. The latter is consistent 
with the period of hydrogen bonding oscillations of 0.2900212 ps [21], which is in fair agreement 
with the fast Debye relaxation time τ2 =182 fs of water [23] taking into account that the local levels are 
governed by factor (Rgold)–1 as evidenced in Ref. [21]. Thus, the calculated proton sharing frequency 
for liquid water (ƒw,q = τr–1) with quaternary molecule coordination is that ƒw,q = 3.4458 THz. 

In contrast to the protonated TPP dimers contacting to each other via phenyl rings, the 
hydrogen atom or H+ of the carbonic acid can easy change its location as depicted in Figure 4, inset. 
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So the three-component complex formed between THF, H2CO3/(HCO3)– and (H3O)+ can provide 
proton moving in forward and backward directions through the tight water of the ordered local area 
as displayed in Figure 7. However, this H/H+ change should be accompanied by the change of two 
hydrogen bonds location in the structure. The latter occurs under proton motion between the 
hydrogen-bonded molecules with the change of proton spin direction to the opposite accompanied 
by an energy absorption producing so-called boson peak [20]. But if the change of proton spin 
direction occurs together with an excitation that results in the change of two hydrogen bonds 
location, then the absorbed energy should be less by ћω’ (see Scheme 1). Thus, for the proton moving 
through water in the solution with THF, the frequency of the absorbed energy can be evaluated 
theoretically using the frequency estimation in the case of boson peak. The following relation for a 
frequency (ƒHb =c/ν–1) absorption required for the proton motion along the direction between the 
hydrogen-bonded molecules was derived to explain the origination of boson peak [20]. 

ƒHb = [ћ/(2π rex2 mr*)]β(ge/gp)(mhef/mp) m (4) 

where rex is the polaronic exciton radius that is the average distance between the opposite charges, 
mr* is the reduced effective mass of polaronic exciton, mr*= mhef meef/(mhef + meef), mhef and meef are 
respectively the effective masses of hole and electronic polarons, β is spin-orbit coupling parameter 
(β = 1.19100654 [19,20]), ge and gp are respectively the electron and proton g-factors, and m is 
quantum number. With rex = 2.54 Å, ge = 2.002319304, gp = 5.5856947, mhef = 9.51me, mp = 
1836.152667me, and m = 1 for proton, the calculated ƒHb = 1.3294299 THz or νHb = 44.345 cm–1. Effective 
masses of electronic (meef = 0.5me) and hole polarons (mhef = 9.51me, me is the actual electron mass) in 
the condensed matter were discussed previously [16,22]. Then taking into account the wavenumber 
2766 cm–1 characterizing proton sharing in the cluster between the protonated TPP dimers [7] and 
the energy –(2νHb = 2 × 44.345 cm–1) diminishing the absorbed frequency per two hydrogen bonds in 
the case of the three-component complex, we arrive to 2677.31 cm–1 that is in fair agreement with the 
experimental 2680 cm–1. While taking into account the difference 2(ћω − ћω’) that is accumulated by 
the electron coupled with the proton [21], the estimation yields 2680.13 cm–1. 

The view on liquid crystal state is due to proton moving through water confined in a material in 
the absence of the diffusion of molecules is also supported by other experimental data, namely by a 
spectrum of porous silicon recorded in the transmittance mode [24]. The most intense three bands at 
1012.3, 1081, and 1203 nm, wavelengths of which were calculated from the reported spectrum, 
characterize the intermolecular interactions in silicon microcavities. The first at 1012.3 nm (9878.4 
cm–1) attests O–H stretching vibrations of the hydrogen-bonded water molecules (3311.3 cm–1) 
combined with vibrational mode of proton sharing (0.81422 eV, 6567.1 cm–1 [18]). Proton sharing is 
generated by appropriate frequency absorption by water in microcavities, therefore the second at 
1081 nm (9250.5 cm–1) should be a combination of proton sharing (6567.1 cm–1) with the other 
vibration (2683 cm–1) that is consistent with the experimental 2680 cm–1 displayed in Figure 2. The 
third band at 1203.5 nm (8308.5 cm–1) attests the vibration of carboxyl groups (1741.4 cm–1) combined 
with the proton sharing too (6567.1 cm–1). A small band located at 1152.3 nm (8678.2 cm–1) between 
two latter bands attests the proton sharing (6567.1 cm–1) combined with the lowest Franck-Condon 
states of the electron coupled with the proton establishing the hydrogen bond. Namely, the 
frequency 2111 cm–1 (8678.2–6567.1) is close to 2127 cm–1 band observed in IR spectrum earlier [22]. 
While the energy of the lowest Franck-Condon transitions estimated with Fröhlich coupling 
constant is 2138 cm–1. Hence, these four bands completely prove protons moving through water 
confined in the silicon microcavities. Thus, water and atmospheric CO2 dissolved in water and 
converted into carbonic acid, which filled the silicon’s microcavities, form the pertinent matrix on the 
solid support that provides the liquid crystal state for a substance placed in the microcavities [24]. 

As mentioned above, the theoretical deviation from the director for the protonated TPP dimers, 
which contact to each other via their phenyl rings [10] forming the assemblies like wires or rods, is 
52.4°/2 relatively to the proton moving direction. According to the model [9], the proton moving 
direction coincides with the direction of the proton momentum under its sharing between the 
hydrogen-bonded water molecules, so at the same time the director is the long axis of an aggregate. 
The sharp angle α = 43.2° observed for an aggregate in Figure 8 obtained with the use of distilled 
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water is slightly less than that of 46.2° found for the ordered areas of Figure 7. The sharp angle 
similarity implies similar molecular mechanism of proton hopping steps under its moving through 
water. On the other hand, it suggests that ionic admixtures in distilled water diminishes the 
deviation from the proton moving direction as compared with that in the case of de-ionized water 
when α = (55 ± 3)° [12]. Thus, molecular characteristics of the three-component complex formed in 
aqueous THF due to the interaction of the dissolved carbon dioxide with water and of similar 
complex formed in the presence of HCl provide proton sharing in the O---H+–O moiety. These 
characteristics are the O–O distance of 2.54 Å providing proton delocalization or proton moving 
through water and the orientational order parameter S = 0.769, which is obtained for the ordered 
areas of the tight water. 

4. Materials and Methods 

Synthesis of meso–tetraphenylporphine was carried out as described in Ref. [25]. Tetrahydrofuran 
and other organic solvents were of high-grade purity. Assemblies of protonated TPP dimers were 
produced in aqueous 0.8 N or 2 N HCl with 0.86 mol·L–1 THF by addition of the TPP solution to the 
aqueous HCl, the details in the relation to the TPP dimers self-assembling can be found elsewhere 
[7,16]. The preparation of thin layers was performed like previously [6,14]. Self-organized assemblies 
of mono-protonated TPP dimers were easy crystallized at relative humidity of 52–55%. 

Infrared spectra of the samples in thin layer were recorded with a Specord M-80 
spectro-photometer (Karl-Zeiss-Jena, Jena, Germany). Resonance Raman spectra of the 
self-assembled protonated TPP dimers in solution were obtained as described earlier [12]. Excitation 
was provided by a He-Cd laser with λex = 441.6 nm mainly into the Soret band of di-protonated TPP 
dimer having λmax = 437 nm. A spectral slit width of 4 cm–1 was used for the spectra recording. 
Contact AFM images were recorded with a Nanoscope II (Digital Instruments Inc., New York, NY, 
USA) at ambient conditions. A V-shaped cantilever of 200 µm length with a Si3N4 tip (spring 
constant 0.12 N m–1) was used to probe the surface. Images of porphyrin assemblies were recorded in 
the height mode and the voltage was applied to the piezo elements, in order to keep the probing 
force constant for the topographic surface images. 

Non-contact AFM and simultaneous AFM/SNOM were applied in shear force mode with a 
RasterscopeTM 4000 and 2403 DualScope of Danish Micro Engineering (DME) with the use of 1.5 mm 
× 0.5 mm × 0.2 mm piezo elements. In SNOM, the surface was scanned by a light beam spreading 
through an optical fiber with the use of a helium-neon laser emitting 632.8 nm light. The feedback 
signal obtained from AFM was used for SNOM imaging. The variations of the light reflected back to 
the fiber SNOM setup under the shear-force AFM control provide SNOM image building up point 
by point. The working point was set close to 50% damping of the tip vibration and then optimized 
for best image quality. The tip was pulled with a Sutter Instrument (Navato, CA, USA), Model 
P-2000 Quartz Micropipette Puller [14]. The actual resolution of the obtained images was (10.3 − 
10.6) ± 0.08 nm with the reliability of 99% estimated like previously [15]. Further details in the 
relation to AFM/SNOM measurements can be found in Ref. [26]. 

5. Conclusions 

Summarizing the above results we can conclude that liquid crystal state of the self-organized 
assemblies of the protonated TPP dimers and water is created by tetrahedral network of hydrogen 
bonds fixed on the solid support, while protons shared in the O---H+–O moieties can easy move 
through water confined in the assemblies. Hence, deviation of the orientation of rod-like molecules 
or molecule wires from the director, which coincides with the long axis of an aggregate, is defined by 
molecular mechanism of proton moving through water confined in the material [9]. Then in addition 
to the TPP dimers providing proton moving through water [6,9,16], an organic solvent used for the 
dissolving of porphyrin and the porphyrin dimers self-assembling in the solution should maintain 
similar intermolecular interactions providing the proton sharing. The latter should take into the 
consideration that atmospheric CO2 dissolved in water forms H2CO3 or (HCO3)– and (H3O)+ ions. 
Alternatively, organic solvent interferes or prevents proton moving through water confined in the 
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material, as a result of which microcrystals with the use of dioxane or dimethylformamide were not 
found excluding acetic acid. Thus, the physical nature of the formation of liquid crystal state 
deduced on the base of the results presented above admits liquid nanocrystals engineering too. 
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Abbreviations 

The following abbreviations are used in this manuscript: 

AFM Atomic Force Microscopy 
LO phonon longitudinal optical photon 
SEM Scanning Electron Microscopy 
SNOM Scanning Near-Field Optical Microscopy 
TPP meso-tetraphenylporphine 
THF tetrahydrofuran 

Appendix A 

A thin metal film was deposited on the samples under vacuum for SEM experiments to avoid 
surface charging. Therefore, only the assemblies with hydrogen-bonded water molecules, which can 
self-organize into stable supramolecular structures, retain their form in the vacuum. Conversely, 
pollutions containing in water prevent the formation of continuous tetrahedral network of hydrogen 
bonds. As a result of the latter, such assemblies consisting of protonated TPP dimers and water with 
the admixtures of pollutions are unstable in vacuum [10,12] and were destroyed producing 
numerous remains like those displayed in Figure A1. 

 

Figure A1. SEM image of the self-assembled mono-protonated TPP dimers and water obtained after 
evaporation of 0.86 mol L–1 aqueous THF in the presence of 0.4N HCl. The background contains 
numerous remains of the destroyed assemblies. The latter usually takes place on spring-time when 
water cannot be purified from the pollutions by the distillation. 
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