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Abstract: A comparison of two open source electroencephalography devices designed to acquire
signals associated to the brain activity is presented in this work. The experiments are developed
considering the task of determining the user eye state i.e., open eyes or closed eyes, applying an
algorithm based on computing the sliding Fourier Transform of the captured signals.
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1. Introduction

The recent development of low cost Electroencephalography (EEG) devices has promoted the
creation of new Brain Computer Interfaces (BCI) applications to different areas, such as home
automation control or stress and fatigue monitoring, among others. We have shown in [1,2] a
self-designed EEG prototype for Internet of Things (IoT). This prototype allows us to classify eye states
i.e., open eyes and closed eyes, using a simple criterion based on the power of alpha and beta bands.
The frequency-domain components of these brain rhythms are computed using the Fourier Transform
(FT) over non-overlapped windows. The main limitation of this approach is the significant delay time
required to determine changes in eye states.

In this paper, we study the use of sliding FT applied to overlapped windows as a solution for
minimising that delay. We will test the performance of this proposed method using a self-designed
prototype [2] and the consumer-grade OpenBCI device [3].

2. Materials and Methods

In our study, two different EEG devices have been used to capture user brain activity (see
Figure 1). The consumer-grade OpenBCI platform [3] has been configured using the Cyton board and
the 8 channels headset Ultracortex Mark IV. An electrode located in the O2 position was used as input
channel, while the reference and ground were located in A2 and A1 positions, respectively. A sampling
frequency of 250 Hz has been used to capture the EEG signals. On the other hand, the self-designed
prototype [2] employs a sampling frequency of 128 Hz, an input channel located in O2 and ground
and reference electrodes in the positions corresponding to right mastoid and FP2, respectively.

The brain activity of 5 male subjects was recorded and analysed for each experiment. Their mean
age was 25 years old and none of them suffered from any disease or pain during the recordings. All the
experiments were conducted in a quiet room and with the subject seated in a comfortable chair.

Recordings were composed of two tasks: 20 s of open eyes (OE) and 20 s of closed eyes (CE) with
3 s of rest between both tasks. A total of 10 recordings were registered for each subject. During the OE

Proceedings 2019, 21, 40; doi:10.3390/proceedings2019021040 www.mdpi.com/journal/proceedings

http://www.mdpi.com/journal/proceedings
http://www.mdpi.com/journal/proceedings
http://www.mdpi.com
http://dx.doi.org/10.3390/proceedings2019021040
http://www.mdpi.com/journal/proceedings
http://www.mdpi.com/2504-3900/21/1/40?type=check_update&version=2


Proceedings 2019, 21, 40 2 of 3

tasks, the subjects were asked for looking at a cross projected in the centre of a monitor just in front
of them.
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Figure 1. Both open source EEG devices employed in the experiment (Figure 1a,b). Figure 1c shows the
electrode position used by the self-designed prototype (bordered by blue) and the OpenBCI hardware
(bordered by green). The O2 electrode represents the common input channel used by both devices
(bordered and filled in yellow). (a) OpenBCI device; (b) Self-designed prototype; (c) Electrode locations.

The acquired signals have been processed off-line using Matlab. Our algorithm computes the
method already proposed in [2] using sliding FT. During the training step, the threshold parameter is
calculated for each subject using 3 random recordings. This value will allow us to classify eye states
for the remaining 7 test recordings, applying for this purpose the decision rule detailed in [2]. The best
window size for each subject is also determined.

3. Experimental Results

The performance of both EEG devices is also analysed in a realistic scenario. For this purpose,
the test recordings were concatenated composing eye tasks of different duration, thus simulating a
continuous EEG recording with real eye state changes. The classification is performed for each subject
taking into account the threshold parameters obtained from the training.

Tables 1 and 2 show the accuracy achieved for all the subjects considering four time frames of
eye tasks, denoting by t that time size, and applying a 70% of overlapping for the sliding windows.
The classification algorithm will apply the window size adequate to each subject as done in [2].
Therefore, the system delay suffered by all the subjects is not the same, as it is shown in Table 3 for
both EEG devices.

Table 1. Accuracy obtained by the classification system for eye tasks of t duration and an overlap of
70% using OpenBCI hardware.

t S1 S2 S3 S4 S5 Mean

19 s 69.92 68.05 83.83 75.56 85.71 76.61
38 s 79.82 87.19 88.16 79.82 91.67 85.33
57 s 87.28 93.86 87.72 85.53 97.37 90.35
76 s 94.08 99.34 94.08 88.16 100 95.13
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Table 2. Accuracy obtained by the classification system for eye tasks of t duration and an overlap of
70% using the self-designed prototype.

t S1 S2 S3 S4 S5 Mean

19 s 74.04 80.08 78.2 74.56 73.46 76.07
38 s 88.95 89.91 89.04 81.67 86.64 87.24
57 s 90.88 95.61 89.91 86.18 90.82 90.68
76 s 95.28 100 82.24 82.67 96.63 91.36

Table 3. Delay obtained by the classification system applying sliding windows with an overlap of 70%

EEG Device S1 S2 S3 S4 S5

OpenBCI 3 s 4.2 s 3 s 3 s 3 s
Self-designed 3.9 s 3 s 3 s 4.8 s 4.2 s

4. Conclusions

The study presented in this paper shows that the sliding Fourier Transform allows us to reduce
the delay between changes produced in eye states and their corresponding decision performed by the
classifier. It can be noticed that the system performance is highly subject-dependent, but there are no
significant deviations between average performances of both EEG devices. In addition, regardless of
the hardware used to capture the brain signals, it can be seen that the classifier exhibits better accuracy
for long-term eye tasks.
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