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Abstract: Sleep scoring is an important tool for physicians. Assigning of segments of long biomedical
signal into sleep stages is, however, a very time consuming, tedious and expensive task which is
performed by an expert. Automatic sleep scoring is not well accepted in clinical practice because of
low interactivity and unacceptable error, which is often caused by inter-patient variability. This is
solved by proposing a semi-automatic approach, where parts of the signal are selected for manual
labeling by active learning and the resulting classifier is used for automatic labeling of the remaining
signal. The active learning is disturbed by noisy ambiguous data instances caused by continuous
character of the sleep stage transitions and a removal of such transitional instances from the training
set prior to active learning can improve the efficiency of the method. This paper proposes to use
the hidden Markov model for the detection of the transitional instances. It shows experimentally
on 35 sleep EEG recordings that such a method significantly improves the semi-automatic method.
A complete methodology for semi-automatic sleep scoring is proposed and evaluated, which can be
better accepted as a decision support tool for sleep scoring experts.

Keywords: sleep scoring; EEG; pattern classification; active learning; hidden Markov models;
expert-in-the-loop; ambiguity

1. Introduction

Generally, sleep scoring can be defined as an assignment of segments of some biomedical signal
into sleep stages. Most typically, the signal is electroencephalogram (EEG) or polysomnogram (PSG)
and the sleep scoring is performed manually by an expert. A sleep scoring process produces a sequence
of sleep stage labels which can be very useful in evaluation of various disorders like sleep disorders,
neurological and cardiological diseases or diabetes. An example of such a sequence, called hypnogram,
is depicted in the upper subfigure of Figure 1. The sleep scoring expert must have sufficient skills and
practice and thus the sleep scoring task is very time-consuming, tedious, and expensive. Moreover,
the expert’s fatigue causes labeling errors, subjectivity and higher inter-expert variability. An automatic
computer-based sleep scoring system could help to avoid and reduce many of mentioned drawbacks.
It can significantly reduce the time requirements, personal costs and errors. After decades of research
devoted to automatic sleep scoring, automatic systems are, however, still not widely accepted by
physicians and electrophysiologists. This is caused by insufficient accuracy, which is partly caused
by high inter-personal variability, where recordings come from different measurement devices and
training data are labeled by different experts. Another reason for limited acceptance of fully automated
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systems is lack of interpretability and interactivity, where the physicians cannot make serious decisions
on the basis of non-interactive computer systems not well supported by an interpretable evidence.

This paper combines a manual and fully automated system, which makes a trade-off between
savings of manual labeling effort and accuracy of the scoring system. By training and operating
the automatic classifier on the data from the same patient, the approach removes the problem of
inter-personal variability at the expense of an increased manual labeling effort. While there is no
manual labeling effort in conventional automatic systems, in the proposed semi-automatic system,
part of the signal is labeled manually and used as a training data set for a pattern classifier, which is
finally used for automatic labeling of the rest of the signal.

The approach is depicted in Figure 2. It starts with an initial data set consisting of segments of EEG
signal that are not scored (are unlabeled). The first step is an initial selection of segments that should be
manually labeled by the expert. This initialization is out of scope of this paper and one data segment
from each class is randomly sampled at the beginning. Next, an iterative loop runs, where unlabeled
segments are selected one by one and manually labeled until a certain sufficiency criterion is met and
sufficient training data are formed consisting of a subset of signal segments and their corresponding
labels. The sufficiency criterion is irrelevant here because we compare the methods during the first
150 iterations. Nevertheless, it can be an achievement of some validation error threshold. Finally,
a classifier is trained and used for classification of remaining segments. Since only a subset of the
signal segments is labeled, this approach can significantly reduce the labeling effort and labeling costs,
and improve the final scoring result by eliminating mistakes caused by expert’s fatigue.
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Figure 1. The difference between sleep stage sequence called hypnogram (top) and most probable state
sequence of trained hidden Markov model (bottom). The label-based transitions must be be computed
from the labels (sleep stages), which are not available in the active learning scenario. On the other
hand, HMM-based transitions can be computed from the most probable state sequence of the HMM

trained on feature time series.
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Figure 2. The flow diagram of semi-automated scoring of EEG data.

The main problem of such a semi-automatic method is how to select the signal segments that
should be labeled manually. This problem can be solved by active learning approaches well known
in pattern classification area [1]. An active learning method typically selects data instances that are
worth to be labeled. For example, it reduced labeling time for a clinical concept extraction in [2].
In [3], active learning was used for an efficient labeling of artifacts in EEG signal. The following
advantages of involving active learning can be expected: First, a proper selection of training instances
can reduce the generalization error, only a subset of available training data need to be labeled which
reduces the labeling effort. Second, if the annotator is human, the reduced labeling effort leads to
less fatigue-based errors. Third, a smaller training set can significantly reduces the training time and
memory requirements.

Active learning has been applied to EEG data in the area of Brain Computer Interface (BCI) [4],
where it typically improved classification performance and reduced training set that lead to reduced
time and memory requirements. Typically, the active learning is not used in a semi-automatic manner,
where the inter-personal variability issue can be overcame or labeling effort reduced. Those two
problems are focused in [5], where transfer learning together with semi-supervised learning was
considered to calibrate a pre-trained classifier to a specific subject and thus avoid error related to
inter-personal variability. The active learning was also used for regression task in [6], where driver
drowsiness was predicted from EEG, but its main purpose was an improvement of training set and
not reduction of data acquisition costs.

In [7], we proposed an active learning based semi-automatic sleep scoring approach. It was found
that the training data instances whose labels differ from the labels of their adjacent instances tend to be
noisy since they are hard to be assigned clearly to one of sleep stages. Such ambiguous instances can
disrupt the training procedure and especially the active learning approaches, which have a tendency
to prefer them by selecting data close to the decision boundaries. Although it was demonstrated
that removal of such instances from the training set improves the performance of the semi-automatic
system, a crucial problem related to detection of such instances was pointed out. Since the active
learning starts with partly unlabeled data, the complete sequence of target labels is unknown and
the transitional instances cannot be found by observing difference of the labels of adjacent segments.
The paper thus theoretically demonstrated a potential improvement, but did not provide solution for
its practical realization. This point is focused in this paper, which proposes to detect the transitions via
hidden Markov models (HMMs). The paper follows the experimental scenario from [7], but describes
the removal of HMM based transitions instead of label-based transitions. The difference is shown
in Figure 1. The instances corresponding to the label transitions are marked as black circles in the
upper subfigure. They are simply detected from the sequence of labels provided by expert in fully
automatic approaches. This sequence is, however, not available in our approach and thus we propose
to train HMM and label the EEG time series by its most probable states. Such an approach detects
data instances that correspond to natural transitions in EEG signals and does not need the labeled
training data.



Proceedings 2019, 31, 46 4 0f 10

2. Active Learning and Ambiguous Instances

As in [7], this paper focuses on a pool-based sampling scenario of active learning [1], where a pool
of unlabeled instances (feature vectors) is given and instances for labeling are sequentially selected.
An uncertainty sampling is the most popular and the simplest strategy [8]. It was proposed by
Lewis et al. [9]. It is particularly suitable for probabilistic classification models, but it might also be
applied to non-probabilistic classifiers [8]. Uncertainty sampling approaches typically use posterior
probability p(w|x) estimating probability that object described by feature vector x comes from the
class with label w. At each iteration of the sampling process, an uncertainty measure is computed from
the posterior probabilities. Next, an instance or instances with minimum uncertainty, whose label the
classifier is least certain of, is queried. In margin uncertainty sampling proposed by Scheffer et al. [10]
the algorithm selects an instance with the smallest difference of the highest and the second highest
posterior probability: x* = arg min, p(w;|x) — p(w2|x), where w; and w is the most probable and
the second most probable label of the feature vector x, respectively. Many other variants of uncertainty
sampling exist [8] based on entropy or posterior probability. Moreover, many other types of query
selection strategies exist like query-by-committee strategy, whose higher time complexity can be an
important problem for the user of the semi-automated system.

In many real world pattern classification problems, the labels are often assigned to objects with a
certain level of uncertainty. This can happen if the oracle makes mistakes (noisy oracles) or the classes
are ambiguously defined (e.g., there are objects belonging to multiple classes and crisp labeling is
not sufficient). Such an erroneous labeling can confuse the training procedure and increases a lower
boundary for the classification error. Moreover, it causes a high inter- and intra- expert variability.
Consequently, it leads to lower acceptance of automatic pattern classification systems by their potential
users. Such issues can be solved by the use of soft labels and fuzzy methods. In active learning
scenarios, several approaches relevant to such issues were also proposed [11-15].

A typical example of such an issue is the application of active learning to the sleep EEG processing.
It is a well known problem that sleep is a process with continuous transitions. Then, the labeling expert
(physician) has problems with assignment of the transitional parts of the EEG signal into one particular
sleep stage (i.e., to use crisp labels). Such state transitions correspond to the ambiguous data instances.
In [7], we observed that such instances are located on the border between different classes. An example
is depicted in Figure 3, where a data set with 2 features and four classes is depicted in a scatter plot.
Instances corresponding to label transitions from upper part of Figure 1 are highlighted in Figure 3a
as black circles. It can be seen that such instances often appear close to the borders between classes.
Unfortunately, the majority of current AL techniques (especially most popular query-by-committee
and uncertainty sampling) prioritize the border instances and thus the ambiguous instances are often
queried for labeling. This can lead to the failure of AL methods.

In [7], only an unrealistic method for detection of transitions based on apriori known labels
was considered. Its purpose was to demonstrate that the transitional instances disturb the iterative
learning process and their removal can improve the learning. It was assumed that such noisy
segments are those, whose labels differ from one of its adjacent segments. Based on this assumptions,
all such training instances can be removed, which occur before or after a transition of class labels.
However, the unrealistic nature of such an approach is caused by the fact that in the proposed
iterative expert-in-the-loop scenario, one does not dispose of labels in advance and cannot use such a
detection rule. In [7], this problem was intentionally postponed for future work. Here we provide and
analyse a solution of such a problem, based on detection of real transitions directly from unlabeled
time series of feature values. To find the unlabeled training instances that correspond to potential
transitions between sleep stages, we propose to use HMMs that are popular in EEG and PSG signals
processing [16]. Recently, HMMs were used in different manners for sleep EEG artefact detection [17],
sleep stage classification [18] or post-hoc refinement of classification results [19].

In our approach, HMM is trained on multidimensional time-series composed of unlabeled
training data. It is trained on extracted features rather then on original EEG signals due to much
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smaller computational requirements. The main aim is to identify inherent state transitions no matter
what is the real interpretation of the states. HMM with five states and Gaussian emission distributions
was trained using Expectation-Maximization (EM) algorithm. The number of states was chosen
empirically corresponding to original number of sleep stages in Rechtschaffen and Kales scoring
manual, although the method does not need a clear correspondence between sleep stages and HMM
states. After the model is trained, the most probable state sequence is computed from the feature
time series using Viterbi algorithm [16]. Regardless of the interpretation of HMM states, the instances
whose states labels differ from state labels of adjacent instances are considered as transitions and
removed from the training set. An example of such HMM states is shown in the lower part of
Figure 1, where the HMM-based transitions are highlighted by black circles. In Figure 3b, the scatter
plot with such transitions is demonstrated. One can see that data in stances corresponding to those
HMM-based transitions also exhibit a tendency to appear close to the class borders. On the other
hand, when comparing the two subfigures of Figure 1, the HMM-based transitions do not fully
correspond to label-based transitions both in number and positions. Nevertheless, some similarities
can be visually observed.
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Figure 3. Scatter plot of two features with label transition instances (a) and HMM states transition
instances (b) marked as black circles.

3. Experimental Setting

This section first describes the two classification methods that were used - one very simple and
one very popular classifier. Further, the EEG data, their acquisition and their processing including
feature extraction are described. The methodology of evaluation and comparison of methods is finally
described in detail.

3.1. Classifiers

Two classifiers were assumed - linear Bayes classifier (LB) and support vector machine
(SVM). Observing a feature vector x, Bayes classifiers use Bayes theorem to compute a posteriori
probability p(w|x) of each class from likelihood p(x|w) and class prior probability p(w) as p(w|x) =
p(x|w)p(w)/p(x). The feature vector x is further assigned into the class that maximizes the a posteriori
probability, i.e., the result of classification by classifier -y is (x) = arg max . p(w|x). Uniform prior
probabilities and Gaussian likelihoods with equal covariance matrices are assumed that lead to linear
decision boundary.

SVM classifier with linear kernel was tested, because of its popularity and reasonable
computational time. The training procedure uses quadratic programming to maximize margin,
which is a width of the largest “tube’ not containing samples that can be drawn around the decision
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boundary. For linearly separable data, it can be proven that this particular solution has the highest
generalization ability [20] among all linear separating boundaries.

3.2. Sleep EEG Data

The recorded data set contains 36 EEG recordings acquired in the National Institute of Mental
Health of Czech Republic (NIMH-CZ). Recordings on 18 healthy subjects and 18 insomniac patients are
available, while the membership of the patients within those two groups is ignored, but it corresponds
to realistic assumption that the semi-automatic labeling will be performed within a clinical practice,
where both types of people can occur. Some details about the recorded data can be found in [7].

All data were measured using standard 10-20 montage referenced to mastoids (M1, M2). 19 EEG
channels were used for further feature extraction and are also summarized in [7]. All EEG recordings
were completely and manually labeled, i.e., sleep classes were assigned to all samples of the signals,
by accredited sleep neurologist according to the American Association of Sleep Medicine Scoring
Manual (AASM 2012) [21] (classes Wake, N1, N2, N3 and REM). N1 and N2 were merged into one class.

Within the feature extraction, the signals were split to 30 s long segments and 21 features
commonly used in EEG sleep staging were extracted for each segment of each channel. This gives
21 x 19 = 399 features in total. The complete list of features and their more detailed description can be
found in [7,22]. To increase a robustness and resistance to artifacts we used a median operation over
each feature across all EEG channels. Through this process we reduced the number of features from
399 to 21.

3.3. Evaluation of Classification Performance

To compare active learning approaches to random sampling strategy (RS) and evaluate the
influence of the proposed removal of transitions (RT), we used a mean class error defined as the
ratio of incorrectly classified instances from particular class averaged over all four classes. This is
actually analogical to 1—sensitivity in binary classification cases. The estimation of true mean class
error is performed via hold-out estimate, where all the data instances are randomly split to two
disjunctive subsets of the same size that are called training and testing subset. Since our classifier will
be used in an intra-personal manner—trained on labeled segments and applied to classification of the
rest—the testing is performed on each of 36 patient records separately which gives 36 values of the
mean class error for each of the evaluated methods. The methods are further compared using average
computed over all patient records. Let ¢;; is the relative missclassification error obtained for patient i
on class j. The mean class error averaged over all 36 patients is defined as: E = 1/36 2,321 1/4 Z}L:l ejj.

For a statistical comparison of four active learning strategies on multiple data sets, we use the
Friedman test. The test and its application on comparison of classifiers is described in [23]. It is a
non-parametric equivalent of the “repeated-measures ANOVA”. It can be used for comparison of
our 4 algorithms on 36 data sets. The null hypothesis is that there are no differences between the
algorithms. For each data set, the algorithms are ranked according to the performance. The best
performing algorithm has rank 4 and the worst performing algorithm has rank 1. The Friedman
statistics is computed from the average ranks and corresponding p-value is found. If the p-value is
lower then a significance level «, the null hypothesis can be rejected.

Once the Friedman test rejects its null hypothesis, one can use a post-hoc procedure to find the
particular pairwise differences [24]. According to [25], the Bergmann-Hommel procedure [26] is the
most powerful one for pairwise comparisons of classification methods, although it requires more
intensive computation. In our experiments, we used an implementation from [25].

4. Experimental Results

The average learning curves that show the dependence of the performance criterion defined
above on the number of labeled instances are depicted in Figure 4. The curve is plotted only for the
first 150 sampling iterations. The first reason is that it does not make a sense to use the semiautomatic
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scenario if the user must label too many segments since the reduction of labeling effort would be too
small. The second reason is a better visualization of differences. The following conclusions can be
made about the average behavior. First, the random sampling without the removal of transitions (RS) is
the worst method during the first 150 sampling iterations for both tested classifiers. On the other hand,
the active learning with the removal of transitions (AL/RT) is the best among all tested methods for
all tested sampling iterations. For LB classifier, there seems to be nearly no difference between active
learning without transitions removal (AL) and random sampling with transitions removal (RS/RT).
This means that the removal of transitions makes the random sampling comparable to active learning.
Such results show that both the active learning strategy and transitions removal bring some additive
benefits. The reduction of labeling effort depends on the user’s tolerance of an error. If the user can
tolerate 18% error (average error on completely labeled dataset is about 17%), one can see that such an
error is reached approximately after 100 iterations. Since the actual number of segments in each record
is about 700, the user could label only 15% of segments and 85% of the labeling effort would be saved.
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Figure 4. Learning curves for linear Bayes classifier (a) and support vector machine (b) for random
sampling (RS), random sampling with removal of transitions (RS/RT), active learning (AL) and active
learning with removal of transitions (AL/RT).

We should point out that all the mentioned observations are the same as those made in our
previous paper [7]. Although there is no clear correspondence between HMM-based transitions and
label-based transitions (as can be seen in Figure 1), the newly proposed method keeps the main
advantages while being practically implementable.

For a better clearness, there were no standard deviations or confidence intervals depicted
in Figure 4. To make more credible statistical evaluation, the Friedman test accompanied by
Bergmann-Hommel posthoc procedure was used. The average rankings of the particular methods and
particular iteration of the sampling process are summarized in Table 1 for both classifiers. It can be
clearly observed for LB classifier that the combination of active learning and transitions removal leads
to the best average rank for all three tested moments of the sampling process and both classifiers.

For all columns of the table, the p-value computed by the Friedman test suggests that at least one
of the four tested methods gives significantly different median than the others at level of significance
« = 0.01. When performing pairwise comparisons using the Bergmann-Hommel procedure several
statistically significant conclusions can be drawn at level of significance 0.1. First, both AL methods
were significantly better than simple random sampling at all three moments of the sampling procedure.
Second, AL/RT method outperformed RS/RT method for all moments. Although for SVM there is
no sufficient experimental data to reach statistically significant conclusion that AL was improved by
transitions removal, for LB classifier AL/RT was significantly better than AL after 40 and 60 iterations.
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This statistically supports our original hypothesis that the removal of instances that correspond to
HMM-based transitions can improve the semi-automatic sleep scoring. This is statistically stronger
outcome than in [7] and thus the removal of HMM-based transitional instances seems to be even more
promising than the unrealistic removal of label-based transitions.

Table 1. Average rankings of the sampling strategies and Friedman P-values

LB SVM
Iteration 40 60 100 40 60 100
RS 1.71 1.74 1.86 1.74 1.69 1.74
AL 2.57 2.66 2.63 2.97 2.80 3.06
RS/RT 243 2.23 2.34 2.20 2.14 1.89
AL/RT 3.29 3.37 3.18 3.09 3.37 3.31

Friedman p-value 89 x107® 135x107® 27x107* 1.05x107° 1.6x1077 88x107°

5. Conclusions

The paper confirms one conclusion from [7], that the active learning outperforms the random
sampling in semi-automatic EEG-based sleep scoring in terms of mean class error. Its main conclusion
is, however, a solution of problem of detection of potentially ambiguous data instances that should
be not queried for labeling. It was shown that the method based on most probable state sequence of
HMM can find data instances whose deletion from training set can statistically significantly improve
both the random sampling and the active learning procedure.

An interesting finding is that the HMM-based method supports the active learning better than
label-based method. It means that even if all labels would be theoretically known (which does not
make a sense), the deletion of label transitions improves the semi-automatic scoring less than the
deletion of HMM state transitions. This can be caused by the fact that the transitions provided by
human expert do not correspond to real transitions that exist in EEG signal. Such transitions are better
detected by HMM method.

Although we demonstrated the use of our method in the sleep staging application, it can be
relevant to many other fields. First, if a time series is classified and classes change continuously
in transitional manner, the problem with ambiguity can be avoided by the proposed detection
and removal of transitions. Second, if it is needed to minimize an interaction with human
oracle during training data acquisition, active learning can help to choose data to be labeled
efficiently. The combination of those two properties is common in ambient intelligence applications,
where adaptive models of time series coming from sensors are often required that avoid an excessive
disturbance of human users.
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