

Proceedings 2019, 31, 8; doi:10.3390/proceedings2019031008 www.mdpi.com/journal/proceedings

Proceedings

Supporting Data Structures Visualization for
Teachers and Learners †
Jonathan Urzúa, Nelson Baloian and José A. Pino *

Department of Computer Science, Universidad de Chile, Santiago 837-0456, Chile;
jonathanurzua@gmail.com (J.U.); nbaloian@dcc.uchile.cl (N.B.)
* Correspondence: jpino@dcc.uchile.cl; Tel.: +56-22-978-4942
† Presented at the 13th International Conference on Ubiquitous Computing and Ambient Intelligence

UCAmI 2019, Toledo, Spain, 2–5 December 2019.

Published: 19 November 2019

Abstract: Teachers of first courses in Computing face the problem of making slides showing data
structures. Students must also show them in their assignments. Drawing them may not be the best
choice. The Data Structures (DSTR) language proposed here is intended as an easy-to-use tool to
describe those structures for visualization. A preliminary evaluation of a tool to interpret DSTR
statements shows users’ acceptance.

Keywords: educational material preparation; JSON extension; slides; data structures visualization;
introductory computer science courses

1. Introduction

Data Structures is a subject to be taught in basic Computer Science courses. These courses
include dealing with arrays, linked lists, trees, etc. in connection with typical algorithms. An example
of such a course is “Fundamental Data Structures and Algorithms”, part of the Computer Science
Curricula 2013 [1]. In those courses, teachers must illustrate the data structures included in
educational material with appropriate drawings. Likewise, students when submitting learning
assignments must also draw data structures. For this, most people use drawing facilities included in
text editors or presentation preparation software. Teachers, e.g., use drawing tools included in
Keynote or MS Powerpoint while making presentation slides. A disadvantage of this approach is the
drawing has no semantics attached. Thus, any other use of the represented structure is precluded.
Another disadvantage of this way of describing structures is its lack of standardization. Finally, it
may work fine with a few slides, but it may become very time-consuming to represent a large number
of structures.

An alternative way to represent data structures is to just declare them in programming language
code. The obvious disadvantage of this approach is its poor understandability by humans. It is not
the case with machines, so the representation can easily be integrated to programs.

The two previous options can be considered as extreme ones in a scale of understandability by
humans/machines. One could then search for a trade-off: a representation easy enough for humans
but usable by machines as well.

A search for the aforementioned trade-off applicable to all typical data structures is our goal
here. We also would like to find a practical representation, i.e., easy-to-use by most people and
efficient in terms of time needed to create a data structure instance. A solution is presented below:
the DSTR language. Of course, that solution is not unique: other ones may be developed afterwards.

Proceedings 2019, 31, 8 2 of 6

2. Previous Work

Data structures visualization has been studied before. Baloian et al. [2] concentrate on the
problem of lack of interactivity in many of the previously developed systems and that fact is crucial
for the proper involvement of the learner in order to have a successful learning experience. Adarme
and Molinares [3] stress the importance of visualization in real contexts thus focusing on structures
defined using Java. The SWAN system [4] focuses the discussion on animation, providing support
limited to a few well-known data structures. Cstutor [5] offers sketch-based visualization, which
provides some flexibility regarding the data structures that can be used, but its support to the user
remains weak.

All authors stress the need for visualization of data structures for learning and many mention
interactivity as a key factor for learning success. However there is no discussion yet on which is the
most convenient form to represent the structure. Most works either provide strong support in correct
algorithm and data visualization on a limited number of data structures or they are flexible but
provide little support. This work is a step in the direction of finding a convenient middle point.

3. Design Issues

A proposal for the trade-off mentioned in Section 1 is to design a data structures description
language which will be structured enough to be interpreted but also easy to use by humans. Ease of
use means a data structure should be simple to describe for a user but also simple to understand by
another user.

Thus, some constraints must be placed on the descriptive capacity of the language if we want to
obtain ease of use. A constraint may be to a make a decision on which will be the data structures to
be supported by the language.

Which data structures must be included? There is no unique answer to this question. We chose
the following data structures for DSTR: arrays, matrices, trees, graphs, tables, and linked lists (Figure
1). These are the structures used in our Introduction to Programming course at the Univ. of Chile.
However, these are popular structures and they should cover most or all the needs of similar courses
at other institutions. Some features of these structures are mentioned below.

The array is one of the most traditional data structures. It represents a set of elements considered
contiguous in a linear sequence. The position of an element is given by an integer (index). We
represent arrays of any element type, visually arranged horizontally or vertically. Indices are
optionally represented. DSTR allows nested inclusion of elements. Figure 1a shows an array in which
the fourth element is an array.

A matrix can be considered as a bi-dimensional array. An element is indexed according to its
row number and column number. Again, nesting and representation of indices are allowed. Figure
1c shows a matrix with displayed indices.

A tree is composed of a root node and 0 or more child nodes, which in turn, may be roots of
other trees. Several types of trees are possible to be represented in DSTR, such as binary trees,
inverted tress, horizontal trees, and trees with null leaves. Figure 1e shows an inverted tree.

The graph represents a set of nodes and a set of arcs connecting those nodes. The arcs can be
labelled or not and can be directed or not. Figure 1d shows a graph with unlabeled directed arcs.

Tables allow to represent the relation of an element in the first column with elements in other
columns. We chose to include only two columns, and thus, DSTR represents well the maps or
dictionaries included in other languages. Then, there are “keys” (first column) and “values” (second
column). Nesting is allowed. Figure 1b shows a table in which the third value is a table.

The linked list is a traditional Computer Science structure representing a set of elements ordered
in a sequence. Unlike arrays, which have fixed length, adding a new element at the end of a linked
list is a simple operation. Figure 1f shows a simple linked list in which the last element points to
NULL.

Proceedings 2019, 31, 8 3 of 6

(a) (b)

(c) (d)

(e) (f)

Figure 1. (a) An array. (b) a table. (c) a nested matrix. (d) a graph. (e) an inverted tree. (f) a linked list.

4. The DSTR Language

Instead of creating a new language from scratch, DSTR extends the JSON [6] grammar. JSON
(JavaScript Object Notation) is a lightweight data-interchange format. It was chosen because, as
described in [6], “it is easy for humans to read and write; it is easy for machines to parse and
generate”. That was precisely our goal! Furthermore, the JSON description states: “JSON… is
language independent but uses conventions that are familiar to programmers of… C, C++, C#, Java,
JavaScript, Perl, Python, and many others”. That familiarity feature is also welcome because it eases
appropriation for the new DSTR users.

The language uses few symbols:

• three types of parentheses: (), [], {}
• the following characters: ‘,’, ‘”’, ‘@’, ‘!’, ‘%’, ‘-’, ‘>’, ‘<’

There are no reserved words, with the exception of ‘true’, ‘false’, ‘nil’, ‘null’. These words are
present in many programs, and they are also reserved words in JSON.

Proceedings 2019, 31, 8 4 of 6

The square brackets are used to define arrays. The elements are separated by commas or blanks.
For example, the array depicted in Figure 1a is described as:

[1 2 3 [a b c]]

Since the matrix is essentially a bi-dimensional array, it is described using the same brackets. For
instance, the matrix shown in Figure 1c is described as:

@grid

[[1 2 3]

[4 5 6]

[7 8 9]]
The indentation in the previous example is not required by the language, which ignores new

lines and blanks.
Trees are represented by curly brackets. The inverted tree depicted in Figure 1e is described by:

@inverted

5 { 1 {

7 11 }

40 {

20 }}
Graph nodes are enclosed in normal parentheses. Arcs are described with a hyphen. Direction

(if any) is given by ‘>’ and/or ‘<’. Thus, the graph shown in Figure 1d is described as:

(a)-> (b) <- (c) <-> (d)

Tables are enclosed within curly brackets. Each pair separates key from value by a colon. Figure
1b is then described as:

{ “name” : “Catalina”,

“age” : 8,

“likes” : {

“most” : “pancakes”,

“least”: “veggies” }}
Finally, a linked list is a particular case of graph. However, the metadata @linkedList indicates

the visualizer that a preferred visualization should be used for this data structure. Thus, Figure 1f is
described as:

@linkedList

(a) -> (b) -> (c) -> null

5. The Web Application

A web application was developed that allows users to use the language in an interactive way to
generate visualizations in real time. This application includes a series of examples that allows users
to explore the different data structures supported by the language. The web application consists,
visually, of 4 components: (a) Selector of examples, (b) Source code editor, (c) Editor of the
intermediate representation (hidden by default) and (d) Visualizer (Figure 2).

Proceedings 2019, 31, 8 5 of 6

Figure 2. Initial screen of the application.

The examples are grouped according to the data structure. Once an example is selected, the
application loads the code of the example in the edition area, execute the interpreter and generate the
corresponding visualization. The application uploads the “Arrays” category by default and shows
the first associated example. The user can make changes in the code editing area and see these
changes reflected in real time in the visualization. Optionally, the user can choose to display a second
editing area in which he/she will find the intermediate representation of the language (JSON format).
The user can also make changes in this area and see the changes in the viewer reflected immediately.
Since both the interpreter and the visualization are written in JavaScript, the application is,
effectively, a single page application that does not need a web server to work, but only to be loaded
in the browser in a static way once.

Additionally, the application does not need to make additional connections or have Internet to
interpret a piece of code or generate a visualization, because all these tasks are performed locally in
the user’s browser.

6. User Acceptance

In order to perform a user acceptance study, we made the tool available at: http://we-
app.herokuapp.com/. The same site (still accessible) includes self-explanatory examples. No other
documentation was made available. We then openly invited people to try the system and then answer
a short questionnaire. We received 19 answers, of which 42.1% were software developers, 26.3% were
university students, 21.1% were university educators, and 10.5% classified themselves as “other”.

From the received questionnaires, 52.6% stated the tool “would definitively be very useful to
me” whereas 41.1% mentioned the tool would be useful for them at some time. Concerning clarity of
the language, 63.2% of the respondents considered the language was very clear, while the rest (36.8%)
considered the language “clear enough”. The answers to a question about visualizations generated
by the tool were as follows: 68.4% considered the visualizations had “much relation to the language
expression” and the rest of the respondents (31.6%) mentioned the visualizations had “enough
relation to the language expression”.

Two questions were on the speed of the application. Concerning the initial start (which means
about 3 Mbytes to be transferred to the users’ computers), the delay does not seem to worry the users:
73.7% of the users considered the start to be fast. Now, once loaded, the application works on the
browser and that means very fast operation; all respondents agreed, considering the tool to be “very
fast”.

Proceedings 2019, 31, 8 6 of 6

The questionnaire also included open questions. One question invited respondents to provide
their candid opinion in a few words. Most opinions were very positive. One respondent said: “There
is a tight correspondence between what one writes in the language and what is shown visually”.
Another user stated “One feels like the language would understand what I want to say”. A third one
mentioned “It is cool to show tables; other ways of getting figures require ascii very cumbersome to
align”. Another respondent said “It seems to me that the tool is ready to go to deployment”.

7. Conclusions

The results of the evaluation indicate the proposal is acceptable. The intended use is for both
teachers and students of Computer Science. Of course, the language and the tool can be improved. In
fact, the users who tested the system made some suggestions. One line of future study is the
possibility of including additional data structures. There is no claim of uniqueness in the solution
described above. Other approaches may include algorithm animation, which we excluded in the first
version of the tool.

Finally, we may notice the described solution can be used for other purposes besides the
educational one. One field of application is software documentation: programmers need to explain
an algorithm in a way different than programming code; the visualization of the data structures over
which the program operates provides an opportunity to make that explanation easy to understand
by another programmer.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. ACM and IEEE Computer Society. The Joint Task Force on Computing Curricula. Computer Science
Curricula 2013—Curriculum Guidelines for Undergraduate Degree Programs in Comp. Sc.; ACM and IEEE
Computer Society: Los Alamitos, CA, USA, 2013.

2. Baloian; N; Breuer, H.; Luther, W. Concept keyboards in the animation of standard algorithms. J. of Vis.
Lang. Comput. 2008, 19, 652–674.

3. Adarme; M; Molinares, D.J. SEED: A software tool and an active learning strategy for data structures
courses. Comput. Appl. Eng. Educ. 2018, 26, 302–313.

4. Shaffer, A.C.; Heath, L.S.; Yang, J. Using the Swan data structure visualization system for computer science
education. ACM SIGCSE Bull. 1996, 28, 140–144.

5. Buchanan, S.; Laviola, J.J., Jr. Cstutor: A sketch-based tool for visualizing data structures. ACM Trans.
Comput. Educ. 2014, 14, 3.

6. Introducing JSON. Available online: https://www.json.org/ (accessed on 13 November 2019).

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

