Sustainable Chemistry through Catalysis and Process Intensification †
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aho, A.; Alvear, M.; Ahola, J.; Kangas, J.; Tanskanen, J.; Simakova, I.; Santos, J.; Eränen, K.; Salmi, T.; Murzin, D.Y.; et al. Aqueous phase reforming of birch and pine hemicellulose hydrolysates. Bioresour. Technol. 2022, 348, 126809. [Google Scholar] [CrossRef] [PubMed]
- Aho, A.; Õna, J.P.; Rosales, C.; Eränen, K.; Salmi, T.; Murzin, D.Y.; Grénman, H. Biohydrogen from dilute side streams—Influence of reaction conditions on the conversion and selectivity in aqueous phase reforming of xylitol. Biomass Bioenergy 2020, 138, 105590. [Google Scholar] [CrossRef]
- Alvear, M.; Aho, A.; Simakova, I.; Grénman, H.; Salmi, T.; Murzin, D.Y. Aqueous phase reforming of alcohols over a bimetallic Pt-Pd catalyst in the presence of formic acid. Chem. Eng. J. 2020, 398, 15–125541. [Google Scholar] [CrossRef]
- Alvear, M.; Aho, A.; Simakova, I.; Grénman, H.; Salmi, T.; Murzin, D.Y. Aqueous phase reforming of xylitol and xylose in the presence of formic acid. Catal. Sci. Technol. 2020, 10, 5245–5255. [Google Scholar] [CrossRef]
- Saeid, S.; Tolvanen, P.; Kumar, N.; Eränen, K.; Peltonen, J.; Peurla, M.; Mikkola, J.P.; Franz, A.; Salmi, T. Advanced oxidation process for the removal of ibuprofen from aqueous solution: A non-catalytic and catalytic ozonation study in a semi-batch reactor. Appl. Catal. B Environ. 2018, 230, 77–90. [Google Scholar] [CrossRef]
- Saeid, S.; Kråkström, M.; Tolvanen, P.; Kumar, N.; Eränen, K.; Mikkola, J.P.; Kronberg, L.; Eklund, P.; Peurla, M.; Aho, A.; et al. Advanced oxidation process for degradation of carbamazepine from aqueous solution: Influence of metal modified microporous, mesoporous catalysts on the ozonation process. Catalysts 2020, 10, 90. [Google Scholar] [CrossRef]
- Kråkström, M.; Saeid, S.; Tolvanen, P.; Salmi, T.; Kronberg, L.; Eklund, P. Catalytic ozonation of the antibiotic sulfadiazine: Reaction kinetics and transformation mechanisms. Chemosphere 2020, 247, 125853. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Haije, W.; Grénman, H.; de Jong, W. Sorption enhanced catalysis for CO2 hydrogenation towards fuels and chemicals with focus on methanation. In Heterogeneous Catalysis; Elsevier: Amsterdam, The Netherlands, 2022; pp. 95–119. [Google Scholar]
- Wei, L.; Azad, H.; Hamza; Haije, W.; Grénman, H.; de Jong, W. Pure methane from CO2 hydrogenation using a sorption enhanced process with Catalyst/Zeolite bifunctional materials. Appl. Catal. B Environ. 2021, 297, 120399. [Google Scholar] [CrossRef]
- Wei, L.; Grénman, H.; Haije, W.; Kumar, N.; Aho, A.; Eränen, K.; Wei, L.; de Jong, W. Sub-nanometer ceria-promoted Ni 13X zeolite catalyst for CO2 methanation. Appl. Catal. A Gen. 2021, 612, 118012. [Google Scholar] [CrossRef]
- Wei, L.; Haije, W.; Kumar, N.; Peltonen, J.; Peurla, M.; de Jong, W.; Grénman, H. The influence of nickel precursors on the properties and performance of Ni impregnated zeolite 5A and 13X supported catalysts in CO2 methanation. Catal. Today 2021, 362, 35–46. [Google Scholar] [CrossRef]
- Wei, L.; Haije, W.; Kumar, N.; de Jong, W.; Grénman, H. Can bi-functional nickel modified 13X and 5A zeolite catalysts for CO2 methanation be improved by introducing ruthenium? Mol. Catal. A 2020, 494, 111115. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grénman, H. Sustainable Chemistry through Catalysis and Process Intensification. Proceedings 2023, 92, 76. https://doi.org/10.3390/proceedings2023092076
Grénman H. Sustainable Chemistry through Catalysis and Process Intensification. Proceedings. 2023; 92(1):76. https://doi.org/10.3390/proceedings2023092076
Chicago/Turabian StyleGrénman, Henrik. 2023. "Sustainable Chemistry through Catalysis and Process Intensification" Proceedings 92, no. 1: 76. https://doi.org/10.3390/proceedings2023092076
APA StyleGrénman, H. (2023). Sustainable Chemistry through Catalysis and Process Intensification. Proceedings, 92(1), 76. https://doi.org/10.3390/proceedings2023092076