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Abstract: The mapping of peatland microtopography (e.g., hummocks and hollows) is key for un-
derstanding and modeling complex hydrological and biochemical processes. Here we compare
unmanned aerial system (UAS) derived structure-from-motion (SfM) photogrammetry and LiDAR
point clouds and digital surface models of an ombrotrophic bog, and we assess the utility of these
technologies in terms of payload, efficiency, and end product quality (e.g., point density, microform
representation, etc.). In addition, given their generally poor accessibility and fragility, peatlands
provide an ideal model to test the usability of virtual reality (VR) and augmented reality (AR) visual-
izations. As an integrated system, the LiDAR implementation was found to be more straightforward,
with fewer points of potential failure (e.g., hardware interactions). It was also more efficient for
data collection (10 vs. 18 min for 1.17 ha) and produced considerably smaller file sizes (e.g., 51 MB
vs. 1 GB). However, SfM provided higher spatial detail of the microforms due to its greater point
density (570.4 vs. 19.4 pts/m2). Our VR/AR assessment revealed that the most immersive user
experience was achieved from the Oculus Quest 2 compared to Google Cardboard VR viewers or
mobile AR, showcasing the potential of VR for natural sciences in different environments. We expect
VR implementations in environmental sciences to become more popular, as evaluations such as the
one shown in our study are carried out for different ecosystems.

Keywords: bog; drone; Oculus Quest 2; Mer Bleue; SfM; UAV; augmented reality; AR

1. Introduction

Peatlands cover a significant area globally (≈3%), and in particular of northern regions
(e.g., ≈12% of Canada), and they have an increasingly important role in carbon seques-
tration and climate change mitigation [1–4]. Ongoing monitoring of peatlands over large
spatial extents through the use of satellite-based Earth observation products is needed to
understand their response to climate change (e.g., [5–7]). However, given their generally
poor accessibility and the fine-scale topographic variation of vegetation microforms (often
<1 m in height), satellite-based mapping requires validation from ground data (e.g., water
table depth, species composition, biochemistry) [8,9]. Unmanned aerial systems (UAS)
have shown potential for characterizing these ecosystems at fine scales [9–11]. In general
terms, microtopographic features such as hollows and hummocks are key elements that are
closely related to complex and associated hydrological, ecophysiological, and biogeochem-
ical processes in peatlands [12]. Hummocks are elevated features composed of vascular
plants overlaying mosses that consistently remain above the water table, while hollows are
lower lying areas with primarily exposed mosses [13]. The multitemporal characterization
of hollows and hummocks at submeter scales is key to validating satellite-derived products
such as phenology tracking, net ecosystem exchange estimation, etc. [9].
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To date, mapping microtopography with UAS has relied on two main technologies:
light detection and ranging (LiDAR) and structure-from-motion (SfM) multiview stereo
(MVS) photogrammetry (hereinafter referred to as SfM) with variable results for each
technology (e.g., [14–16]). LiDAR is an active remote sensing technology that uses a pulsed
laser generally between 800 and 1500 nm for terrestrial applications, to measure ranges,
i.e., the variable distances from the instrument to objects on the surface of the Earth. It
does so by measuring the exact time it takes for the pulses to return after they are reflected
off objects or the ground [17]. In contrast, SfM is a passive remote sensing technique that
uses overlapping offset photographs from which to reconstruct the landscape [18,19]. In
forested areas, LiDAR pulses can penetrate the canopy and allow for the development of
both canopy and surface terrain models [17], while SfM only provides a surface model
of the highest layer, often the canopy, as seen from the photographs [20]. Comparatively,
across ecosystems, SfM is shown to produce higher density point clouds than those from
LiDAR. Previously in peatlands, mapping microtopography has been compared between
UAS SfM and airborne LiDAR (e.g., [16]). Many studies have also employed airborne
LiDAR for large-scale peatland assessments (e.g., [21–26]). Terrestrial laser scanning (TLS)
has also been shown to successfully map microforms at very high spatial detail (e.g., [27]).
However, no formal study has rigorously compared UAS LiDAR and SfM for mapping
peatland microtopography.

Because peatlands are both fragile ecosystems and in general have poor accessibility,
tools to remotely study, access, and visualize peatland structure in 3D are needed for
advancing our understanding of their response to climate change. Although not a new
technology [28], the recent advances in virtual reality (VR) [29], with its applications in
medicine [30], conservation [31], geosciences [32,33], e-tourism [34,35], and education [36],
among others, provide novel opportunities to study peatlands and other ecosystems re-
motely without disturbance [37]. VR is technology (hardware and software) that generates
a simulated environment which stimulates a “sense of being present” in the virtual repre-
sentation [38]. In contrast, augmented reality (AR) superimposes the virtual representation
on the real world through glasses or other mobile digital displays, in turn supplementing
reality rather than replacing it [39]. Thus, through VR, users experience an immersive ex-
perience of the field conditions in a cost-effective and repeatable manner. For instance, [29]
showcases the advantages of VR, such as the quantification and analysis of field observa-
tions, which can be performed at multiple scales. While early implementations required
extensive and expensive hardware, such as CAVE (CAVE Automatic Virtual Environ-
ments) [38], recent commercial grade VR systems that utilize improved head mounted
displays (HMD), such as Oculus Rift, Sony PlayStation VR, HTC Vive Cosmos, etc., al-
low for outstanding visualization capabilities and sharing of scientific output through
web-based platforms.

Our study aims to bridge the implementation of 3D models derived from UAS (LiDAR
and SfM) and VR/AR visualization. Thus, our objectives are to (1) compare SfM and LiDAR
point cloud characteristics from a peatland; (2) compare the representation of peatland
microtopography from the SfM and LiDAR data; and (3) provide a qualitative evaluation
of VR and AR usability and quality of visualization of the two point clouds. We further
discuss the potential of VR in peatland research and provide web-based examples of the
study area. While we primarily focus on VR due to the maturity of the technology and its
suitability for scientific data visualization, we also briefly compare the point clouds in AR.
To our knowledge, ours is the first study to compare microtopography between LiDAR
and SfM for a peatland, in addition to investigating peatland VR/AR models derived from
UAS data.

2. Materials and Methods
2.1. Study Area

This study was carried out at Mer Bleue, an ≈8500 year-old ombrotrophic bog near
Ottawa in Ontario, Canada (Figure 1). A bog is a type of peatland commonly found in
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northern regions. Bogs are acidic, nutrient-poor ecosystems, receiving incoming water
and nutrients only from precipitation and deposition. Mer Bleue is slightly domed, with
peat depth decreasing from >5 m across most its area to ≈30 cm along the edges. It has
a hummock–hollow–lawn microtopography with a mean relief between hummocks and
hollows of <30 cm [40,41]. While the water table depth is variable throughout the growing
season, it generally remains below the surface of the hollows [42]. Malhotra et al. (2016) [43]
found a strong association between spatial variations in vegetation composition, water
table depth, and microtopography. However, the strength of the association varied spatially
within the bog. Mosses, predominantly Sphagnum capillifolium, S. divinum, and S. medium
(the latter two species were formerly referred to as S. magellanicum) [44] form the ground
layer of the bog and can be seen exposed in low lying hollows. Vascular plants comprise the
visible upper plant canopy of the hummocks (Figure 1). The most common vascular plant
species are dwarf evergreen and deciduous shrubs (Chamaedaphne calyculata, Rhododendron
groenlandicum, Kalmia angustifolia, Vaccinium myrtilloides), sedges (Eriophorum vaginatum),
and trees (Picea mariana, Betula populifolia, and Larix laricina) [45]. Hummocks have been
estimated to account for 51.2% and hollows for 12.7% of the total area [46]. Trees and
water bodies (open and vegetated) around the margins of the peatland, which are heavily
impacted by beavers, comprise the remaining classes.

Figure 1. Cont.
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Figure 1. (A) Map of Mer Bleue, near Ottawa in Ontario, Canada. Locations where photographs B–E were taken are indicated
on the map. (B) UAV photograph facing north, taken in October; (C) photograph facing SE across the study area, taken in
June; (D) UAV photograph of the southern margin of the study area where dense stands of Typha latifolia (cattail) grow in
areas of permanent slow-moving water impacted by beavers. Photograph facing west, taken in May. (E) Photograph facing
the treed bog, taken in June. A 360◦ aerial panorama acquired in late June can be viewed at https://bit.ly/mbpano2017
(accessed on 14 April 2021).

2.2. Airframe

We used a Matrice 600 Pro (M600P) (DJI, Shenzhen, China) for both the RGB photo-
graph and LiDAR acquisitions (Figure 2, Table A1). The M600P is a six-rotor unmanned
aerial vehicle (UAV) with a maximum takeoff weight of 21 kg (10.2 kg payload) (DJI Techni-
cal Support, 2017) that uses an A3 Pro flight controller with triple redundant GPS, compass,
and IMU units. We integrated a differential real-time kinetic (D-RTK) GPS (dual-band,
four-frequency receiver) module with the A3 Pro [47] for improved precision of naviga-
tion [10]. For both datasets, DJI Ground Station Pro was used for flight planning and for
the automated flight control of the M600P.

https://bit.ly/mbpano2017
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Figure 2. M600P RTK enabled UAV with the (A) Canon DSLR and (B) LiAIR S220.

2.3. Structure from Motion Photogrammetry

A Canon 5D Mark III digital single-lens reflex (DSLR) camera with a Canon EF
24–70 mm f/2.8L II USM Lens set to 24 mm was used for the RGB photograph acquisition
in June (Table A1). This is a full frame (36 × 24 mm CMOS) 22.1 MP camera with an image
size of 5760 × 3840 pixels (6.25 µm pixel pitch). At 24 mm, the field of view of the lens is
84◦. With the camera body and lens combined, the total weight was 1.9 kg. The camera
was mounted on a DJI Ronin MX gimbal (2.3 kg) for stabilization and orientation control
(Figure 2a). The camera’s ISO was set to 800 to achieve fast shutter speeds of 1/640 to
1/1000 s at f/14 to f/16. The photographs were acquired from nadir in Canon RAW, (.cr2)
format and were subsequently converted to large JPG (.jpg) files in Adobe Lightroom® with
minimal compression. Because the M600P does not automatically geotag the photographs
acquired by third party cameras, geotags were acquired separately.

Geotagging was achieved through a postprocessing kinematic (PPK) workflow with
an M+ GNSS module and Tallysman TW4721 antenna (Emlid, St. Petersburg, Russia)
to record the position and altitude each time the camera was triggered (5 Hz update
rate for GPS and GLONASS constellations) (Table A1). A 12 × 12 cm aluminum ground
plane was used for the antenna to reduce multipath and electromagnetic interference
and to improve signal reception. The camera was triggered at two second intervals with
a PocketWizard MultiMax II intervalometer (LPA Design, South Burlington, VT, USA).
A hot shoe adaptor between the camera and the M+ recorded the time each photograph
was taken with a resolution of <1 µs (i.e., flash sync pulse generated by the camera). The
setup and configuration steps are described in [48]. The weight of the M+ GNSS module,
the Tallysman antenna, the intervalometer and cables were 300 g combined. Photographs
were acquired from an altitude of 50 m AGL with 90% front overlap and 85% side overlap.
With the aforementioned camera characteristics, i.e., altitude and overlap, the flight speed
was set to 2.5 m/s by the flight controller. The total flight time required was ≈18 min.

Base station data from Natural Resources Canada’s Canadian Active Control System
station 943020 [49] (9.8 km baseline) was downloaded with precise clock and ephemeris
data for PPK processing of the M+ geotags. The open-source RTKLib software v2.4.3B33 [50]
was used to generate a PPK corrected geotag for each photograph. A lever arm correction
was also applied to account for the separation of the camera sensor from the position of the
TW4721 antenna.

We used Pix4D Enterprise v4.6.4 (Pix4D S.A, Prilly, Switzerland) to carry out an SfM-
MVS workflow to generate the dense 3D point cloud (Table A1). Unlike UAV integrated
cameras with camera orientation written to the EXIF data, the DSLR photographs lack this
information. However, these initial estimates are not necessary because during processing,
Pix4D calculates and optimizes both the internal (e.g., focal length) and external camera
parameters (e.g., orientation). In addition to the camera calibration and optimization in the
initial processing step, an automatic aerial triangulation and a bundle block adjustment
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are also carried out [51]. Pix4D generates a sparse 3D point cloud through a modified
scale-invariant feature transform (SIFT) algorithm [52,53]. Next, the point cloud is densified
with an MVS photogrammetry algorithm [54]. For this comparison, we did not generate
the raster digital surface model (DSM) through Pix4D (see Section 2.5).

SfM Point Cloud Accuracy

Two separate flights (≈12 min total flight time) with the same equipment described
above were carried out ≈30 min earlier in a vegetated field, 300 m south of the primary
bog study area. This field was located on mineral soil and therefore is less impacted by foot
traffic than the fragile bog ecosystem. In an area of 0.2 ha, twenty targets to be used as check
points were placed flat on the ground. Their positions were recorded with an Emlid Reach
RS+ single-band GNSS receiver (Emlid, St Petersburg, Russia) (Table A1). The RS+ received
incoming NTRIP corrections from the Smartnet North America (Hexagon Geosystems,
Atlanta, GA, USA) NTRIP casting service on an RTCM3-iMAX (individualized master–
auxiliary) mount point utilizing both GPS and GLONASS constellations. The accuracy of
the RS+ with the incoming NTRIP correction was previously determined in comparison to
a Natural Resources Canada High Precision 3D Geodetic Passive Control Network station,
and it was found to be <3 cm X, Y, and 5.1 cm Z [55]. The photographs from the camera
and geotags were processed the same way as described above with RTKlib and Pix4D up
to the generation of the sparse point cloud (i.e., prior to the implementation of the MVS
algorithm). Horizontal and vertical positional accuracies of the sparse 3D point cloud
were determined from the coordinates of the checkpoints within Pix4D. The results of this
accuracy assessment are used as an estimate of the positional accuracy of the SfM model of
the study area within the bog where no checkpoints were available.

2.4. LiDAR

We used a LiAIR S220 integrated UAS LiDAR system (4.8 kg) (GreenValley Interna-
tional, Berkeley, CA, USA) hard mounted to the M600P in August (Figure 2b) (Table A1).
The system uses a Hesai Pandar40P 905 nm laser with a ±2 cm range accuracy, a range
of 200 m at 10% reflectivity, and a vertical FOV of –25◦ to +15◦ [56,57]. The Pandar40P
is a 40-channel mechanical LiDAR that creates the 3D scene through a 360◦ rotation of
40 laser diodes. The majority of the lasers (channels 6–30) are within a +2◦ to –6◦ range
of the FOV [58]. The integrated S220 system utilizes an RTK enabled INS (0.1◦ attitude
and azimuth resolution) with an external base station and a manufacturer stated relative
final product accuracy of ±5 cm. The system includes an integrated Sony a6000 mirrorless
camera that is triggered automatically during flight. These JPG photographs are used to
apply realistic RGB colors to the point cloud in postprocessing.

Two flights at 50 m AGL and 5 m/s consisting of 6 parallel flight lines (40 m apart)
were carried out. Importantly, prior to the flight lines, two figure 8s were flown to calibrate
the IMU. The same figure 8s were repeated after the flight lines prior to landing. Total
flight time was ≈10 min. The LiAcquire software (GreenValley International, Berkeley, CA,
USA) provided a real-time view of the point cloud generation.

LiAcquire and LiNAV were used for the postprocessing of trajectory data and the
geotagging of the RGB photographs. The LiDAR360 software (GreenValley International,
Berkeley, CA, USA) was then used to correct the boresight error, carry out a strip alignment,
merge individual strips, and calculate quality metrics consisting of analyses of the overlap,
elevation difference between flight lines, and trajectory quality.

2.5. Analysis

The open source CloudCompare Stereo v2.11.3 (https://www.danielgm.net/cc/)
(accessed on 14 April 2021) software was used to analyze the point clouds (Table A1).
After the initial positional difference between the point clouds was computed, the LiDAR
point cloud was coarsely aligned to the SfM point cloud followed by a refinement with
an iterative closest point (ICP) alignment. Each point cloud was detrended to remove

https://www.danielgm.net/cc/
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the slope of the bog surface. The point clouds were then clipped to the same area and
compared. Characteristics including the number of neighbor points, point density, height
distribution, surface roughness (distance between a point and the best fitting plane of
its nearest neighbors), and the absolute difference between point clouds were calculated.
DSMs at 10 and 50 cm pixel sizes were also created from each dataset. CloudCompare
was used to generate the DSMs rather than Pix4D and LiDAR360 respectively to ensure
differences in the surfaces are not due to varying interpolation methodology between the
different software. The average method with the nearest neighbor interpolation (in case of
empty cells) was chosen for the rasterization of the point clouds.

To classify the hummocks and hollows, the DSMs were first normalized in MATLAB
v2020b (MathWorks, Natick, MA, USA) by subtracting the median elevation in a sliding
window of 10 × 10 m [59]. Hummocks were defined as having a height range 5–31 cm
above the median and hollows as >5 cm below the median. These thresholds were defined
on the basis of expert knowledge of the site. In the SfM data, this corresponded to the
55th–90th percentile of the height for hummocks and the bottom 38th percentile for hollows.
In the LiDAR data, it corresponded to the 48th–71st percentile of the height for hummocks,
and the bottom 40th percentile for hollows. A decision tree was used to assign the DSM
pixels to hummock, hollow, and other classes based on their normalized height value.

To quantify the shape and compare the apparent complexity of the microforms from
the SfM and LiDAR, we calculated the 3D Minkowski–Bouligand fractal dimension (D)
of the surface of the bog [60]. The 3D fractal dimension combines information about an
object/surface across different spatial scales to provide a holistic quantification of the
shape [61]. The point clouds were converted to triangular meshes at rasterization scales of
10 and 50 cm in CloudCompare. The fractal dimension, D, was then calculated following
the methodology described in [61]. The fractal dimension is a scale-independent measure
of complexity. As defined by [62], fractals are “used to describe objects that possess self-
similarity and scale-independent properties; small parts of the object resemble the whole
object”. Here, D is a measure of the complexity of the bog surface as modeled by the
triangular mesh objects from the SfM and LiDAR data sources. The value of D ranges
from 0 to 3, with higher values indicating more complexity in the shapes. In this case, the
complexity quantified by D is related to the irregularity pattern [61], with more regular
shapes having lower values.

Lastly, empirical semivariograms were used to compare the scale dependence of
the hummock–hollow microtopography to determine whether the scale of the vegeta-
tion pattern captured by the SfM and LiDAR datasets is similar. The spatial dependence
of the height of the vegetation can be inferred from the semivariogram which plots a
dissimilarity measure (γ) against distance (h). The range, sill, and nugget describe the
properties of the semivariogram. The range indicates the spatial distance below which
the height values are autocorrelated. The sill indicates the amount of variability and
the nugget is a measure of sampling error and fine-scale variability. Previous applica-
tion of empirical semivariograms to terrestrial LiDAR data from a peatland indicated the
hummock–hollow microtopography had an isotropic pattern with a range of up to 1 m, and
in sites with increased shrub cover, the range increased to 3–4 m [27]. The empirical semi-
variograms were calculated in MATLAB v2020b for a subset of the open bog that did not
include boardwalks.

In order to generate the PLY files (i.e., Polygon file format, .ply) needed for VR and
AR visualization, the horizontal coordinates (UTM) were reduced in size (i.e., number
of digits before the decimal) using a global shift. In this case, 459,400 was subtracted
from the easting and 5,028,400 from the northing. Binary PLY files were then generated
with CloudCompare.

Both VR (Section 2.6) and AR (Section 2.7) visualizations were compared to a standard
web-based 3D point cloud viewer as a baseline. We used a Windows server implementation
of Potree v1.8 [63], a free open-source WebGL based point cloud renderer to host the
point clouds (https://potree.github.io/) (accessed on 14 April 2021).The Potree Converter

https://potree.github.io/
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application was used to convert the LAS files (.las) into the Potree file and folder structure
used by the web-based viewer for efficient tile-based rendering. In addition to navigation
within the point cloud, user interactions include measurements of distance and volume
and the generation of cross sections.

2.6. Virtual Reality Visualization

We tested the VR visualization of the point clouds with an Oculus Quest 2 headset
(Facebook Technologies LLC, Menlo Park, CA. USA) (Table A1). The Oculus Quest 2
released in 2020, is a relatively low cost, consumer-grade standalone VR HMD. It has 6 GB
RAM and uses the Qualcomm Snapdragon XR2 chip running an Android-based operating
system. The model we tested had 64 GB of internal storage. The fast-switching LCD display
has 1832 × 1920 pixels per eye at a refresh rate of 72–90 Hz (depending on the application,
with 120 Hz potentially available in a future update).

In order to access point cloud visualization software, the Oculus Quest 2 was connected
to a Windows 10 PC through high-speed USB 3. In this tethered mode, the Oculus Link
software uses the PC’s processing to simulate an Oculus Rift VR headset and to access
software and data directly from the PC. The PC used had an Intel Core i7 4 GHz CPU,
64 GB RAM, and an NVIDIA GeForce GTX 1080 GPU. The PLY files were loaded in VRifier
(Teatime Research Ltd., Helsinki, Finland), a 3D data viewer package that runs on Steam
VR, a set of PC software and tools that allow for content to be viewed and interacted with
on VR HMDs. The two touch controllers were used to navigate through the point clouds
as well as to capture 2D and 360-degree “photographs” from within the VR environment.

As a simple and low-cost alternative VR visualization option, we also tested two
Google Cardboard compatible viewers, a DSCVR viewer from I Am Cardboard (Sun Scale
Technologies, Monrovia, CA, USA), and a second generation Google Official 87002823-01
Cardboard viewer (Google, Mountain View, CA, USA) (Table A1). These low-tech viewers
can be used with both iOS and Android smartphones by placing the phone in the headset
and viewing VR content through the built-in lenses. The LiDAR and SfM point clouds
were uploaded to Sketchfab (https://sketchfab.com) (accessed on 14 April 2021) (in PLY
format), an online platform for hosting and viewing interactive and immersive 3D content.
The models were accessed through the smartphone’s web browser. The entire LiDAR point
cloud was viewable with the smartphone’s web browser, but the SfM model was subset to
an area of 0.3 ha of the open bog and an 0.4 ha area of the treed bog due to the maximum
200 MB file size upload limitations of our Sketchfab subscription. The PLY models were
scaled in Sketchfab relative to a 1.8 m tall observer.

2.7. Augmented Reality Visualization

In comparison to consumer VR systems, AR head-up-displays and smart glasses
capable of visualizing scientific data are predominantly expensive enterprise grade (e.g.,
Magic Leap 1, Epson Moverio series, Microsoft Hololens, Vuzix Blade, etc.) systems.
Therefore, we tested mobile AR using webhosted data viewed through an iOS/Android
smartphone application. The point clouds in PLY format were uploaded to Sketchfab,
and the models were accessed in AR mode via the Sketchfab iOS/Android smartphone
application. The entire LiDAR point cloud was viewable with the smartphone application,
but the SfM model was subset to an area of 788 m2 due to RAM limitations of the phones
tested (i.e., iPhone XR, 11 Pro, 12 Pro and Samsung Galaxy 20 FE).

3. Results
3.1. SfM-MVS Point Cloud

Each of the 333 bog photographs was geotagged with a fixed PPK solution (AR
ratio µ = 877.3 ± 302, range of 3–999.99). The precision of the calculated positions was
µ = 1.2 ± 0.6 cm (easting), µ = 1.6 ± 0.7 cm (northing), and µ = 3.2 ± 1.3 cm (vertical).
The final ground sampling distance (GSD) of the bog point cloud was 1.2 cm. Pix4D
found a median of 58,982 keypoints per photograph and a median of 26,459.9 matches

https://sketchfab.com
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between photographs. Total processing time in Pix4D was ≈ 2.5 h (Intel® Xeon® Platinum
8124M CPU @ 3.00GHz, 69 GB RAM). The average density of the final point cloud was
2677.96 point per m3 (40,605,564 total points).

In the field south of the bog, the point cloud was generated with a GSD of 1.8 cm,
and similar to the bog dataset, all photographs were geotagged with a fixed PPK so-
lution. Pix4D found a median of 75,786 keypoints per photograph and a median of
23,202.9 matches between photographs. The positional accuracy of this point cloud in
relation to the checkpoints was RMSEx = 5 cm, RMSEy = 6 cm, and RMSEz = 5 cm. These
values serve as an estimate of the positional accuracy of the bog point cloud.

3.2. LiDAR Point Cloud

The individual LiDAR strip quality metrics calculated by LiDAR360 are shown in
Table 1. These metrics are calculated for each entire strip, including edges and turns that
were not used in the final dataset. At an acquisition height of 50 m AGL, the width of
the individual LiDAR strips was ≈80 m with neighboring strips overlapping by 50–52%.
As expected, the treed portion of the bog had the greatest elevation difference between
neighboring strips (13.1–17.3 cm) compared to the open bog predominantly comprised of
hummocks and hollows (5.8–7.1 cm).

Table 1. Quality metrics of the full individual LiDAR strips calculated from LiDAR360.

Quality Metric Value

Overlap between strips (%) 50.8–52.2
RMSE before boresight correction (cm) 8.6

RMSE after correction (cm) 8.4
Elevation difference between strips, RMSEz (HU–HO) (cm) 5.8–7.1

Elevation difference between strips, RMSEz (trees) (cm) 13.1–17.3
1 Average density (pts/m2) 25.3–31.2

1 Density range (pts/m2) 1–270
Trajectory deformation (%) 0.22–0.55

1 These values represent the full strips, including edges without overlap, turns, and infrastructure (sheds) that
were cut from the final dataset.

3.3. Point Cloud Comparisons

The final SfM and LiDAR point clouds covering 1.71 ha are shown in Figure 3.
The SfM dataset has 30,413,182 points while the LiDAR dataset has 1,010,278 points
(Table 2). As a result, the SfM point cloud is 19.6 times larger (LAS format) than the
LiDAR dataset. The data acquisition time was nearly double for the SfM (18 vs. 10 min),
and the computation time to generate the 3D point cloud was at least 10 times greater than
for the LiDAR dataset. Considering the time needed to process the geotags and prepare
the photographs (i.e., convert from CR2 to JPEG and color correct if necessary), the SfM
point cloud takes even longer to generate.

The increased detail obtained from the ≈30x more points in the SfM dataset is apparent
in Figure 3, resulting in a more realistic reconstruction of the bog. The several “no data”
areas in the LiDAR dataset (shown in black) and the linear pattern of point distribution are
artefacts from the mechanical laser diodes spinning during acquisition in a system hard
mounted on a moving platform (Figure 2b).

Figure 4 illustrates the point density of the two datasets. The SfM dataset has an
average density of 570.4 ± 172.8 pts/m2 while the LiDAR dataset has an average density
of 19.4 ± 7.5 pts/m2. In both data sets, the lowest density is in the treed bog.
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Figure 3. The final 1.71 ha point clouds for the bog study area from (A) SfM and (B) LiDAR at three increasing levels
of scale.
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Table 2. Comparison between the final bog SfM and LiDAR datasets.

Characteristic SfM LiDAR

Area (ha) 1.71 1.71
Acquisition altitude (m) 50 50
Acquisition speed (m/s) 2.5 5
1 Total flight time (min) ≈18 ≈10

Average Density (pts/ha) ≈17.7M ≈0.6M
Total number of points 30,413,182 1,010,278

Density as pts/m2 (µ ± σ) 570.4 ± 172.8 19.4 ± 7.5
2 File size, LAS format (total area in MB) 1000 51

2 File size, LAS format (MB/ha) 585 30
2 File size, PLY format (total area in MB) 445 15

2 File size, PLY format (MB/ha) 260.2 8.8
3 Computation time (min) ≈150 ≈15

1 Includes transit from takeoff area and the two sets of figure 8s required for the LiDAR INS calibration after
takeoff and before landing, and does not include time on the ground between flights. 2 These files contain only
six columns: x, y, z coordinates and R, G, B color intensity. 3 Does not include time needed to covert or geotag the
photographs for the SfM.

Figure 4. Point density of the (A) SfM and (B) LiDAR datasets. The number of neighbors is the count of points within
a sphere with a 1 m radius. The pts/m2 represents the number of points within a surface area of 1 m2. The distribution next
to the color bars represents the histogram of the height values. No data shown in black.

Despite the differences in point density, the gross microtopography and presence
of both large and small trees can be seen in both datasets (Figure 5). A t location-scale
distribution was found to best fit the vegetation height from both datasets based on the
AIC criterion (Table 3, Figure 6). This distribution better represents data with a heavier tail
(i.e., more outliers) than a Gaussian one. In this case, relatively fewer points representing
the trees are the outliers. The distribution is described by three parameters, location (µ),
scale (σ) and shape (ν). Larger values of ν indicate a lesser tail and, therefore, a distribution
more similar to a Gaussian. A two-sample Kolmogorov–Smirnov test indicates the height
values are from different continuous distributions (k = 0.11, p = 0, α = 0.05). Figure 6 shows
that the SfM’s distribution is slightly wider (σ = 1.591) than that of the LiDAR (σ = 0.1151).
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Figure 5. Subset of the point clouds illustrating the height of the vegetation (m ASL) for a subset of the point cloud from (A)
SfM and (B) LiDAR. The distribution next to the color bars represents the histogram of the height values.

Table 3. Parameters of the best-fit t location-scale distributions of height (m ASL) from
the two datasets; µ = location, σ = scale, ν = shape, CI = confidence interval.

Dataset AIC µ σ ν CI µ CI σ CI ν

SfM-MVS 1.0879 × 107 69.436 0.1591 1.87 69.4359–69.4361 0.1590–0.1592 1.816–1.819
LiDAR 8.2967 × 104 69.470 0.1151 1.40 69.4697–69.4703 0.1148–0.1154 1.397–1.407

Figure 6. Best-fit t location-scale distribution probability density functions of height for the SfM and
LiDAR datasets.

Prior to alignment in CloudCompare, there was a 15 ± 22 cm vertical and
50 ± 7 cm horizontal offset between the point clouds. After ICP, the horizontal offset de-
creased to 10.5 ± 11.5 cm. The sparseness of the LiDAR point cloud precluded a closer hor-
izontal alignment. Vertically, the difference in height varies by spatial location (average of
4 ± 13 cm) (Figure 7) due to a more pronounced depression in center of the SfM-MVS
dataset where the bog has a higher density of hollows. However, when the uncertainties of
the height values of both the SfM and LiDAR surfaces are taken into account, the height
differences are minimal for the majority of the study area.
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Figure 7. Difference in height between the SfM and LiDAR point clouds. The distribution next to the
color bar represents the histogram of the difference in height.

The values of surface roughness (Figure 8) reveal similarities across both datasets,
with the trees and boardwalks differentiated from the hummocks and hollows with higher
values of roughness. In the SfM dataset, hummocks (roughness ≈ 0.1–0.35) can be better
differentiated from hollows (roughness ≈ 0.06). From the LiDAR dataset, the sparseness of
the point cloud results in incomplete definition of the hummocks (roughness ≈ 0.05–0.29).

Figure 8. Surface roughness for (A) SfM and (B) LiDAR datasets calculated with a kernel size of 1 m (the radius a sphere
centered on each point). The distributions next to the color bars represent the histogram of the roughness values.

After rasterization, the density of the points averaged per pixel of the 10 cm DSM was
17.6 ± 7.3 pts/px from the SfM and 0.6 ± 1.1 pts/px from the LiDAR. At a 50 cm pixel size,
the density increased to 437.5 ± 144.4 pts/px for the SfM and 14.5 ± 8.3 pts/px for the
LiDAR. The low point density for the LiDAR at the 10 cm pixel size resulted in interpolation
artefacts. From the DSMs, the percentages of classified hummocks and hollows are similar
between the SfM and LiDAR classifications (Table 4). In both cases, the proportions of the
two microforms decreased with increasing pixel size, most notably for the SfM hummock
class (loss of 5%). For both pixel sizes, the estimated total area of hummocks and hollows
is lower from the LiDAR DSM than those generated from the SfM.
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Table 4. Percentage of hummocks (HU) and hollows (HO) in the study area classified from the SfM
and LiDAR DSMs.

Pixel Size SfM HO SfM HU LiDAR HO LiDAR HU

10 cm 28.8 28.6 29.9 25.6
50 cm 27.8 23.6 22.1 24.0

Comparisons of transects (Figure 9) across the profile of a tree and hummocks and
hollows, from the 10 cm DSM of each dataset, reveal similarities in the heights along the
transects. The remaining horizontal offset between the two datasets is most apparent in
the profile of the tree (Figure 9a), but it can also be seen in the hummocks and hollows
(Figure 9b) to a lesser degree. The incomplete resolution of the tree crown can be seen in
the transect across the tree with sections dropping to ground level due to the low density
of the LiDAR. At the finer resolution of the height in the hummocks and hollows transect,
a vertical offset of 10–20 cm can be seen between the SfM and LiDAR data. This transect is
located near the center of the study area and as can be seen in Figure 7, the difference in
height between the datasets in that section is 9–21 cm.

Figure 9. Comparison of transects across a profile of a tree (A) and hummocks and hollows (B) for the SfM and LiDAR
datasets. The panels on the left illustrate the DSMs from which the transects were extracted.

The 3D fractal dimension reveals opposite patterns of complexity between the
10 and 50 cm scales for the SfM and LiDAR derived triangular meshes (Table 5). At
both scales, the LiDAR data have higher values of D, indicating greater complexity of the
3D shape of the bog surface. However, this is likely influenced by the sparseness of the
point cloud resulting in artefacts following interpolation producing artificial complexity.
The lowest value of D (1.36), obtained for the 10 cm SfM data, indicates that at that scale,
the microtopography of the bog is more regular. At 50 cm, some of the lawns (height values
spanning ±5 cm around the median) that are intermediate between the hummocks and the
hollows are grouped together with either the neighboring hummock or hollow, resulting in
a more distinct boundary between microforms and a more irregular pattern and greater
value of D (1.81).
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Table 5. Value of the 3D Minkowski–Bouligand fractal dimension (D) for the SfM and LiDAR.

Pixel Size SfM LiDAR

10 cm 1.36 1.86
50 cm 1.81 1.83

Similar to the findings of [27], we also found that the bog has an isotropic (nondi-
rectional) semivariogram (from both SfM and LiDAR). From the SfM, the range was
approximately 2.5 m with a sill of 0.06 and a nugget of 0.01. The LiDAR had similar results
with a range of approximately 2.7 m, a sill of 0.05, and a nugget of 0.01. The semivariograms
from both datasets support a hummock–hollow pattern. The longer range value of the
LiDAR indicates it was able to resolve a less well-defined pattern between the hummocks
and hollows than the SfM.

Lastly, based on the system implementations and acquisition of the data, Table 6
summarizes the main strengths and weaknesses of SfM and LiDAR data acquisition for 3D
surface reconstruction of the bog.

Table 6. Comparison of general SfM and LiDAR acquisition strengths and weaknesses.

Characteristic SfM LiDAR

Acquisition Slow Fast

System initialization Starts acquisition after takeoff Requires INS calibration after takeoff and
before landing

Line spacing Narrow (e.g., 15 m @ 50 m AGL with
80% sidelap)

Wide (e.g., 40 m @ 50 m AGL with
50% overlap)

Processing time Slow Fast
Resolution of spatial detail Ultra-high Moderate

User friendliness Low–high 1 High
Consistency of results Moderate–high High

Potential for component failure Low–high 2 Low
Payload implementation Easy–difficult 3 Easy

File size Large Small
Payload weight (kg) 4.5 4.8

1 System described here has a low user-friendliness (i.e., complex to operate) but integrated systems (e.g., Phantom 4 RTK [55]) are more
user friendly. 2 System described here has a high potential for component failure unlike integrated systems. 3 The DSLR setup described
here requires precise balancing of the camera on the gimbal, which can be difficult and time consuming to achieve in the field. This is not a
concern for integrated systems.

3.4. Web-Based Visualization

Both point clouds could be visualized in full spatial extent through a web browser
from both a desktop computer (Figure 10) and smartphone. Navigation was simple and
intuitive using either the mouse (desktop) or by swiping across the screen (smartphone).
For both datasets, virtually no lag was experienced when interacting with the point clouds.
The basic tools, which included measuring distances and areas and drawing cross sections
(Figure 10b), further allowed the user to explore the characteristics of the bog. While
interactivity and usability were high, this baseline implementation lacked the “sense
being present” within the data. The overall definition of the detail in the point clouds
depended on the speed of the internet connection. The server used Cat6 Ethernet to
a gigabit broadband connection. From the user side, slow connections, especially on a
mobile browser (e.g., HSPA-3G 3.5–14 Mbps), resulted in the point clouds requiring more
time to load at full resolution especially for the SfM model (i.e., tens of seconds). On an LTE
mobile internet connection (197 Mbps), there was no difference in the speed the models
would load (i.e., <5 s) in comparison to a high-speed Wi-Fi or Ethernet connection (i.e.,
150–800 Mbps). This web-based implementation is the simplest to access, requiring the
user only to click a URL.
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Figure 10. Screen captures illustrating the (A) SfM and (B) LiDAR point clouds in the web-based Potree viewer. The
LiDAR data are shown with the cross-section tool enabled, illustrating that while the microtopography is difficult to see in
the point cloud due to the low density of points, when viewed as a cross section, the difference in elevation between the
hummocks and hollows is visible. The point clouds can be viewed at https://bit.ly/MB_SfM (accessed on 14 April 2021)
and https://bit.ly/MB_lidar (accessed on 14 April 2021), respectively.

3.5. Virtual Reality Visualization
3.5.1. Oculus Quest 2

Similar to the web-based visualization, the full point clouds could be loaded and
displayed in the HMD through VRifier (Figure 11). The LiDAR point cloud loaded near
instantaneously while ≈15–20 s were needed for the SfM model to load. The Oculus Quest
2 provided a full immersive experience with a higher “sense of being present” in the data
than what was achieved by the web-based visualization. In this VR implementation, the
importance of point density was apparent. With the SfM model, the user has the “next
best” experience to being in the bog in person due to the high level of detail while the low
point density of the LiDAR resulted in a less realistic experience because of the gaps in the
data. Similar to the web-based viewer, the ability to scale the model easily with the touch
controllers enhanced the immersive experience.

https://bit.ly/MB_SfM
https://bit.ly/MB_lidar
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Figure 11. Video from VRifier illustrating the experience navigating the SfM and LiDAR point clouds
on the Oculus Quest 2 headset. The input PLY files and video are available for download from
https://doi.org/10.5281/zenodo.4692367 (accessed on 14 April 2021).

While generation of the PLY files was straightforward, the setup and integration of
the Oculus Quest 2 and the desktop PC were more complicated, requiring the installation
and configuration of several software packages and drivers. As of April 2021, VRifier was
still in development, and not all features had been implemented. While it was possible
to navigate through the point cloud and capture 2D and 3D panoramas (Figure 12) from
within VRifier, tools to measure distances or areas were not available. When combined,
the software packages (i.e., VRifier, Steam, various Oculus services) committed between
1.5–3 GB of the PC’s RAM and 2.5–3% of the CPU during the visualization of the models.

Figure 12. Videos illustrating 360◦ panoramas of the (A) SfM and (B) LiDAR point clouds within VRifier. These panoramas
are being viewed on the Insta360 Player but can be opened by most 360◦ photograph viewers. The 360◦ panoramas are
available for download from https://doi.org/10.5281/zenodo.4692367 (accessed on 14 April 2021).

One of the most useful options from within VRifier was the generation of the 360◦

panoramas (Figure 12). These files (PNG format, .png) can be readily shared, and many
free programs are available to view them in 360◦ format. While they do not provide the
navigation element of the immersive experience, these files are a suitable alternative for
sharing geospatial data visualization.

https://doi.org/10.5281/zenodo.4692367
https://doi.org/10.5281/zenodo.4692367
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3.5.2. Google Cardboard

Other than the web-browser, the Google Cardboard headsets wwere the easiest for
visualizing the 3D models. However, the quality of the stereoscopic 3D effect depended
on smartphone model used due to the differences in screen size. For example, it was not
possible to avoid duplication artefacts with the iPhone XR (screen size 6.06”) with either
viewer, but on the iPhone 11 Pro (screen size 5.85”), both viewers worked well in showing
clear 3D content. Both viewers are intended to work with screens 4–6” in size. With the
Google 87002823-01 Cardboard viewer, navigation through teleportation within the model
was straightforward, but it did not work with the DSCVR headset, in which the experience
was more similar to viewing a static 360◦ 3D photograph. Despite the 3D effect, it was less
immersive than with the Oculus Quest 2 implementation.

3.6. Augmented Reality Visualization

We found the density of the 3D point clouds and the resultant file sizes to be
a limiting factor in the usability of the mobile AR viewer. While the entire LiDAR point
cloud (14 MB in .ply) could be opened in the Sketchfab application (Figure 13a), the
SfM model had to be reduced in overall extent to 788 m2 (20 MB in .ply) (Figure 13b).
In addition, the relatively small screen size of the smartphones did not allow for fine
scale investigation of the models. Nevertheless, the ability to “walk through” and in-
spect the models from different viewpoints by simply rotating the phone allowed for a
partially immersive experience. With the LiDAR data, the sparseness of the point cloud
resulted in the user being able to see through the model to the real-world ground below
(Figure 13b), and the hummock–hollow microtopography was very difficult to discern.
From the SfM model, gross microtopographic features could be seen on the screen, but
because of the small spatial extent of the subset dataset, very little of the bog’s spatial
structure could be examined. Table 7 summarizes a comparison between the main consid-
erations of the different point cloud visualizations in VR and AR tested here for the SfM
and LiDAR point clouds.

Table 7. Qualitative comparison between main considerations for visualization of the LiDAR and SfM point clouds.

Characteristic Web-Based Oculus Quest 2 VR Google Cardboard (VR) Mobile AR

Sense of being present Low High Moderate Low
Ease of use High Moderate Moderate–high High

Ease of setup Moderate Low High High
File size supported Ultra-large Ultra-large Moderate Limited

Equipment cost (setup) High Moderate Low Low
Equipment cost (user) Low/high Moderate Low Low

Long-term cost
effectiveness High High Low–high Low

Requires internet Yes/No 1 No 2 Yes/No 3 Yes
1 A local PC installation of the Potree viewer that does not require access to the internet to view the models is available. 2 After initial setup, internet
access is not required. 3 Models could be saved locally to the smartphone and accessed without internet.
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Figure 13. Videos illustrating a screen recording of the AR visualization of the (A) SfM and (B)
LiDAR point clouds through the iOS Sketchfab application. The models can be viewed in AR
at https://skfb.ly/onuU9 (LiDAR) (accessed on 14 April 2021) and https://skfb.ly/onuUs (SfM)
(accessed on 14 April 2021).

4. Discussion

Microtopography and vegetation patterns at various scales can provide important
information about the composition and environmental gradients (e.g., moisture and aera-
tion) in peatlands. Ecological functions, greenhouse gas sequestration, and emission and
hydrology can further be inferred from detailed analyses of the vegetation patterns [27,43].
As expected, our study revealed differences between SfM and LiDAR bog microtopog-
raphy characterizations. The greatest difference is the spatial detail defining the micro-
forms in the point clouds or DSMs. This is a result of the varying point densities, i.e.,
570.4 ± 172.8 pts/m2 from the SfM versus 19.4 ± 7.5 pts/m2 from the LiDAR. Despite
being sparser than the SfM, the UAS LiDAR data are considerably higher in density than
conventional airborne LiDAR data from manned aircraft due to the low altitude of the UAS
data collection. For example, airborne LiDAR data over the same study area produced a
point cloud with a density of 2–4 pts/m2 [59]. Similarly, the authors in [64] reported a point
density of 1–2 pts/m2 from airborne LiDAR for wetlands in Eastern Canada. Nevertheless,
the point density achieved here for the LiDAR is lower than that reported by other UAS
systems used to study forested ecosystems (e.g., up to 35 pts/m2 [65]).

Contrary to most forest ecosystems with a solid mineral soil ground layer, the ground
layer of the bog is composed of living Sphagnum sp. moss over a thick peat column (several
meters) with high water content, which prevents the pulses from encountering a solid
non-vegetated surface below. Furthermore, the shrubs that comprise the hummocks have a
complex branch architecture. A laser pulse encountering vegetation is likely to undergo
foliage structural interference, resulting in reduced amplitude of return in comparison to
solid open ground [66]. Luscombe et al. (2015) [67] showed that dense bog vegetation
disrupts the return of the laser pulses and can result in an uncertain representation of the
microform topography. Similar to the authors in [22,25] who found that penetration of
the laser pulses into hummock shrub canopy was low from airborne LiDAR, because the
vegetation blocked the pulse interaction with the ground beneath hummocks, our results

https://skfb.ly/onuU9
https://skfb.ly/onuUs
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also did not show multiple returns over the hummocks. As can be seen in the cross section
of the LiDAR point cloud (Figure 9b), the points follow the elevation of the top of the
canopy. A similar phenomenon was noted in other ecosystems with short dense vegetation
such as crops and grasslands [27]. The SfM also cannot distinguish between the tops of the
hummocks and the moss ground layer beneath. Our results were also similar to those by
the authors [23,24] who found that exposed Sphagnum sp. mosses are good planar reflectors
for LiDAR, which allows for mapping the surface details in open bogs.

As input to models that require a DSM as part of the workflow or as a covariate, e.g.,
peat burn intensity mapping [68], biomass estimation [59], and peat depth estimation [21],
either the SfM or LiDAR would be sufficient. Both retain the gross microtopography of
the bog, with similar semivariogram ranges and complexity (at the 50 cm scale). LiDAR
should be used with caution at fine scales of interpolation due to the artefacts introduced
from the low point density. Where fine scale detail is required (<10 cm), the SfM provides
better results.

While both technologies provide valuable datasets of the bog, they are optimized
for different scenarios (Table 6). The SfM dataset is better suited for studies that require
fine spatial detail over a smaller area (<10 ha). The longer time for data acquisition and
processing make this technology more feasible for localized studies. In contrast, the more
efficient LiDAR is better suited to acquiring data over larger areas at lower spatial detail. At
the expense of total area covered, from a lower altitude and with a slower flight speed the
point density of the LiDAR could be increased, but further testing is required to determine
by how much in this ecosystem. Both payloads are of moderate weight, 4.5 kg for the
SfM and 4.8 kg for the LiDAR (Table 6) and as such require a UAS with enough payload
capacity (e.g., M600P used in our study).

When manipulating the point clouds on a desktop PC or viewing them through the
web-based Potree viewer, the difference in file size (1 GB for the SfM vs. 51 MB for the
LiDAR LAS files) is not apparent when navigating within or interacting with the dataset.
Even with a slow mobile internet connection, the Potree viewer remained useable. The file
size also was not an important consideration when viewing the point clouds in VR with
the Oculus Quest 2. Because the HMD is tethered to the PC during this operation and the
desktop computer is rendering the data, the full datasets can be readily interacted with.
When mobile VR (e.g., Google Cardboard) or mobile AR was used, the file size of the SfM
dataset hindered the user experience. The main limitation for mobile VR was the file size
of the cloud-based hosting platform (i.e., Sketchfab) and RAM capacity of the smartphones
for AR. Potentially, the commercial AR implementations developed for medical imaging
would not have the same file size restrictions, although these were not tested here.

All VR and AR visualizations provided a sense of agency through the user’s ability
to turn their head or smartphone and explore the bog through a full 360◦ panorama and
change their perspective or scale of observation. While this ability is also true for the
360◦ panoramas captured within VRifer, dynamic agency was only fully achieved by
motion tracking in the VR and AR implementations. As described by [69], this is an
important distinction between a desktop digital experience and immersive technology.
Such transformative developments in visualization lead to the user becoming “part of”
the digital representation as opposed to the digital content remaining distinct from the
user’s experience [69]. Of the VR and AR tested here, only the Oculus Quest 2 rendered a
visually immersive experience. In comparison to other VR implementations such as CAVEs
and video walls with smart glasses, the full 360◦ panoramic view of the VR HMD cannot
be matched [70].

Visualization technology is important because it allows users to study areas of interest
in virtual environments in 3D, and it facilitates the interaction of groups in different
locations, the collection of data in time and space, and the ability to view the object
studied in environments with varying scales. In addition to its use in scientific queries,
the immersive digital content is a further benefit for educational material and for the
individual exploration of questions related to the datasets. Adding virtual models of the
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region of interest accessible with immersive VR or AR technology greatly benefits the
overall understanding and interest in the subject matter [71,72]. Because VR/AR content is
interactive, the datasets can now be manipulated by each person with different questions
or interests.

With the popularization of this technology for gaming and entertainment, there has
been both a surge in development and improvement in the quality of the hardware but also
a decrease in price in consumer grade VR headsets. Therefore, it is becoming more feasible
to equip teams to use this technology both for meetings and also for virtual collaboration
to work with datasets and colleagues from anywhere in the world. Popular for virtual
tech support, AR lags behind VR in technological maturity for geospatial visualization.
Nevertheless, with more compact datasets, such as the LiDAR point cloud, these 3D scenes
can be displayed from most modern smartphones, making it both easily accessible and
readily available to share interactive files. With the majority of VR and AR development in
fields other than geospatial sciences (e.g., gaming, marketing, telepresence), there is a need
for improved functionality and the ability of the specialized software to effectively handle
the large files produced from technologies such as SfM and LiDAR [73].

Despite their promise, neither VR nor AR can replicate virtual environments with
sufficient detail or fidelity to be indistinguishable from the real world. They are not
a substitute for fieldwork, nor firsthand in situ field experiences. Rather, they are tools to
augment and enhance geospatial visualization, data exploration, and collaboration.

5. Conclusions

It is only a matter of time before peatland ecosystem models (e.g., [74–76]) become
adapted for 3D spatially explicit input. Fine-scale microtopographic ecohydrological
structures that can be represented from either UAS SfM or LiDAR would provide the
resolution needed for models to quantify how peatland structure and function changes
over time [67], which can lead to insights into the ecohydrological feedbacks [43]. We
show that vegetation structure can be reliably mapped from UAS platforms using either
SfM or LiDAR. This is important in sites such as Mer Bleue where the spatial structure
of the peatland accounts for 20–40% of the vegetation community distribution [43] and
associated ecohydrology. Given the scarcity of UAS LiDAR studies in peatlands (compared
to the SfM literature), additional research in peatlands (and other wetlands) is essential.
New relatively low-cost LiDAR technologies, such as the DJI’s Zenmuse L1 (point rate of
240,000 pts/s, up to 3 returns and manufacturer stated high vertical and horizontal ac-
curacy), could provide new opportunities to expand the use of LiDAR in peatlands and
other ecosystems.

Author Contributions: Conceptualization, M.K. and O.L.; Data curation, M.K.; Formal analysis, M.K.
and J.P.A.-M.; Investigation, O.L.; Methodology, M.K.; Writing—original draft, M.K., J.P.A.-M and
O.L.; Writing—review & editing, M.K., J.P.A.-M and O.L. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the Canadian Airborne Biodiversity Observatory (CABO)
and the Natural Sciences and Engineering Research Council Canada. The APC was funded by MDPI.

Data Availability Statement: The data presented in this study (LAS files) are available on request
from the corresponding author following the CABO data use agreement from https://cabo.geog.
mcgill.ca (accessed on 14 April 2021).

Acknowledgments: We thank Jacky Heshi from CanDrone for technical support with the LiAIR S220.
We also thank the three anonymous reviewers, Nicolas Cadieux, Kathryn Elmer, Deep Inamdar, and
Raymond J. Soffer for their comments which helped improved the manuscript.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

https://cabo.geog.mcgill.ca
https://cabo.geog.mcgill.ca


Drones 2021, 5, 36 22 of 25

Appendix A

Table A1. Summary of equipment and software used in this study.

Category Model Purpose

UAS airframe DJI Matrice 600 Pro Data acquisition platform
RGB camera Canon 5D Mark III SfM photograph acquisition

Camera gimbal DJI Ronin MX SfM photograph acquisition
GNSS receiver Emlid M+ Geotagging SfM photographs
GNSS receiver Emlid RS+ Check point acquisition

LiDAR LiAIR S220 LiDAR data acquisition
VR HMD Oculus Quest 2 VR visualization

AR/VR viewer iPhone XR, 11 Pro, 12 Pro, Samsung Galaxy 20 FE Mobile AR visualization
VR viewer Google Official 87002823-01 Cardboard VR visualization
VR viewer I am Cardboard DSCVR VR visualization
Software Pix4D SfM-MVS photogrammetry
Software RTKLib * SfM geotag PPK
Software LiAcquire LiDAR acquisition
Software LiNAV LiDAR postprocessing
Software LiDAR360 LiDAR postprocessing
Software CloudCompare Stereo * Point cloud processing/analysis
Software MATLAB Analysis
Software ProcessOBJ * Analysis

Software Potree Converter * Preprocessing point clouds for
web-based visualization

Software Potree Server * Mobile and PC 3D visualization
Software VRifier * VR visualization

Web-based AR/VR viewer Sketchfab 1,2 Mobile AR visualization
1 There is a free plan for individuals with limitations to file size uploaded. 2 Free for users to view models. Open source and free software
are designated with an asterisk (*).
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