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Abstract: The raising accessibility of Unmanned Aerial Vehicles (UAVs), colloquially known as
drones, is rapidly increasing. Recent studies have discussed challenges that may come in tow
with the growing use of this technology. These studies note that in-depth examination is required,
especially when addressing challenges that carry a high volume of software data between sensors,
actuators, and control commands. This work underlines static and live digital evidence traceability
challenges to further enhance the UAV incident response plan. To study the live UAV forensic
traceability issues, we apply the ‘purple-teaming’ exercise on small UAVs while conducting UAV
forensic examination to determine technical challenges related to data integrity and repeatability. In
addition, this research highlights current static technical challenges that could pose more challenges
in justifying the discovered digital evidence. Additionally, this study discusses potential drone anti-
forensic techniques and their association with the type of use, environment, attack vector, and level of
expertise. To this end, we propose the UAV Kill Chain and categorize the impact and complexity of all
highlighted challenges based on the conducted examination and the presented scientific contribution
in this work. To the best of our knowledge, there has not been any contribution that incorporates
‘Purple-Teaming’ tactics to evaluate UAV-related research in cybersecurity and digital forensics. This
work also proposes a categorization model that classifies the discovered UAV static and live digital
evidence challenges based on their complexity and impact levels.

Keywords: UAV forensic; Kill Chain; digital evidence traceability; data integrity; technical issues;
comparative model

1. Introduction

The future uses of UAVs include border security, coastguard, forest fires, emergency
rescue, oil industry, environmental monitoring, aerial photography, and surveying [1].
UAVs’ safety functionality is considered an essential factor to the principles of cybersecurity
(i.e., Confidentiality, Integrity, Availability, and Safety). The use of flying devices has created
challenges to many countries, including challenges relating to policies and regulation,
software development, security issues, and a lack of detection and monitoring technologies.

Adversarial tactics related to the use of UAVs have created more challenges to the
drone Incident Response (IR) process. There are several detection systems to counter UAVs,
and the lessons learned from UAV incidents allow for continuous improvement on the
detection and prevention measures. Critical infrastructures such as airfields, prisons, and
borders have encountered a massive number of UAV incidents during the past three years.
The UK Airprox Board has conducted an assessment on a Small Unmanned Air System
(SUAS), including drones, balloons, model aircraft, and unknown objects (e.g., birds). As
illustrated in Figure 1, it is estimated that the number of publicly reported drone incidents
in 2019 was about 91 incidents [2]. These incidents are limited to the description provided
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by airplane pilots. Drone incidents count for about more than 80% compared to the other
three classified categories (i.e., balloons, model craft, and unknown objects).

Figure 1. UK Airprox board assessment on a Small Unmanned Air System (SUAS) [2].

Some Commercial off the shelf (COTS) drones deploy a software restriction based on
the No Fly Zone (NFZ) policy; however, unlocking the NFZ restriction has become an online
service. This attack vector poses many challenges not only to the drone forensic process
and examination, but also the detection, monitoring, and mitigation of attacks. Researchers
in [3] proposed a fully autonomous system as a counter UAV solution supported with a
net designed to safely capture the targeted UAS. Alternatively, lateral movement of drone
attack can impact both the detection and IR processes if Command and Control (C&C) sent
customized requests to erase or alter all digital evidence from Unmanned Aerial System
(UAS). A new approach is therefore needed to address the following questions:

1. What type of challenges are present in the forensic discovery process that depend on
the method of attack or intrusion?

2. How do technical forensic challenges impact the forensic soundness of digital evi-
dence recovered from UAVs?

3. How do different attack scenarios change the potential ability to discover tractability
or evidence?

4. What are the main identifiable factors of evidence and how can this be simulated in a
red team or blue team scenario?

In this paper, security challenges related to the use of drones and digital evidence
traceability challenges are discussed. The contributions of this paper include:

• A ‘Purple-Teaming’ exercise performed on a commercial off-the-shelf UAV.
• Discussing possible Anti-UAV forensic techniques based on the conducted experi-

ments.
• Proposing a Kill Chain for UAVs.
• Highlighting the technical challenges pertaining to the decryption of digital evidence

recovered from UAVs.

This paper is structured as follows: Section 2 discusses the earlier studies regard-
ing UAVs cyber threats, IDS, and IR. Section 3 explores the methodology used in this
paper. Section 4 presents the ‘Purple-Team’ scenario and UAV forensic challenges (i.e.,
this includes static and live approaches). Section 5 discusses the overall contributions and
limitations of this work. Finally, Section 6 concludes this paper with directions of future
research .
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2. Literature Review

Drone cyber threats were categorized into four classes including confidentiality and
privacy, integrity, availability, and authenticity, while each class contains a certain type
of attack [4]. For instance, confidentiality and privacy of data transmitted via UAVs are
essential to avoid traffic analysis, data alteration, and eavesdropping. Simultaneously,
Denial of Service (DoS) and jamming attacks impact the drone operations.

In a recent work [5], researchers have proposed a threat model for UAVs. The proposed
model consists of application and link risks, accessibility risks, perceptional risks, and data
security risks. The model highlights the important factors in this research. For instance,
identifying the accessibility risks (i.e., insecure file systems, weak credentials, and network
services) are very crucial when operating a UAV. In addition, researchers [5] discussed the
importance of securing live data streaming and communication protocols to minimize the
intrusion risk.

Alternatively, an operational overview of the UAV Intrusion Detection System (IDS)
has been proposed to enhance security requirements [6]. The proposed IDS is based on
specifications [7], signatures [8], anomaly behaviors [9], and hybrid [10]. The selection
method is based on specific rules generated to monitor the UAS behavior, while the signa-
ture method is executed on known cryptographic hash functions. The hybrid mechanism
requires incorporating at least two of the aforementioned methods, for instance, com-
bining anomaly detection and signature based IDS. These methods are identical to the
traditional IDS; however, UASs consist of a large number of components (i.e., sensors and
communication links).

Automating security assessment is vital for the advancement of drone technology,
especially with the rapidly increasing use of drones and the implementation of Drone
as a Service (DaaS). A Hierarchical Context Aware Aspect-Oriented Petri Net (HCAPN)
model was proposed by researchers in [11]. The model’s objective is to detect potential
vulnerabilities based on drone behavior evaluation. Alternatively, the deployment of
onboard and external IDSs to prevent attacks on the security principals of cybersecurity,
namely, confidentiality, integrity, and availability, has been presented in [12–14]. Prior
researchers [12,13] concentrated more on detecting abnormal flight patterns indicating an
unauthorized change of flight trajectory such as GPS spoofing, and structural failure, while
the work presented in [14] deployed a combination of IDS techniques combining both rule
and anomaly-based detection.

Drones connected to the Internet are transforming the fourth industrial revolution
to meet the requirements of the cyber physical system revolution. The development
and deployment of the Internet of Drones (IoD) enhance smart mobility, public safety
communications, air traffic control, logistics tracking, along with medical, military, and
environmental applications [15]. Securing the implementation of IoD requires extensive
risk assessment and continuous traffic monitoring, as the operation will mostly depend on
network communication. This would increase the number of cyber threats because enabling
long-range wireless connectivity results in more chances to perform a reconnaissance attack.
Authors in [15] introduce a new type of attack to the IoD taxonomy called the firmware
replacement attack. This is not the case with off-the-shelf drones as they operate on
multiple low range communication protocols (i.e., Radio Frequency and Wireless Local
Area Network (WLAN)); however, a firmware replacement attack is considered as a cyber
threat to small drones when manufacturers make firmware publicly available. This may
lead to potential malware injection and the distribution of the fake version of the firmware
to drone users.

Maldrone (known as hijacking attack) is another potential security threat to UAVs [16],
which may be performed by executing a malicious code into the drone to take over control.
This indicates the necessity of revisiting traditional security measures as the maldrone
attack has been successful for the AR Parrot type drone. Therefore, comprehensive security
measures need to be addressed based on a threat’s level of priority [17].
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It has been identified that there are three types of cyber-physical attackers with
different capabilities, including revelation, knowledge, and disruption [18]. Researchers
claim that any attack-targeted UAVs should accomplish one or more of the three capabilities
because revelation deals with intercepting unencrypted data, knowledge refers to the
reconnaissance technique (i.e., information gathering and fingerprinting), and disruption
signifies the ability of an adversary to deny the UAS operation [19]. Researchers in [19]
also claim that the process of UAV forensic investigations is unclear due to the complexity
of data flow and UAS architecture. While there has been a fair amount of recent work in
the area of UAV forensic investigations [20,21], challenges related to drone forensics are
still ongoing. One major factor is system architecture, related software components, and
data flow mechanisms. Researchers in [5] developed a DIREST threat assessment model
to enhance the security of flying devices through the consideration of three layers of data
flow. These emphasize the importance of amending the firmware update mechanism.

On the other hand, researchers have demonstrated technical issues related to the
traceability of digital evidence [22]. The highlighted issues are associated with current
forensic software tools and their capability in performing the analysis without compro-
mising the forensic soundness of the recovered digital evidence. One example claimed
by the researchers is that some forensic software tools do not meet the minimum techni-
cal requirements (i.e., do not guarantee reproducibility). In this work, we dig deep into
investigating the technical issues by examining the outcome of the well-known flight log
extractor (DatCon [23]). Examining DatCon will aid in clarifying any technical issues and
bring them to the attention of UAV forensic investigators. Our concerns center around
what could happen if a drone is hacked and its data are altered, or if two investigators
work on the same case and fail to uphold their integrity of the collected digital evidence.
Furthermore, it is important to mention that the DatCon app is widely used on most digital
forensic tools. For this reason, it is important to evaluate and report any technical issues
linked to the app to improve the forensic soundness of UAV related investigations.

An interesting work by [24] compared the architecture of five selected commercial
drones to highlight software incompatibility when replacing certain pieces of hardware
component (e.g., gimbal, LED, propellers, etc.). This work holds a valuable contribution
to UAV forensic investigators to identify anti-forensic techniques; however, there are
several other advanced techniques through software and/or network protocols that pose
complicated challenges in the field of UAV forensics.

3. Methodology

We aim to address the research questions presented in Section 1 by performing a Proof
of Concept (POC). The first selected methodology in this work is the ‘purple-teaming’
technique, which is a combination of ‘red’ and ‘blue’ activities by performing processes
such as planning, assessment, collaboration, remediation, and reporting [25]. These actions
include penetration testing (i.e., vulnerability assessment), risk mitigation measures, and IR.
However, our approach in this paper is considered as a ‘Non-Traditional Purple-Teaming’
(NTPT) technique due to the complexity of UAS architecture and data flow. To this
end, the proposed UAV Kill Chain can be deployed and expanded on other emerging
technologies. In addition, the second approach is to investigate the technical issues related
to the traceability of digital evidence and evaluate the integrity of current digital forensic
tools when dealing with UAV forensic analysis. Discussing the performance of digital
forensic tools is out of the scope of this research, since we are only concerned with the
decryption process of recovered flight logs in the ‘.DAT’ format.

Our research aims to address the research questions by investigating the consequences
resulting from the conducted investigation on UAVs. The selected scenario for the ‘purple-
teaming’ exercise includes a Windows 10 laptop running Kali Linux subsystem, Vivitar
VTI Phoenix drone, encrypted flight logs from DJI Matrice 210 [26]. We performed an
indoor simulation and analysis of VTI Phoenix by scanning the network of the drone and
fingerprinting its system. Table 1 shows the details about the selected tools to perform
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the analysis. Eighteen encrypted flight logs were selected from the DJI Matrice 210 to test
and evaluate forensic tools in performing the analysis. As a side note, small UAVs do
not usually deploy any encryption on flight logs and they have smaller flight endurance
compared to the DJI Matrice 210. Our goal is to present a POC of the selected attack vectors
which can be performed on any other small UAVs that deploy the same technology and
specs (i.e., WLAN pairing). This research investigated the encrypted flight logs that are
usually recovered from mid-size drones. This is a crucial intersection that aids in enhancing
the UAV forensic investigation tools and techniques. Therefore, this paper discusses the
association, impact, and complexity of the highlighted technical forensic issues and the
presented POC.

Table 1. A set of tools used to conduct the ‘purple-teaming exercises’.

Purpose Software Tool Version

Fingerprinting Nmap 7.80
Network Sniffing Wireshark 3.2.4

Gain Access Metasploit Framework 5.0
Escalation of Privilege (install and modify data) Kali Linux Commands 2020.2

The main purpose of the scenario was to eavesdrop the unsecured WLAN and in-
tercept the network connection, then commence the fingerprinting phase to discover
weaknesses related to the system that can move us to the next phase. A demonstration of
the general setup of the experiment is illustrated in Figure 2.

Figure 2. Scenario layout.

In our experiment, different stages of penetrating testing were performed; starting
with:

• Reconnaissance and Scanning,
• Gaining Access,
• Maintaining Access, and
• Clearing Tracks

These are the traditional phases of hacking; however, a slight modification to the
procedure might be different regarding UAVs due to the lack of proper security measures.

The process involves connecting the laptop with the unsecured WLAN Phoenix Drone-
xxxx of the drone and monitoring generated traffic between the drone and remote control.
Connecting to a WiFi signal with no authentication is considered a major security issue,
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in addition to the use of unencrypted communication protocols. As a result, the Network
Mapper (Nmap) scan was performed to get further details about open protocols. Exploiting
a vulnerability in the system is the next step using the Metasploit framework to gain access
to the system as a root user. All traffic was monitored in the hopes of detecting the abnormal
behavior on the network.

4. Findings

During the course of our research, our experiment was successful as a POC to the cur-
rent security status of UAVs. Not all available drones share common security weaknesses;
however, the work presented here illustrates the comprehensible impact of drone security.

4.1. ‘Purple-Teaming’ Exercise

In this work, the Nmap scan provided more details about the network communication
protocols. Several insecure network services were discovered leading to insecure transmis-
sion of data between the drone and its remote control. Figure 3 shows open protocols and
services related to drone IP Cameras.

Figure 3. Drone Nmap network scanning output.

The IP Camera reveals a number of vulnerabilities that can be simply exploited and
result in a lateral movement attack. Accordingly, the Metasploit framework available in
Kali Linux was used to perform the exploitation via open services, such as Telnet port
23 and File Transfer Protocol (FTP), port 21. Telnet is an application protocol that
provides a bidirectional interactive test communication, while FTP is responsible for file
transmission. The connection to FTP did not require any form of authentication (i.e., user-
name and password) allowing access to data and creating the opportunity for uploading
malicious files. The attempt to basically telnet into the server requires authentication. In
this case, a Brute Force attack was performed to get the login conditionals through telnet.
Figures 4 and 5 show the payload creation and the successful BF attack that were able to
crack the login username and password.

Figure 4. Msfconsole payload generator.
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Figure 5. Telnet brute force attack.

Telnet login conditionals were login: root and password: cat1029. Network traffic
during these phases was captured and not encrypted. The captured traffic provided
synchronous digital evidence related to the payload and BF attacks, but the question
remains, What about an asynchronous approach to responding to such an attack? Logging
into telnet revealed data related to the system and escalation of privileges would not be
an issue to the attacker. Stealing and tampering with data would be another issue as well.
Root access leads to many system files such as mounted USB devices, script updates, WiFi
connections, and configuration files. Protocols such as Telnet and FTP should be replaced
with more secure protocols such as Secure SHell (SSH).

Another interesting open network service was the Real Time Streaming Protocol
(RTSP), which is used to control streaming media in an unencrypted format. It is recom-
mended to use the Secure RTP (SRTP) over Transport Layer Security (TLS), which
minimize the chance for cyber threats such as replay and DoS attacks.

The proposed IoD framework [15] is essential to keep live monitoring of network
intrusions between the RC and UAV. Moreover, techniques such as the proposed IDS are
based on specifications [7], signatures [8], anomaly behaviors [9], and hybrid [10] would
enhance the overall detection system when it comes to DaaS development.

As mentioned earlier, UASs operate based on different technologies and specifications.
This results in a serious problem regarding generating a unified security framework.
Therefore, this problem was tackled by applying the ‘purple-teaming’ technique (i.e.,
combining ‘red team’ and ‘blue team’ techniques. The presented techniques resulted in
a slight modification to the traditional Cyber Kill Chain. The proposed UAV Kill Chain
should be applicable to other types of drones that use the same technology of the UAV
models covered in this research.

Network communication-based intrusions require pre-configured sensors to perform
anomaly detection for prevention purposes. Consequently, there are other security threats
related to drone use that need to be appropriately researched. During our experiment,
network packets related to the brute force attack were captured as shown in Figure 6.

This type of attack is mostly prevented with advanced network intrusion detection. In
regard to the UAV network, intrusion attacks require live monitoring of traffic, including
automated detection systems. The captured traffic did not report any traceable evidence
that identify the suspect because the captured TCP packets during all attacking phases
show hosts related to the drone subnet (e.g., 192.168.99.xxx). Flying devices should be
equipped with IDS that can log and capture communication traffic and software events.
Evidence traceability is a critical feature as it requires ‘live data acquisition’ and ‘live
monitoring.’ These functions would even enhance the reliability and integrity of digital
evidence.
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Figure 6. Brute force attempts showing packet dropping at 1000 s.

In addition, a new folder was created on the drone file system (see Figure 7). This
means that escalating privileges would enable an attacker to read, create, and modify
system files.

Figure 7. Access and create files and/or folders without permission.

This research demonstrates the importance of securing data at rest, in motion, and in
use. Communication links are another security concern that should be ciphered to bolster
the integrity of data. Firmware is an example of a lower level software that needs to be
secured and encrypted. The firmware update mechanism should follow best practices
to avoid software related threats during the UAV’s operation. In general, it is highly
recommend to log communication, traffic and software events to determine the cause of an
incident. After the root cause of an attack is discovered, the defensive technique becomes
much more effective and durable.

The results of our experiments have led us to propose a UAV Kill Chain model, as
shown in Figure 8. Martin’s Cyber kill chain is a restructured model that best fits cyber
attacks [27]. A slight modification to the model was considered to best fit the UAV’s
attack structure. The UAV Kill Chain consists of eight important phases. These phases are
essential to UAV security operations, especially when defining each phase based on the
purpose and use of drones. However, the proposed kill chain should be a minimum UAV
security practice.
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Figure 8. UAV Kill Chain.

As illustrated in Figure 8, the UAV Kill Chain goes through the following phases:

• Reconnaissance to probe for weakness.
• Weaponization to target a vulnerability that can be exploited.
• Exploit to execute the payload into the targeted weakness.
• Privilege escalation to grant root access to the systems.
• Operation Interruption to deny the service by initiating DoS or buffer overflow attacks.
• Anti-detection to bypass both static and dynamic applications
• Anti-forensics to conceal digital footprints and mislead forensic investigators in recov-

ering the true digital evidence.
• Data Exfiltration & tampering to export data or attempt to alter metadata.
• Command & Control: to disseminate commands for different purposes (i.e., DDoS

and Botnet).

The ‘Purple-Teaming’ technique was the selected approach in this research, which is
why an evaluation based on security metrics is illustrated in Table 2 to clarify potential
gaps in the UAV attack life-cycle. Our research findings suggest that detection of Operation
Interruption and Command & Control is considered as a major challenge to UAV security.
The admissibility of digital evidence requires certain elements and standards to be met,
such as the validity and integrity of the recovered evidence. UAS data flow does not trace
identifiable evidence due to the following factors:

• Communication protocols transmit data in motion, which keeps software related logs
with no identifiable information.

• Physical factors might lead to a better discovery of evidence because the current use
of commercial drones is digitally semi-anonymous.

• The investment battle and cheap development in an emerging technology result in
less secure systems where they do not meet minimum security requirements.
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• Lack of third party monitoring services for UAVs.
• Challenges related to UAS customization.

All of these factors play a major challenge in the field of UAV security and forensics;
therefore, nontraditional solutions must be considered. For instance, the laptop used in
this experiment can lead to admissible evidence, yet there were zero trace routes from the
drone components that could identify the device that originated these attacks.

Mapping attack vectors with software generated data could enhance the automated
detection methodology for UAVs. There are many recorded operating system and sensor
events such as satellite signals and the three axes of flight (i.e., yaw, roll, and pitch). These
system events could identify and distinguish unexpected software failures from suspicious
behavior. In addition, an adaptive security for UAV flight management is another vital
layer in responding to some attack vectors, such as GPS spoofing. The deployment of
adaptive and automated mapping of software events might aid in automating the IR
process.

Table 2. Attack life-cycle and purple-teaming evaluation.

Evaluation/Attack Lifecycle Detection Prevention Response

Reconnaissance X X X

Weaponization X N/A X

Delivery X X X

Exploitation X N/A X

Privilege Escalation X N/A X

Operation Interruption X X X

Anti-detection & Anti-forensic X X X

Data Exfiltration & Tempering X X X

Command & Control X X X

4.2. Discovery and Evaluation of UAV Forensic Technical Issues

This research categorizes the identified technical issues from both cyber security and
digital forensics’ perspectives. The technical challenges presented in Figure 9 illustrate the
level of complexity and impact that each technical issue has on digital evidence traceability.
The selected approach in highlighting these technical challenges is based on the validation
and testing of the impact that each technical challenge poses to the field. For instance,
blue colored challenges represent technical issues that directly impact the digital evidence
traceability, whereas red colored challenges signify the impact and complexity of digital
evidence traceability from a cybersecurity perspective. Technical issues might result from
an attack vector [28], insecure communication protocols [5,28], data tampering [20], and
data encryption [21]. On the contrary, the technical challenges associated with digital
evidence traceability are related to software tools that do not fully support certain UAV
models [22], meet the forensic soundness standards, report digital evidence [22], exam-
ine the file structure with high accuracy, and do not clearly interpret data and labeling.
Although measuring the impact level of each technical challenge is important, the scale
in categorizing each technical challenge is either high impact and high complexity, high
impact and low complexity, high complexity and low impact, or low complexity and
low impact. This research does not measure the variability of the highlighted technical
challenges as it requires an in-depth examination that include surveying experts in the field.
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Figure 9. Categorization of UAV static and live digital evidence traceability challenges.

The concentration of this research is to better understand the technical issues related
to the forensic soundness of UAV digital evidence. The most important piece of digital
evidence pertaining to UAV forensic analysis is the flight log. Some small UAVs deploy
encryption on flight log data, but some do not have this security feature. It is also important
to note that some UAVs have different file structures of their flight logs, software, and
sensor event logs. The most common flight log type is the ‘.DAT’ file, and the DatCon
software tool is the only available tool to decrypt ‘.DAT’ files, which can be a limiting factor
in some situations. Forensic software tools, such as Autopsy and Magnet Axiom, utilize the
DatCon decryption algorithm to generate ‘.CSV’ and/or ‘.KML’ files to help investigators
in visualizing a scenario. The DROP tool developed by [29] has reverse engineered the
decryption algorithm of DatCon so that it can process encrypted data recovered from
UAVs. This is a useful feature to the decryption process (e.g., generating MD5 and SHA256
hash values), but the generated hash values were only for the original ‘.DAT’ files. This
means that most of these tools have not been calculating the cryptographic hash values
of the generated output (i.e., the decrypted flight log). Therefore, we concentrate on the
multiplicity of the decryption process by decrypting the same flight log twice. This is
crucial for two reasons: (1) the decrypted file should have the same cryptographic hash
value during the second attempt, and (2) failure in having the same cryptographic hash
value in both attempts results in no forensically sound digital evidence and leaves the door
wide open to data integrity issues from various angles. In other words, this issue does not
assure the quality of the recovered data, making it challenging to end up with secure and
unaltered data. Note that tampering with encrypted data is out of the scope of this research.
The presented technical issue is linked to the forensic soundness of UAV digital evidence.

To further illustrate our findings, we performed analysis on some flight logs using
the DatCon software. Our analysis started with decrypting ‘FLY000.DAT’ with a size of
71 megabytes and MD5 hash of 42b005dface6031b26a254c351e2b166. We made sure that the
DatCon tool does not impact the original ‘.DAT’ file during the decryption process. The
first decryption attempt has generated a file (FLY000.CSV) with a size of 32,978,802 bytes
and MD5 hash of 2601969f36bd0d59d1cc3624361c5730. In comparison, the second decryp-
tion attempt resulted in a FLY000.CSV file with a size of 32,908,703 bytes and MD5 hash
value of ee36a352c4052c080796096dc470406e. The identified technical issue was carefully
investigated because generating two different results from the same file (i.e., source of
digital evidence) is a serious issue that might lead to uncertainty, hence technical and
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legal problems. To ensure the legitimacy of our discovery, we made sure that all software
settings and preferences were the same during each decryption process. Regardless of
the similarities in processes, the problem was still occurring. Eventually, we found that
the difference was minimal between the files, and it is either a rounding of the last num-
ber, replacement of a number, or the removal of a number. The occurrence of rounding
numbers was the most likely cause. Next, we dug deep into the comparison between the
bugs associated with the float point calculations performed by the Java virtual machine
(VM). To test this hypothesis, we had to run the file decryption on OpenJDK to validate if
the issue is associated with the Java compiler. Our analysis indicated that the OpenJDK
does not produce the same results, hence using DatCon on Java VM will result in specific
technical issues that affect data integrity. Although the difference between the files has a
low significance in digital forensics, the data integrity is a very important factor.

During our analysis, we wanted to further investigate the significance of the changes
between files from a digital forensic prospective. We based our research lens around a basic
question: Would the difference between the files impact the results of the investigation?
The answer ended up being “no”. The technical issue has an insignificant impact on the
final results but does increase the chance for a lack of data integrity. When we investigated
the first byte change, we found that it occurred under the IMU\_ATTI(0):tiltInclination
field. This field contains signals of the angle inclination. In addition, while there were
different float rounding calculations in the tilt inclination, the two files are not forensically
identical either. This means that the decryption process via DatCon Java vm could result in
technical issues. Since the issue is tied to the Java vm calculation, we suggest UAV forensic
investigators to decrypt ‘.DAT’ files using the Openjdk vm to retain data integrity and
prevent unforeseen issues. The Openjdk vm has been tested with multiple files, and no
issues were reported.

4.3. Cross-Validation Analysis

To enhance our findings, it is crucial to test other ‘.DAT’ files and report any differences.
Figure 10 shows the steps taken to validate the integrity of the selected flight logs and
highlight associated issues.

We performed the test again on a randomly selected file (FLY010.DAT). The first de-
crypted file (FLY010.CSV) has a size of 59,781,557 bytes and MD5 hash value of 49dd94e6c3bf
5c2e353255817c4641b0. The second decrypted file (FLY010.CSV) has a size of 51,680,480
bytes and MD5 hash value of 671ef418fd30485807a7838285574723. The differences between
the two files were noticeable as the DatCon tool added a ‘.’ next to the version number of
the tool when the file was decrypted. However, we performed the same test by analyzing
18 ‘.DAT’ files and the technical issue appeared in only three files. Table 3 illustrates
the MD5 hash values of all 18 decrypted files. Since files 0, 6, and 10 were not identi-
cal after the second decryption attempt, we therefore investigated the files to find out
where the data changed. In comparison to ‘FLY000.CSV’, the first data that got changed in
‘FLY006.CSV’ was in the IMU\_ATTI(0):directionOfTravel[mag]:c field. According to
the DatCon decryption [30], this field is responsible for degrees computed from successive
latitude/longitude coordinates. The first data change between the two files is illustrated in
Figure 11. Since there are slight differences between the the first and second attempts of
decrypting the ‘FLY006.DAT’, we represented the content of both files in a scatter plot to
visually compare them and flag any major differences. As shown in Figure 12, the scatter
plot does not show a major visual difference, signifying that the files are nearly identical;
however, from a digital forensic perspective, these files are not the same. The calculated
MD5 hash values are different, and we observed a slight drop in the file size during the
second decryption attempt.
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Figure 10. Flight logs’ decryption procedure.

Table 3. Cross-validation of the DatCon decryption process.

File Name MD5 Hash Value (1st Attempt) MD5 Hash Value (2nd Attempt)

0 2601969f36bd0d59d1cc3624361c5730 2b36f21fcfced76ca36e9fe87ec8b08b

1 741f5bda2f425fc925e3fda798718e63 741f5bda2f425fc925e3fda798718e63

2 ccc366d53cda2507ef3ae7e0a4568462 ccc366d53cda2507ef3ae7e0a4568462

3 6b53a66e3ada5a9cd9ca491be48676ea 6b53a66e3ada5a9cd9ca491be48676ea

4 ded81b528dd9cd38d11e0a6955a95301 ded81b528dd9cd38d11e0a6955a95301

6 328265e3df38aef88a02c88276c35965 2a63b5ea110a9eb52e01ac821c153ed3

7 72f861e485392b1baeebccb4352bdfa3 72f861e485392b1baeebccb4352bdfa3

8 72adbc023cdda648da869b4f2c259072 72adbc023cdda648da869b4f2c259072

9 b200e480194e2f85b2ce6b8553fbceb2 b200e480194e2f85b2ce6b8553fbceb2

10 49dd94e6c3bf5c2e353255817c4641b0 671ef418fd30485807a7838285574723

11 d79f99896fe5f6c36d904802189b7605 d79f99896fe5f6c36d904802189b7605

12 42ce82bc1924724a8adefbf6e63c23d7 42ce82bc1924724a8adefbf6e63c23d7

13 7126cef458de088d62bcc6051b22d7d7 7126cef458de088d62bcc6051b22d7d7

14 496edcd1ea228fa97f1efe029ebba860 496edcd1ea228fa97f1efe029ebba860

15 4496fb7a4d63b2fa7fbf01940b2d0d93 4496fb7a4d63b2fa7fbf01940b2d0d93

16 44b03594b87089979033f9044155d77e 44b03594b87089979033f9044155d77e

17 8a5348afdca2ffc90f1dd50bdeef7820 8a5348afdca2ffc90f1dd50bdeef7820

18 a441434fbecb87e451b134a606831120 a441434fbecb87e451b134a606831120
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Figure 11. The first byte of data change.
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Figure 12. Scatter Plot showing the data comparison between the two decryption attempts of FLY06.

5. Discussion

In this research, we performed several ‘purple-teaming’ exercises that led to the pro-
posal of the UAV Kill Chain, which incorporates both ‘red’ and ‘blue’ teaming techniques.
The proposed UAV Kill Chain can help solve important challenges to UAV security and
forensics. UAV anti-detection and anti-forensics techniques are complex topics due to
the UAS’s architecture and flow of data. We claim that data flow and UAS architecture
influence the tendency of UAV anti-detection and anti-forensic techniques.

On the other hand, our forensic investigation on the recovered flight logs has led
us to the discovery of a technical issue during the decryption process via the DatCon
software tool. After a comprehensive analysis, we recognize that this technical issue has
the least significant impact on the content of the decrypted file. With this in mind, we
urge UAV forensic investigators to remain aware of the possible implications. Eventually,
we discovered that the issue is linked to the Java compiler after comparing the analysis
between Java and Openjdk virtual machines.

We recognize that this study has limitations. The most obvious limitations are open
space and gaining authorized flying clearance, even when using lightweight drones like we
did. The second limitation includes having to gather more tools, equipment, and lab space
to perform further investigations on other types of drones. Lastly, highlighting technical
issues related to the reporting phase is a time-consuming task.

The purpose of this research was to address the proposed research questions. Digital
evidence points to how attack intrusions need live monitoring sensors to detect abnormal
behaviors, and we know certain intrusions could leave traceable footprints, depending
on the UAS architecture. In addition, when considering security threats to UAVs, there
are indicators that security was omitted from, or at least a low priority on, the system
components array.

6. Conclusions

The use of UAVs is becoming more ubiquitous, with user groups ranging from busi-
nesses and governments to individuals. Challenges coming from drones require an in-
depth experimental study that aids engineers in implementing more secure systems at
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every level. In this paper, ‘Purple-teaming’ techniques have been utilized in the presented
scenario to illustrate potential live digital evidence traceability challenges. This work
compared the forensic analysis and traceability of digital evidence in static and live modes.
Then, it highlighted the complexity and impact of each technical challenge associated
with digital evidence traceability. Throughout this research, we discussed static and live
digital evidence traceability challenges in UAV forensics, presented several UAV attack
scenarios, proposed new techniques related to the UAS architecture that would streamline
the evidence identification process, and presented a categorization model that classifies the
discovered traceability challenges.

In the future, we plan on expanding this work by reviewing the percentage of UAVs
using a non-encrypted link, exploring different controls, data channels, and frequencies. In
addition, we will consider different scenarios such as attack vectors related to UAV flying
in non-tethered modes (autonomous waypoints, etc.). Finally, we will consider technical
challenges related to data integrity and propose a forensically sound approach to the UAV
forensic investigations.
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