
Citation: Kou, L.; Ding, S.; Wu, T.;

Dong, W.; Yin, Y. An Intrusion

Detection Model for Drone

Communication Network in SDN

Environment. Drones 2022, 6, 342.

https://doi.org/10.3390/

drones6110342

Academic Editor: Vishal Sharma

Received: 8 October 2022

Accepted: 1 November 2022

Published: 4 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

drones

Article

An Intrusion Detection Model for Drone Communication
Network in SDN Environment
Liang Kou 1,† , Shanshuo Ding 1,†, Ting Wu 2,†, Wei Dong 3,*,† and Yuyu Yin 1,†

1 School of Cyberspace, Hangzhou Dianzi University, No. 1, Xiasha No. 2 Street, Qiantang District,
Hangzhou 310018, China

2 Hangzhou Innovation Institute, Beihang University, No. 18, Chuanghui Street, Changhe Street,
Binjiang District, Hangzhou 310051, China

3 National Computer System Engineering Research of China, Future Science and Technology City,
Beiqijia Town, Changping District, Beijing 100092, China

* Correspondence: dongwei@ncse.com.cn
† These authors contributed equally to this work.

Abstract: Drone communication is currently a hot topic of research, and the use of drones can easily
set up communication networks in areas with complex terrain or areas subject to disasters and has
broad application prospects. One of the many challenges currently facing drone communication is
the communication security issue. Drone communication networks generally use software defined
network (SDN) architectures, and SDN controllers can provide reliable data forwarding control for
drone communication networks, but they are also highly susceptible to attacks and pose serious
security threats to drone networks. In order to solve the security problem, this paper proposes an
intrusion detection model that can reach the convergence state quickly. The model consists of a deep
auto-encoder (DAE), a convolutional neural network (CNN), and an attention mechanism. DAE is
used to reduce the original data dimensionality and improve the training efficiency, CNN is used to
extract the data features, the attention mechanism is used to enhance the important features of the
data, and finally the traffic is detected and classified. We conduct tests using the InSDN dataset, which
is collected from an SDN environment and is able to verify the effectiveness of the model on SDN
traffic. The experiments utilize the Tensorflow framework to build a deep learning model structure,
which is run on the Jupyter Notebook platform in the Anaconda environment. Compared with the
CNN model, the LSTM model, and the CNN+LSTM hybrid model, the accuracy of this model in
binary classification experiments is 99.7%, which is about 0.6% higher than other comparison models.
The accuracy of the model in the multiclassification experiment is 95.5%, which is about 3% higher
than other comparison models. Additionally, it only needs 20 to 30 iterations to converge, which is
only one-third of other models. The experiment proves that the model has fast convergence speed
and high precision and is an effective detection method.

Keywords: drones; software defined network; abnormal detection; deep learning; convolutional
neural networks; deep auto-encoder; attention mechanism

1. Introduction

Drones have long been widely used in the military to accomplish reconnaissance
missions or other dangerous tasks through remote control and wireless communication.
In recent years, with the maturity and industrialization of drone technology, drones have
gradually become an increasingly important part of people’s lives. In the field of photog-
raphy, drones can obtain stunning aerial views at low cost and bring people a new visual
experience. In rescue operations, rescuers can use drones to conduct wide-area searches
efficiently that will improve rescue efficiency and increase the chances of trapped people
being rescued. In the field of transportation, drones can cross over dangerous areas for
close-range low-altitude cargo delivery. At the same time, the role of drones in the field of

Drones 2022, 6, 342. https://doi.org/10.3390/drones6110342 https://www.mdpi.com/journal/drones

https://doi.org/10.3390/drones6110342
https://doi.org/10.3390/drones6110342
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/drones
https://www.mdpi.com
https://orcid.org/0000-0002-4625-4271
https://doi.org/10.3390/drones6110342
https://www.mdpi.com/journal/drones
https://www.mdpi.com/article/10.3390/drones6110342?type=check_update&version=1

Drones 2022, 6, 342 2 of 19

communication is gradually emerging due to its high mobility and dynamic topology [1].
Drones can send data from one point to another with low latency [2]. When the commu-
nication infrastructure is damaged by disasters, drones can serve as a bridge between
ground users and network nodes [3–5]. SDN decouples the traditional closed network
system into a data plane, control plane, and application plane, and makes it possible for
the centralized control and management of the network [6]. It separates the control plane
of the network from the hardware and replaces the traditional hardware-based control
plane with a programmable control plane [7–10]. SDN ensures the reliability of the drone
network by closely monitoring the drone network traffic through the controller [3]. The
SDN-based drone communication network architecture is shown in Figure 1.

Ships

Ocean

Base

Station

Base

Station

Base

Station

SDN

Controller

Agriculture

River

Drones

Drones
Drones

Drones

Drones

Drones

Drones

Figure 1. Drone network architecture under SDN.

In remote areas that cannot be covered by cellular base stations, such as farmland,
ocean, ships, and other areas, drones can act as drone base stations. People can access the
network through drone base stations, and drone base stations can connect with each other
for communication. Drone communication networks can flexibly and conveniently provide
network services for people. However, due to resource constraints, drone communication
networks are extremely vulnerable to physical and cyber attacks [11]. In the past decade,
the frequency of network attacks against drone systems has greatly increased [12]. Security
and privacy are two of the most critical challenges of drone communication networks [13].
SDNs guarantee the reliability of drone networks, but they cannot guarantee their security
because SDNs encounter many challenges. The main challenges are as follows: (1) The
controller is the intelligence center of the SDN so it can obtain the global information
of the network. At the beginning of the design, the SDN mainly focused on functions
such as resource scheduling and rule issuance, but the security issues of SDN did not get
enough attention of researchers; (2) Programmability is an important means for SDN to
achieve unified network management, but it also provides a shortcut for attackers; (3) In
the SDN environment, the openflow switch will forward the unmatched flow request
information to the controller that determines the response mode of data flow, which will
be very vulnerable to the DoS/DDoS attacks; (4) Attackers can forge the flow rules issued
by the SDN controller and bypass various security devices deployed in SDN. Therefore,
the security issue of SDN is becoming a key factor restricting the further development and
popularization of drone communication networks.

The intrusion detection system (IDS) [14] is a key mechanism to protect and secure the
network from malicious attacks. The IDS has two main types: signature-based detection

Drones 2022, 6, 342 3 of 19

and anomaly-based detection. Signature-based detection methods have a high detection
rate for known attacks but cannot deal with new or unknown attacks. The second method
can detect all the attacks theoretically. To solve the communication security problem of
drone networks in an SDN environment, this paper proposes a novel hybrid abnormal
detection model based on an attention mechanism. The main research content of this paper
is as follows.

This paper proposes a novel intrusion detection model based on an attention mecha-
nism for the drone network in an SDN environment. The model applies DAE to reduce
dimension data and CNN to extract abstract features of data, respectively. The attention
mechanism weights and enhances important features to obtain strong representative fea-
tures. The full connection layer uses softmax to classify and output results. We build a
model on the Jupyter Notebook platform in the Anaconda environment. To speed up our
training, we use the GTX960 graphics card. We use InSDN dataset to verify the model, and
we compare with the other three models: CNN, LSTM, and CNN+LSTM. The results show
that the accuracy of our model is 99.7%, which is 0.6% higher than other models, and the
accuracy of multiple classification is 95.5%, which is 3% higher than other models. At the
same time, it only takes 20 to 30 iterations to basically reach the convergence state, which is
one-third of other models.

2. Related Work

Many scholars have studied the security of drone communication networks under
SDN. Nawaz et al. [15] studied the self-organizing network, routing protocol, and appli-
cation scenarios involved in drone communication network. Guerber et al. [16] proposed
a secure drone network architecture based on SDN technology, focusing on Ad hoc On-
Demand Distance Vector Routing (AODV) routing and the SDN control plane. The advan-
tage of this architecture was accounting for the security and performance of the drones
cluster. Altawy et al. [17] investigated physical and cyber threats, key security attributes,
and security privacy issues for civilian drones. Sharma et al. [18] proposed an ultra dense
cloud-drone network architecture (UDCDN) with great flexibility. The advantages of this
architecture were mitigating the severe interference problem of ultra-dense networks and
solving the health monitoring and autonomous control problem of UDCDN.

At the same time, there are many scholars who have conducted research on the
security issues of SDN technology. Chica et al. [19] conducted a comprehensive survey on
security issues under SDN. The survey showed that SDN provides network administrators
with more flexible security defense mechanisms because of its network-wide visibility,
monitoring capabilities, and flexible network programmability. Other researchers also
investigated the security of SDN environment [20,21]. Niyaz et al. [22] proposed a detection
system for DDoS attacks in the SDN environment. The system consisted of three modules:
traffic collection and flow installer, feature extractor, and traffic classifier. They set up a
test environment using a home wireless network to test the system. The experiments
showed that SAE as a feature extractor was a beneficial measure for classification. Finally,
the model achieved an accuracy of 99.82%. The advantages of this system were complete
architecture and high accuracy. Polat et al. [23] used various machine learning methods
to detect DDoS attacks in SDN environments and showed that the KNN model achieved
the highest accuracy rate of 98.3%. The advantages of this method were lower resource
consumption and higher detection efficiency. Malik et al. [24] proposed a hybrid deep
learning framework consisting of CNN and LSTM. The model achieved 98.6% detection
accuracy for various network attacks, such as xss, botnets, and port scans, which is better
than other comparative models. The advantages of this method are that it has strong
generalization ability and can detect most attacks. For the security of fog computing
devices in an SDN environment, Javanmardi et al. [25] proposed a security-aware task
scheduling algorithm called FUPE. The algorithm was based on the fuzzy multi-objective
particle swarm optimization method and was mainly used to deal with TCP SYN flooding
attacks. The algorithm achieved 98.2% accuracy in the experimental results. At the same

Drones 2022, 6, 342 4 of 19

time, the algorithm had a 17% maximum improvement in response time and 22% maximum
improvement in network utilization over the particle swarm algorithm. The advantages of
this algorithm were quick response and high accuracy. Ilango et al. [26] proposed a deep
learning scheme FFCNN for LR DoS attacks in the IoT-SDN environment. The method
consisted of a feedforward neural network (FFNN) and a convolutional neural network
(CNN). The experimental results showed that the scheme had an AUC value of 0.99 and
had good classification performance. The hybrid model had strong generalization ability.
Quentin Schueller et al. [27] proposed a layered intrusion detection architecture, where the
first layer was flow-based intrusion detection, using support vector machine (SVM) as an
anomalous traffic detection algorithm to process all passing traffic and filter out suspicious
traffic to be delegated to the second layer. The second layer was a signature-based intrusion
detection system, where suspicious traffic was detected at the packet level. Due to its
two-layer detection structure, it largely ensured a high detection rate and a low false alarm
rate. However, it brought a disadvantage of relatively low detection efficiency.

Pynbianglut Hadem et al. [28] proposed an SVM-based SDN intrusion detection sys-
tem, which was trained and validated on the NSL-KDD dataset and NSL-KDD 9 features
subset dataset, respectively. The accuracy rates were 95.98% and 87.74%. However, because
it used the KDD dataset and the KDD dataset is a common network traffic dataset, its
application to SDN platforms might lead to compatibility issues. Yubo Zhai et al. [29] pro-
posed the use of random forest for intrusion detection with a 98% detection rate. Admilson
de Ribamar Lima Ribeiro et al. [30] used the OutlierDenStream algorithm for intrusion
detection under SDN with an accuracy of 97.83%. However, it was only for DDoS attacks
and did not have a strong generalization capability. Marcos V.O. Assis et al. [31] proposed
the use of multilayer GRU for DDoS attack detection and intrusion detection in an SDN
environment. Qin et al. [32] proposed the use of LSTM to detect anomalous traffic with
high accuracy. Meliboev Azizjon et al. [33] proposed the use of one-dimensional CNN for
intrusion detection on unbalanced data. By comparing with other models such as LSTM, it
showed that 1D CNN performs well on unbalanced data. MS Elsayed et al. [34] proposed a
model that combines CNN and LSTM for intrusion detection. First, spatial features were
extracted using a multi-layer CNN structure, then temporal features were extracted using
a multi-layer LSTM structure, and finally the classification result were output. On the
inSDN dataset, its prediction accuracy was 93.18% for positive samples and 97.60% for
negative samples. The disadvantage was that the detection rate of positive samples is not
high enough. Pengpeng Ding [35] proposed a model combining CNN and self-attentive
mechanism. The data were first extracted by one- and two-dimensional CNNs for feature
extraction, respectively, and then the extracted features of different dimensions were fed
into the self-attentive mechanism for feature fusion and finally classified by fully connected
layers. It was validated on the UNSW-NB15 dataset with an accuracy of 95.64%. Nisha
Ahuja [36] proposed a detection model combining stacked auto-encoder and multilayer
perceptron for DDoS attack detection with 99.75% detection accuracy, which proved the
effectiveness of the model in DDoS attack detection. The disadvantage was that the model
only targets DDoS attacks.

The average detection accuracy of existing intrusion detection systems is between 94%
and 95%. The detection rate of some intrusion detection systems has reached about 99%.
However, these systems have obvious pertinence such as DDoS attacks. The model pro-
posed in this paper can distinguish malicious traffic and normal traffic with 99% probability,
whether the malicious traffic comes from DDoS attacks, Probe attacks, or other attacks. At
the same time, it can subdivide the types of malicious traffic with 95% accuracy. Table 1
shows a comparison between the work we do and the work done by others.

Drones 2022, 6, 342 5 of 19

Table 1. Characteristics and accuracy comparison of intrusion detection models.

Algorithm Involved Targeting Specific
Attacks SDN Dataset Detection Accuracy

SVM F F 95.98%
Random Forest F F 98%

KNN Y Y 98.3%
FUPE Y Y 98.2%

OutlierDenStream Y Y 97.83%
GRU Y F 97.1%
LSTM F F 98%
CNN F F 91.2%

SAE+Multilayer
perceptron Y F 99.75%

CNN+LSTM F Y 97.6%
Our model F Y 99.6%

3. Proposed Model
3.1. Deep Auto-Encoder

The auto-encoder (AE) [37] consists of an encoder and a decoder. The essence of the
encoder and decoder is the hidden layer in the neural network. The parameters of the AE
are optimized based on the backpropagation algorithm and the gradient descent algorithm.

The process from the input layer to the hidden layer is called the encoder. The task of
the encoder is to convert the given input data X = (x1, x2, . . . , xn) to a lower-dimensional
representation H = (h1, h2, . . . , hr). The conversion process is represented by Equation (1).

h(x) = f
(

WTx + b
)

(1)

where WT is the weight parameter, b is the offset value, f is the activation function, and h is
the hidden vector obtained by the encoder.

The decoder is the inverse process of the encoder. The hidden vector is restored to
the input vector through the inverse operation by Equation (2), where (W∗)T is the weight
parameter of each layer of the decoder, c is the offset value of each layer of the decoder, and
h(x) is the input from the encoder to the decoder.

x̂ = f
(
(W∗)Th(x) + c

)
(2)

The encoder neural network will get the minimum of loss function through the
gradient descent algorithm and then obtain the optimal parameters W, b, and c. The
gradient descent algorithm is represented by Equation (3), where xk is the actual tag value,
x̂k is the output tag value, and n is the number of samples.

L(W, b, c) =
1
n

n

∑
k=1

(xk − x̂k)
2 (3)

A single auto-encoder is able to learn limited feature variation through a three-layer
network of fictitious input layer → hidden layer → output layer, but for classification tasks
involving deep features, the shallow data features obtained through such self-encoder
structures often increase the computational effort of subsequent classification tasks, so a
deep auto-encoder can be used to extract data features and learn the original data layer by
layer multiple representations. The structure of the deep auto-encoder is shown in Figure 2.
Each layer is based on the expression of the underlying layer. The extracted features can be
more abstract and more suitable for complex classification tasks.

Drones 2022, 6, 342 6 of 19

Figure 2. The Encoder and decoder processes of the deep auto-encoder.

The expression x represents the input data, and the initial feature expression h1 is
obtained after being processed by the hidden layer. The idea of the deep auto-encoder is to
increase the number of hidden layers of the encoder and decoder so that the subsequent
hidden layers continue to extract more abstract features on h1. After completing the training,
the output of the encoder will be a good representative of the original data.

3.2. Convolutional Neural Networks

CNN [38] is a typical deep learning algorithm. It is a feedforward neural network
with a deep structure that includes convolution calculations. CNN is mainly composed
of three layers: an input layer, a hidden layer, and an output layer. The hidden layer is
the key component of CNN. It includes a convolutional layer, a pooling layer, and a fully
connected layer.

Convolutional layer: This layer is used to extract features from the input data. It has a
few convolution kernels. Each element of the convolution kernel corresponds to a weight
and a bias. In a convolutional layer, the feature vector of the previous layer is convolved
with the convolution kernel through the activation function to obtain the output vector. The
convolution process can enhance the feature of the original data and reduce the effect of
noise; xl is the output of the lth layer, and xl

j is the jth feature vector of the lth convolutional

layer. The value of xl
j can be calculated by Equation (4).

xl
j = f

 ∑
i∈Mj

xl−1
j ⊗ kl

ij + bl
j

 (4)

where Mj is the selection set of input feature vectors, kl
ij is jth convolution kernel parameter

of the input feature i, ⊗ is the convolution operation, bl
j is the additive offset, and the

Rectified Linear Unit(ReLU) is used as the activation function. ReLU can overcome the
vanishing gradient problem.

Pooling layer: The pooling layer usually follows the convolutional layer. It is used for
the second feature extraction operation. It can effectively avoid the overfitting problem and
strengthen the robustness of the network. The pooling layer performs statistical calculations
on the output features from the convolution layer to obtain the statistical probability features
instead of the original features. The pooling layer is responsible for downsampling the
input vector, which is shown as Equation (5).

xl
j = f

(
βl

jdown
(

xl−1
j

)
+ bl

j

)
(5)

where the function down is responsible for downsampling the jth vector in l − 1th layer; βl
j

and bl
j are the multiplicative bias and additive bias, respectively.

Drones 2022, 6, 342 7 of 19

Fully connected layer: The fully connected layer in the convolutional neural network
is similar to the hidden layer in the traditional feedforward neural network. The fully
connected layer is located in the last part of the hidden layer of the convolutional neural
network and only transmits signals to other fully connected layers. The feature map is
expanded into a vector and loses the spatial topology in the fully connected layer. Each
neuron of the fully connected layer is connected to the neuron of the feature vector of the
previous layer one by one, and the output of each neuron is expressed by Equation (6).

hw,b(x) = f
(

WT + b
)

(6)

where x is the input of the neuron, hw,b(x) is the output of the neuron, w, b are the corre-
sponding weight and offset parameter, WT is the transpose of the parameter matrix, and b
is the offset.

Output layer: The output layer is followed by the fully connected layer. The output
layer of the convolutional neural network uses the softmax regression function that is
similar to the output layer of the traditional fully connected neural network. For a given
test input x, the probability value p(y = i|j) that it belongs to the jth class is calculated.
The function is supposed to output one k-dimensional vector, representing k estimated
probabilities. The system equation is expressed as Equation (7), where x(i) represents the
probability that softmax judges the sample as i, e is introduced to facilitate the subsequent
backpropagation derivative calculation, θ represents the layer parameter, k represents the
total number of classifications, and j represents other classifications. The output value of
the function represents the final probability that the sample belongs to class i.

p(yi = k
∣∣∣x(i) ; θ)=

eθT
k x(i)

k
∑

j=1
eθT

j x(i)
(7)

3.3. Attention Mechanism

The attention mechanism [39] is a characteristic mechanism of human vision, in which
humans quickly scan an image from the whole picture to obtain the regions that require
focused attention and later devote more attention resources in these regions to suppress
attention to other unimportant information.

The attention mechanism in deep learning is essentially similar to the human selective
visual attention mechanism, and the core goal is also to select the information that is more
critical to the current task goal from the many pieces of information. The essence is to
obtain a new representation by linear weighting based on the relationships between things.

For example, a text needs to be scored. Each text has a corresponding vector represen-
tation and a retrieval library {pi, si}K

i=1 , where (pi, si) is a pair of vector representation and
rating, now given a text q to be rated, the traditional method to calculate the rating requires
calculating the similarity between the query text q and the text inside each retrieval library
sim(pi, si); then, we can weight the similarity to get the prediction score α:

α =
K

∑
i=1

sim(q, si)si (8)

Correspondingly, attention is given a vector representation q of a query and the corre-
sponding retrieval library {ki, vi}K

i=1, where vi is the vector representation corresponding
to keyword ki. Then, as shown in Figure 3, in order to utilize the knowledge inside q and
the retrieval library, the representation of q needs to be transformed as follows, where β is
the converted value.

β =
K

∑
i=1

sim(q, ki)vi (9)

Drones 2022, 6, 342 8 of 19

i=1

𝐾

𝑠𝑖𝑚 𝑞, 𝑘𝑖 𝑣𝑖

{𝑘𝑖}𝑖=1
𝐾 {𝑠𝑖𝑚(𝑞, 𝑘𝑖)}𝑖=1

𝐾

𝑞

Figure 3. Attention mechanism.

Depending on the method of similarity calculation, there are different kinds of atten-
tion, including inner product similarity, cosine similarity, and splicing similarity, where q
and k have the same meaning as above; wT is the transpose of the parameter matrix.

Inner product similarity:
sim(q, k) = qTk (10)

Cosine similarity:

sim(q, k) =
qTk
‖q‖‖k‖ (11)

Splicing similarity:
sim(q, k) = wT [q; k] (12)

Finally, a set of weights is obtained based on the similarity: αi = sim(q, ki), and this
weight is normalized.

Attention is to calculate a set of weights using the relationship between things, and
then perform a weighted representation to get a new representation, which can be under-
stood as a method of feature transformation.

One of the most commonly used attention mechanisms is feedforward attention,
where the query is set to be learnable with the parameter q = ω, and then the key and
value inside the retrieval library are set to be the same. The attention mechanism is then
obtained using a layer of neural networks to compute attention weights. As shown in the
following equation, w is the attention weight, vi is the keyword vector, and k is the number
of keywords.

α = So f tmax(ωTv1, ωTv2, . . . , ωTvK) (13)

Attention(v1, v2, . . . vk) =
K

∑
i=1

αivi (14)

3.4. The DCA Model

Our model is composed of a deep auto-encoder, CNN, and attention, so we name the
model the DCA model. The structure of the DCA model proposed in this paper is shown
in Figure 4.

CNNCNN

Users & Hackers

Server
Flow

Collection

Dimension Reduction

DAE
Attention

Feature Extraction &

Enhancement
Data Traffic Capture

…

Normal

Dos

Probe

.
.
.

…

Normal

Dos

Probe

.
.
.

Reduced from 77 to 33
dimensions

Classifier

CNN abstract features, attention
mechanism judges and increases

feature weights

Figure 4. The DCA model.

In the data preprocessing phase, the first step is to clean the data. Because the dataset
is generated from a simulated environment with limited flow-generating devices, Flow
ID, Src IP, Src Port, Dst IP, Dst Port, and Timestamp attributes are relatively fixed and not
universal. These six features are discarded and 78 features are retained.

Drones 2022, 6, 342 9 of 19

For binary classification experiments, the dataset labels need to be modified to 0 and
1, representing normal and abnormal traffic. For the multiclassification experiments, we
one-hot coded eight different labels and used 000, 001, 010, 011, 100, 101, 110, and 111 as
labels for different attribute flows.

After the numericalization of features, the data are regularized by scaling each sample
to unit parity using the L2 paradigm to avoid the generation of overfitting in the subsequent
training process and to reduce the network error. For this dataset, the first 77 dimensions of
a sample are data and the 78th dimension is labels. We input the first 77 dimensions of data
in the form of X = (x1, x1, x2, . . . x77) into the model, labeled as y, and its regularization
process is as follows:

J′(w; X, y) = J(w; X, y) + λL2(w) (15)

where L2(w) is:
L2(w) = ‖w‖2

2 = (|w1|2 + |w2|2 + . . . + |wn|2)
1
2 (16)

where w is the vector of weight coefficients, J is the cost function, λ is the parameter
controlling the degree of regularization, and L2(w) is the l2 parametrization of w. The
product of the two is used as the penalty term of the cost function to penalize the high-
complexity model.

For the preprocessed data, we assume that one of the samples is X′ = (x′1, x′2, x′3, . . . x′77).
We input it into the deep auto-encoder layer of the model:

ai =
n

∑
j=1

σ(WT
i xj + bj) (17)

where ai is the hidden layer output, i = 1, 2, 3 . . . n, n is the number of neurons in the
hidden layer, WT

i is the weight matrix of the ith neuron in the hidden layer, and σ is the
sigmoid activation function, which is given by:

σ(a) =
1

1 + e−a (18)

After processing by the deep auto-encoder, we get the reduced dimensional data
matrix: A = ai,j, i ∈ [0, 343889], j ∈ [0, 32].

We feed the reduced-dimensional data matrix A to the CNN. In the convolutional layer,
we assume that the convolution kernel is a matrix K = kp,q, and p ∗ q is the convolutional
kernel size. We slide the convolution kernel over the matrix A:

bm,n = wm,n(∑ ai,j ∗ kp,q + lm,n) (19)

Here, B = bm,n is the output matrix after convolution operation by convolution kernel,
and m ∗ n is the size of the output matrix after convolution operation. The ReLU activation
function will process the matrix B. The equation of the ReLU activation function is:

ReLU(x) =

{
x, x > 0
0, x ≤ 0

(20)

After the maxpooling operation, the matrix is divided into several regions of size
2*1, and the large values are kept to get a new matrix B′, which is half the size of the
original matrix.

The role of convolution kernels is parameter sharing. A piece of input features of
the same size as the convolutional kernel is computed using the same parameters, and
different convolutional kernels have different parameters and extract different features.
This prevents the problem of parameter explosion in deep convolutional neural networks
and greatly reduces the amount of operations.

Drones 2022, 6, 342 10 of 19

After the CNN processing, data will be input into the attention mechanism. Suppose
the CNN output sequence is (x1, x2, . . . , xn):

Ci =
n

∑
j=1

αi,jxj (21)

where αi,j denotes the attention allocation coefficient of the jth word of the original input at the
ith output, and the larger the coefficient, the higher the importance of the current information.

The attention mechanism would use the weighting of elements within each local
feature in the feature graph to obtain its weight score. However, this would result in the
attention mechanism ignoring the correlation between the local features and the strong
information redundancy between the features. In this model, the original features are first
downscaled by deep auto-encoder to extract deep abstract features, and then processed
by CNN layers to further extract deep features. After the processing of the first two steps,
feature redundancy and noise are greatly reduced. The attention mechanism will further
weight and strengthen important data features based on the data processed by CNN. This
processing flow makes the whole model grasp the key information of features accurately,
which is why it has a high recognition accuracy.

Suppose the output vector of the attention mechanism is x. We input x into the classifier
and get the classification result. For the binary classification experiment, using the sigmoid
function as the classifier, the probability that the sample is a normal flow is:

p(y = 1|x; θ) = hθ(x) =
1

1 + e−θT x
(22)

The probability that the sample is an abnormal flow is:

p(y = 0|x; θ) = 1− hθ(x) = 1− 1
1 + e−θT x

(23)

The joint sample probabilities are:

p(y|x; θ) = hθ(x)y(1− hθ(x))1−y (24)

where y ∈ {0, 1}, θT is the transpose of the weight parameter matrix, and x is the vector of
the input classifier.

After obtaining the sample probabilities, they are fed into the loss function and back-
propagated using the chain derivative rule to continuously update the weight parameter
θ and the bias parameter b for each layer in order to minimize the cost function. This
experiment uses the binary cross-entropy function as the loss function for back propagation:

J(θ) = − 1
N

N

∑
i=1

yilog(p(yi)) + (1− yi)log(1− p(yi)) (25)

where N is the total number of samples, y is the flow label, and p(y) is the probability that
the sample is a normal flow.

For the multiclassification experiment, there are eight classifiers representing eight
different types of traffic, and each classifier output is the probability that a sample belongs to
that type of traffic. Using the softmax function as a classifier, the process is similar to binary
classification, where the eight classifiers output the probability that eight samples belong
to that class, and the highest probability is the predicted classification. The probability is
derived for each classifier using the following equation:

p(y = j|x; θ) =
eθT

j x

∑k
i=1 eθT

j x
(26)

Drones 2022, 6, 342 11 of 19

where k is the number of label types and θ is the weight parameter. The cost function used
for multiclassification is:

J(θ) = − 1
N

[N

∑
i=1

k

∑
j=1

1{y = j}log
eθT

j x

∑k
l=1 eθT

j x

]
(27)

where 1{y = j} is an operation defined with the value of 1 when y = j and 0 when y 6= j;
N is the total number of samples and k is the number of label types.

4. Exeperimental Evaluation
4.1. InSDN Dataset

Many current intrusion detection systems for SDN use datasets such as KDD99 [40],
NSK-KDD [41], etc. These datasets are excellent datasets, but the protocol and network
structure used by traditional networks are very different from SDN networks. Therefore, in
order to verify the effectiveness of the model in the SDN environment, it is necessary to use
the traffic data from the SDN environment.

The dataset used in this paper [42] comes from the SDN virtual environment. The
virtual environment is built by multiple virtual machines with an SDN network architecture.
The ordinary Ubuntu system are normal users, and the Kali system are attackers to carry out
different types of attacks on the SDN network. The dataset contains a total of 343,889 pieces
of data; each piece of data contains 84 attributes. There are eight different attributes of
traffic in the dataset. Among them, 68,424 are normal traffic and 275,465 are attack traffic.
The distribution of data sets is shown in Table 2.

Table 2. Number of different flows.

Flow Type Quantity

BFA 1405
BOTNET 164

DDoS 121,942
DoS 53,616

Normal 68,424
Probe 98,129
U2R 17

Web-Attack 192

4.2. Simulation Setup

Two sets of comparison experiments are conducted in this section: one set of bi-
nary classification experiments and one set of multiclassification experiments. In the two
sets of experiments, we compare the traditional single-layer CNN model, the traditional
single-layer LSTM model, the CNN+LSTM model, and our proposed DCA model. The
experimental environment is an Intel i5 6300HQ CPU, Nvidia GTX960 GPU, 16G memory,
Windows 10 system, Python3.6 built under Anaconda3 as a virtual environment, running
on a Jupyter Notebook platform.

We choose the Python language as the main model building language. First, the
Python language is an interpreted language with simple syntax. It is important for deep
learning tasks to quickly build up models and verify model validity. Second, building deep
learning models requires constant tuning of details, so programming languages need to be
easy to modify. The Python language meets the above needs. At the same time, TensorFlow
deep learning libraries are Python programming, so using the Python language is very easy
to call.

Because the distribution of normal and abnormal traffic samples in the dataset is
unbalanced—normal traffic only accounts for 19.9% of the dataset—it is necessary to carry
out stratified sampling division when dividing the training set and test set, so that the

Drones 2022, 6, 342 12 of 19

distribution of samples in the divided sets is the same as the original dataset to avoid the
problems caused by unbalanced data.

In this paper, 80% of the dataset is allocated to the training set and 20% is allocated to
the test set. The size of the training set is 275111*78 and the size of the test set is 68778*78.
The size of the training dataset is 275111*77, the size of the training label set is 275111*1,
the size of the test dataset is 68778*77, and the size of the test label set is 68778*1.

The DCA model is a sequential model whose flow chart and various hyperparameters
are given in Figure 5.

start

input

dataset(77)

Encoder:Dense(64)+Re

lu

Encoder:Dense(32)+Re

lu

Decoder:Dense(64)+Si

gmoid

Decoder:Dense(77)+Si

gmoid

epoch>10

0?

N

reshape

Y

2*CNN(64*3)+Relu

Maxpooling(2)

2*CNN(128*3)+Relu

Maxpooling(2)

Dense(128)+Relu

Dropout(0.1)

Attention

Flatten

Dense

end

Paranmeters:

DAE:

Loss Function:

binary_crossentropy

optimizer: adadelta

Batchsize: 256

CNN:

Loss Function:

binary_crossentropy

optimizer: adam

Batchsize: 256

Figure 5. Flow diagram of DCA model.

The deep auto-encoder is unsupervised learning, so the label columns need to be
eliminated before training. The hidden layer size of the deep auto-encoder is one of the
hyperparameters and needs to be adjusted manually. A good hidden layer output size
can preserve the important features of the original data to the greatest extent, and the data
restored by the decoder will have lower loss compared with the original data.

In the training process, batch size is one of the important hyperparameters. If batch
size is not set, the model will take the whole training set as the unit during training,
which will cause a memory explosion problem in the case of a large dataset. By dividing
the training dataset into batches of fixed size, the running efficiency of the GPU can be
improved by parallelization. Different batch sizes can affect how well the model is trained.
We tested the training of batch size at 256, 500, and 1000 for the 100 iterations, and the
results are shown in Table 3. Loss represents the optimal loss rate of the training set, and
Val Loss represents the loss rate of the validation set.

Table 3. Different batch size and loss.

Batch Size Loss Val Loss

256 0.095364 0.095196
500 0.156235 0.165432

1000 0.215263 0.214537

The experimental results show a very large difference in the training results for differ-
ent batch sizes. Therefore, we choose a batch size of 256 for subsequent experiments.

We set the size of the first hidden layer to 64 and test the effect of the size of the second
hidden layer on the dimensionality reduction effect. The results are shown in Table 4.

Drones 2022, 6, 342 13 of 19

As you can see from the table, when the hidden layer is set to 32, the loss rate is lower
than other sizes, so the hidden layer size is set to 32. We use the trained auto-encoder
model to reduce the dimensionality of the dataset.

Table 4. Different hidden layer size and loss.

Hidden Layer Size Loss Val Loss

16 0.103622 0.103436
32 0.095364 0.095196
48 0.098497 0.098497

For subsequent experiments, we all use the default parameters of the model for
the experiments. Using the encoder of the trained deep auto-encoder, the data input is
dimensionalized, and the dimensionalized data is shaped into a three-dimensional form
of (343,889, 32, 1) and input into the CNN. The first two convolutional layers with a
convolutional kernel size of 64*3 are used for feature extraction, using the ReLU activation
function to increase the nonlinearity. The output feature map is pooled by the maxpooling
method. The maximum value of each part is selected as the input of the next layer with
a size of 2*1 to reduce the size of the feature map and reduce the overhead computation
time. After two convolutional layers with 128*3 kernel size and ReLU activation function to
extract deeper features, the CNN is connected to a full connection layer with 128 size. The
CNN part of the model is now processed. The data are fed into the attention mechanism,
where the key information is further processed, and the output is expanded into one-
dimensional vector form. In order to prevent overfitting, a dropout operation is added
in this step with a parameter of 0.1, which randomly deactivates the neurons with a 10%
probability. Finally, the classification is then performed by the classifier.

During the experiments, the loss function converges when the number of iterations is
nearly 60 to 70, the loss rate is minimized, and the accuracy has almost stopped growing.
Therefore, we set the number of experimental iterations to 100 and compare the optimal
results of different models.

4.3. Simulation Metrics

We evaluate the experimental results using the following equations:

Accuracy =
TP + TN

P + N
(28)

Recall =
TP

TP + FN
(29)

Precision =
TP

TP + FP
(30)

F− score = 2 ∗ precision ∗ recall
precision + recall

(31)

where TP (true positive) represents the number of samples that correctly predicted the
traffic as normal traffic, TN (true negative) represents the number of samples that correctly
predicted the traffic as abnormal traffic, FP (false positive) represents the number of samples
that incorrectly predicted the traffic as normal traffic, and FN (false negative) represents
the number of samples that incorrectly predicted the traffic as abnormal traffic.

In addition, Accuracy represents the proportion of correctly predicted normal and
abnormal traffic in all samples, Recall represents the proportion of all normal traffic that
is correctly detected, and Precision represents the proportion of normal traffic among all
detected results; F− score synthesizes Precision and Recall as an evaluation index.

Drones 2022, 6, 342 14 of 19

4.4. Simulation Scenarios

The dataset we use contains different types of attack traffic, such as DDoS, Probe,
etc. In the simulated scenario, the attacker performs various types of attacks on the drone
communication network with SDN architecture, while the communication network also
has normal communication traffic. For these mixed traffic flows, our proposed model is
tested for two tasks. One is to distinguish only normal traffic from malicious traffic, and
the other is to analyze the traffic and give traffic labels for each type of traffic.

4.5. Experimental Results of Binary Classification

Both CNN and LSTM belong to the category of deep learning and perform well on text
classification tasks. Therefore, our experiments compare the performance of three different
models with the same dataset and training times: single-layer CNN, single-layer LSTM,
single-layer CNN + single-layer LSTM, and the proposed DCA model, with the number of
experimental iterations set to 100. The parameters of the single-layer CNN are identical
to those of the CNN part of the model proposed in this paper, and the highest accuracy
during training is used for all test models. Table 5 shows the experimental results.

Table 5. Model optimal results.

Model Accuracy Recall Precision F-Score

CNN 0.991 0.992 0.997 0.995
LSTM 0.994 0.996 0.996 0.996

CNN+LSTM 0.997 0.997 0.999 0.998
DCA 0.997 0.998 0.998 0.998

In the results of the four evaluation metrics in Table 6, we choose the model with the
best performance in 100 iterations for testing. From the results, we can see that the DCA
model is equal to the CNN+LSTM model in terms of accuracy, reaching 0.997, which is
better than the other two models. The DCA model outperforms the other three models in
terms of recall value, which reaches 0.998. In terms of precision value, the test result of this
model is slightly lower than that of the CNN+LSTM model, but better than the other two
models. In terms of F-score value, our proposed model is also on par with the CNN+LSTM
model, reaching 0.998, which is also better than the other two models.

It is clear that the DCA model is higher than the single-layer CNN model and the
single-layer LSTM model in terms of accuracy. However, compared with the CNN+LSTM
model, The DCA model seems to have little advantage. This is because the essence of
text classification is the transformation of data features into complex functions, which
is no different from image classification tasks. The feature complexity of text data is
much lower than that in the image processing field. CNN is mainly used in the image
processing field and is good at extracting spatial features. The LSTM model is mainly
used for processing sequence data and used to extract temporal features. The CNN+LSTM
model combines the extraction of both spatial features and temporal features for traffic
data, so the accuracy is high when the training is completed. However, it should be noted
that it is not comprehensive to judge the merits of the model from the test results of the
optimal model alone.

Figure 6a,b show the change curves of the accuracy and loss of each model during
100 iterations. As can be seen from the figures, the accuracy of our proposed model has
a huge advantage over the other models in the initial stage of training. Among the other
three models, the worst performer is the LSTM model with an initial accuracy below 0.88,
the best performer is the single-layer CNN model at approximately 0.91, whereas our
proposed model achieves an initial accuracy of approximately 0.97. On the other hand, both
single-layer CNN and single-layer LSTM need about 20 iterations to achieve an accuracy of
0.97, and CNN+LSTM needs about 10 iterations.

Drones 2022, 6, 342 15 of 19

The DCA model has basically reached convergence at 20 to 30 iterations, whereas the
single-layer CNN model and the LSTM model reach convergence at 80 to 90 iterations, and
the CNN+LSTM model reaches convergence at 50 to 60 iterations.

Because of its structural design advantages, the DCA model can achieve high accuracy
in the initial stage of training and subsequently converge with few iterations. The whole
model structure is centered on “extracting key information”. From the noise reduction
and dimensionality reduction of features by deep auto-encoder to the further extraction of
features by CNN and then to the control of key features by the attention mechanism, the
whole model goes through three layers of feature processing and constantly discards the
redundant noise and weakly correlated features in the data. That is why the DCA model
finds the most beneficial feature information quickly for classification and achieves the
maximum learning effect with very few iterations.

0 20 40 60 80 100

0.88

0.90

0.92

0.94

0.96

0.98

1.00
Accuracy

LSTM

CNN

CNN_LSTM
DCA

(a) Accuracy Curves

0 20 40 60 80 100
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Loss

LSTM

CNN

CNN_LSTM

DCA

(b) Loss Curves

Figure 6. Binary classification curves.

The single-layer CNN and single-layer LSTM have very smooth training curves due
to their simple structures. The CNN+LSTM model may be due to the influence of CNN
and LSTM on each other when extracting features, which leads to its unstable extraction of
features, and the training curve fluctuates abnormally sharply, although the overall trend is
upward, but its stability is worrying. The DCA model curve also fluctuates slightly, but the
overall fluctuation is within the controllable range and does not affect its performance.

Figure 7a–d show the confusion matrix generated based on the test results of each
model on the test set. The models represented by (a) to (d) are DCA, CNN+LSTM, CNN,
and LSTM, respectively. Among the 68,777 test samples, the number of prediction errors
for the DCA model was 240, the number of prediction errors for the CNN-LSTM model
was 562, and the number of prediction errors for the CNN and LSTM models were 991 and
802, respectively. It can be seen that the DCA model performs significantly better than the
other three models on the test set with the lowest number of false positives.

Drones 2022, 6, 342 16 of 19

0 1
predict

0

1

tru
e

13,586

99

88

55,004
10000

20000

30000

40000

50000

(a) DCA

0 1
predict

0

1

tru
e

13,608

77

147

54,945
10000

20000

30000

40000

50000

(b) CNN+LSTM

0 1
predict

0

1

tru
e

13,507

178

418

54,674
10000

20000

30000

40000

50000

(c) CNN

0 1
predict

0

1

tru
e

13,487

198

223

54,869
10000

20000

30000

40000

50000

(d) LSTM

Figure 7. Confusion matrices for different models.

4.6. Experimental Results of Multiple Classification

As shown in Figure 8a,b, the accuracy of all models decreases in the multiclassification
experiment compared to the binary classification experiment. The single-layer LSTM and
single-layer CNN training curves are very smooth, but the accuracy and loss rates are
lower than the other two models. For the CNN+LSTM model, although the final accuracy
is not much different from the model proposed in this paper, its model training curve
fluctuates drastically, similar to the binary classification experiments. On the other hand,
the training time consumes tens of times of the other three models. As shown in Table 6, the
CNN+LSTM model takes more than 7 hours to train with the same common parameters,
whereas the other three models take only tens of minutes to train.

To make the experiment more fair, the hyperparameter batch size of the CNN+LSTM
model is increased to reduce its training time. The results are shown in Figure 8c,d.

The accuracy of the CNN+LSTM model decreases significantly, and its training time is
3522 s, which is still much longer than the other three models.

In summary, the DCA model still performs better than the other two traditional models
in dealing with multiclassification tasks, whereas the CNN+LSTM model requires a huge
time overhead to deal with multiclassification problems with guaranteed accuracy, and
the accuracy decreases severely with guaranteed relative efficiency. In summary, the DCA
model has a great advantage over the other three models.

Drones 2022, 6, 342 17 of 19

0 20 40 60 80 100

0.75

0.80

0.85

0.90

0.95

Accuracy

LSTM

CNN

CNN_LSTM

DCA

(a) Accuracy Curves

0 20 40 60 80 100

0.2

0.4

0.6

0.8

1.0

Loss

LSTM

CNN

CNN_LSTM

DCA

(b) Loss Curves

0 20 40 60 80 100

0.4

0.5

0.6

0.7

0.8

0.9

Accuracy

LSTM

CNN

CNN_LSTM

DCA

(c) Accuracy Curves

0 20 40 60 80 100

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Loss

LSTM

CNN

CNN_LSTM

DCA

(d) Loss Curves

Figure 8. Multiple classification curves.

Table 6. Multiple classification training time.

Models Time Consumed

CNN 988 s
LSTM 1169 s
DCA 1902 s

CNN+LSTM 27,534 s

5. Conclusions

An intrusion detection algorithm with fast convergence and high accuracy is imper-
ative for drone communication networks due to the limited resources of drones. This
paper proposes an intrusion detection model based on the attention mechanism. The model
consists of a DAE, CNN, and attention mechanism. DAE reduces invalid features to im-
prove the efficiency of subsequent training and discards invalid features. CNN extracts the
abstract features. Attention mechanism gives high weight to important features to increase
the impact on the model. We built and trained the model in the Jupyter Notebook platform
under the Anaconda environment, and tested the model using InSDN, a dataset entirely
from the SDN environment, with CNN, LSTM, and CNN+LSTM, and the DCA model
performed well in comparison with these three models. The accuracy of the DCA model
was 99.7% in the binary classification experiments, which was 0.6% higher than the other
models. The accuracy of the DCA model was 95.5% in the multiple classification exper-
iments, which was 3% higher than the other models. The number of iterations required
for the DCA model to reach the convergence state is approximately 20 to 30 rounds of

Drones 2022, 6, 342 18 of 19

training, which is one-third of that of the other models. The size of the dataset used in this
paper is about 350,000 entries. The increase in the number of drones and the development
of SDN technology will inevitably cause a dramatic increase in network traffic, and the
network data traffic will be much higher than 350,000 entries. This will challenge various
existing abnormal traffic detection techniques, and the too slow convergence speed and too
long training period as well as the lower accuracy rate will be the reason for elimination.
Therefore, based on the excellent performance of the DCA model in the experiments, we
have reasons to believe that the model can meet the upcoming challenges. Future work
focuses on how to use traffic to update network model parameters in real time and improve
the accuracy of the model in multiclassification tasks.

Author Contributions: Conceptualization, L.K., S.D. and T.W.; methodology, L.K. and S.D.; software,
S.D.; validation, S.D.; formal analysis, L.K. and S.D.; investigation, L.K., W.D. and Y.Y.; writing—
original draft preparation, L.K., S.D.; writing—review and editing, L.K. and S.D. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Publicly available datasets were analyzed in this study. This data can
be found here: [http://aseados.ucd.ie/datasets/SDN/ or http://iotseclab.ucd.ie/datasets/SDN/
(accessed on 31 October 2022)].

Acknowledgments: This work was supported in part by the Key Technology Research and Develop-
ment Program of the Zhejiang Province under Grant 2022C01125.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Raja, G.; Anbalagan, S.; Ganapathisubramaniyan, A.; Selvakumar, M.S.; Bashir, A.K.; Mumtaz, S. Efficient and secured swarm

pattern multi-UAV communication. IEEE Trans. Veh. Technol. 2021, 70, 7050–7058. [CrossRef]
2. Ullah, H.; Nair, N.G.; Moore, A.; Nugent, C.; Muschamp, P.; Cuevas, M. 5G communication: An overview of vehicle-to-everything,

drones, and healthcare use-cases. IEEE Access 2019, 7, 37251–37268. [CrossRef]
3. Hassija, V.; Chamola, V.; Agrawal, A.; Goyal, A.; Luong, N.C.; Niyato, D.; Yu, F.R.; Guizani, M. Fast, reliable, and secure drone

communication: A comprehensive survey. IEEE Commun. Surv. Tutor. 2021, 23, 2802–2832. [CrossRef]
4. Alkama, D.; Ouamri, M.A.; Alzaidi, M.S.; Shaw, R.N.; Azni, M.; Ghoneim, S.S.M. Downlink Performance Analysis in MIMO

UAV-Cellular Communication with LOS/NLOS Propagation Under 3D Beamforming. IEEE Access 2022, 10, 6650–6659. [CrossRef]
5. Zhang, J.; Zhang, D.; Sun, J. A Vector-Based Approach for Dimensioning Small Cell Networks in Millimeter-Wave Frequencies.

IEEE Trans. Veh. Technol. 2022, 71, 8980–8993. [CrossRef]
6. Kirkpatrick, K. Software-defined networking. Commun. ACM 2013, 56, 16–19. [CrossRef]
7. Xia, W.; Wen, Y.; Foh, C.H.; Niyato, D.; Xie, H. A survey on software-defined networking. IEEE Commun. Surv. Tutor. 2014,

17, 27–51. [CrossRef]
8. Wickboldt, J.A.; De Jesus, W.P.; Isolani, P.H.; Both, C.B.; Rochol, J.; Granville, L.Z. Software-defined networking: management

requirements and challenges. IEEE Commun. Mag. 2015, 53, 278–285 [CrossRef]
9. Shu, Z.; Wan, J.; Li, D.; Lin, J.; Vasilakos, A.V.; Imran, M. Security in software-defined networking: Threats and countermeasures.

Mob. Netw. Appl. 2016, 21, 764–776. [CrossRef]
10. Tang, T.A.; Mhamdi, L.; McLernon, D.; Zaidi, S.A.R.; Ghogho, M. Deep learning approach for network intrusion detection

in software defined networking. In Proceedings of the 2016 International Conference on Wireless Networks and Mobile
Communications (WINCOM), Fez, Morocco, 26–29 October 2016; pp. 258–263.

11. Siddappaji, B.; Akhilesh, K.B. Role of Cyber Security in Drone Technology; Springer: Singapore, 2020; pp. 169–178.
12. Abdelmaboud, A. The Internet of Drones: Requirements, Taxonomy, Recent Advances, and Challenges of Research Trends.

Sensors 2021, 21, 5718. [CrossRef]
13. Yahuza, M.; Idris, M.Y.I.; Wahab, A.W.A.; Nandy, T.; Ahmedy, I.B.; Ramli, R. An edge assisted secure lightweight authentication

technique for safe communication on the internet of drones network. IEEE Access 2021, 9, 31420–31440. [CrossRef]
14. Mukherjee, B.; Heberlein, L.T.; Levitt, K.N. Network intrusion detection. IEEE Netw. 1994, 8, 26–41. [CrossRef]
15. Nawaz, H.; Ali, H.M.; Laghari, A.A. UAV communication networks issues: A review. Arch. Comput. Methods Eng. 2021, 28, 1349–1369.

[CrossRef]
16. Guerber, C.; Larrieu, N.; Royer, M. Software defined network based architecture to improve security in a swarm of drones. In

Proceedings of the 2019 International Conference on Unmanned Aircraft Systems (ICUAS), Atlanta, GA, USA, 11–14 June 2019;
pp. 51–60.

http://aseados.ucd.ie/datasets/SDN/
http://iotseclab.ucd.ie/datasets/SDN/
http://doi.org/10.1109/TVT.2021.3082308
http://dx.doi.org/10.1109/ACCESS.2019.2905347
http://dx.doi.org/10.1109/COMST.2021.3097916
http://dx.doi.org/10.1109/ACCESS.2022.3142529
http://dx.doi.org/10.1109/TVT.2022.3176622
http://dx.doi.org/10.1145/2500468.2500473
http://dx.doi.org/10.1109/COMST.2014.2330903
http://dx.doi.org/10.1109/MCOM.2015.7010546
http://dx.doi.org/10.1007/s11036-016-0676-x
http://dx.doi.org/10.3390/s21175718
http://dx.doi.org/10.1109/ACCESS.2021.3060420
http://dx.doi.org/10.1109/65.283931
http://dx.doi.org/10.1007/s11831-020-09418-0

Drones 2022, 6, 342 19 of 19

17. Altawy, R.; Youssef, A.M. Security, privacy, and safety aspects of civilian drones: A survey. ACM Trans. Cyber-Phys. Syst. 2016,
1, 1–25. [CrossRef]

18. Sharma, N.; Magarini, M.; Jayakody, D.N.K.; Sharma, V.; Li, J. On-demand ultra-dense cloud drone networks: Opportunities,
challenges and benefits. IEEE Commun. Mag. 2018, 56, 85–91. [CrossRef]

19. Chica, J.C.C.; Imbachi, J.C.; Vega, J.F.B. Security in SDN: A comprehensive survey. J. Netw. Comput. Appl. 2020, 159, 102595.
[CrossRef]

20. Ali, S.T.; Sivaraman, V.; Radford, A.; Jha, S. A survey of securing networks using software defined networking. IEEE Trans. Reliab.
2015, 64, 1086–1097. [CrossRef]

21. Rawat, D.B.; Reddy, S.R. Software defined networking architecture, security and energy efficiency: A survey. IEEE Commun. Surv.
Tutor. 2016, 19, 325–346. [CrossRef]

22. Niyaz, Q.; Sun, W.; Javaid, A.Y. A deep learning based DDoS detection system in software-defined networking (SDN). arXiv 2016,
arXiv:1611.07400.

23. Polat, H.; Polat, O.; Cetin, A. Detecting DDoS attacks in software-defined networks through feature selection methods and
machine learning models. Sustainability 2020, 12, 1035. [CrossRef]

24. Malik, J.; Akhunzada, A.; Bibi, I.; Imran, M.; Musaddiq, A.; Kim, S.W. Hybrid deep learning: An efficient reconnaissance and
surveillance detection mechanism in SDN. IEEE Access 2020, 8, 134695–134706. [CrossRef]

25. Javanmardi, S.; Shojafar, M.; Mohammadi, R.; Nazari, A.; Persico, V.; Pescapè, A. FUPE: A security driven task scheduling
approach for SDN-based IoT–Fog networks. J. Inf. Secur. Appl. 2021, 60, 102853. [CrossRef]

26. Ilango, H.S.; Ma, M.; Su, R. Low Rate DoS Attack Detection in IoT-SDN using Deep Learning. In Proceedings of the 2021 IEEE
International Conferences on Internet of Things (iThings) and IEEE Green Computing & Communications (GreenCom) and
IEEE Cyber, Physical & Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics
(Cybermatics), Melbourne, Australia, 6–8 December 2021; pp. 115–120.

27. Schueller, Q.; Basu, K.; Younas, M.; Patel, M.; Ball, F. A hierarchical intrusion detection system using support vector machine for
SDN network in cloud data center. In Proceedings of the 2018 28th International Telecommunication Networks and Applications
Conference (ITNAC), Sydney, NSW, Australia, 21–23 November 2018; pp. 1–6.

28. Hadem, P.; Saikia, D.K.; Moulik, S. An SDN-based Intrusion Detection System using SVM with Selective Logging for IP Traceback.
Comput. Netw. 2021, 191, 108015. [CrossRef]

29. Zhai, Y.; Zheng, X. Random forest based traffic classification method in SDN. In Proceedings of the 2018 International Conference
on Cloud Computing, Big Data and Blockchain (ICCBB), Fuzhou, China, 15–17 November 2018; pp. 1–5.

30. Ribeiro, A.R.L.; Santos, R.Y.C.; Nascimento, A.C.A. Anomaly Detection Technique for Intrusion Detection in SDN Environment
using Continuous Data Stream Machine Learning Algorithms. In Proceedings of the 2021 IEEE International Systems Conference
(SysCon), Vancouver, BC, Canada, 15 April–15 May 2021; pp. 1–7.

31. Assis, M.V.O.; Carvalho, L.F.; Lloret, J.; Proença, M.L., Jr. A GRU deep learning system against attacks in software defined
networks. J. Netw. Comput. Appl. 2021, 177, 102942. [CrossRef]

32. Qin, G.; Chen, Y.; Lin, Y.X. Anomaly detection using LSTM in IP networks. In Proceedings of the 2018 Sixth International
Conference on Advanced Cloud and Big Data (CBD), Lanzhou, China, 12–15 August 2018; pp. 334–337.

33. Azizjon, M.; Jumabek, A.; Kim, W. 1D CNN based network intrusion detection with normalization on imbalanced data. In
Proceedings of the 2020 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), Fukuoka,
Japan, 19–21 February 2020; pp. 218–224.

34. Elsayed, M.S.; Le-Khac, N.A.; Jahromi, H.Z.; Jurcut, A.D. A Hybrid CNN-LSTM Based Approach for Anomaly Detection Systems
in SDNs. In Proceedings of the 16th International Conference on Availability, Reliability and Security (ARES 2021), Vienna,
Austria, 17–20 August 2021.

35. Ding, P.; Li, J.; Wang, L.; Wen, M.; Guan, Y. HYBRID-CNN: An efficient scheme for abnormal flow detection in the SDN-Based
Smart Grid. Secur. Commun. Netw. 2020, 2020, 8850550. [CrossRef]

36. Ahuja, N.; Singal, G.; Mukhopadhyay, D. DLSDN: Deep learning for DDOS attack detection in software defined networking. In
Proceedings of the 2021 11th International Conference on Cloud Computing, Data Science & Engineering (Confluence), Noida,
India, 28–29 January 2021; pp. 683–688.

37. Ng, A. Sparse autoencoder. CS294A Lect. Notes 2011, 72, 1–19.
38. Fukushima, K.; Miyake, S. Neocognitron: A self-organizing neural network model for a mechanism of visual pattern recognition.

In Competition and Cooperation in Neural Nets; Springer: Berlin/Heidelberg, Germany, 1982; pp. 267–285.
39. Mnih, V.; Heess, N.; Graves, A. Recurrent models of visual attention. In Advances in Neural Information Processing Systems; MIT

Press: Cambridge, MA, USA, 2014; pp. 2204–2212.
40. University of California at Irvine. UCI KDD Archive. Available online: http://kdd.ics.uci.edu/ (accessed on 9 September 2005).
41. Tavallaee, M.; Bagheri, E.; Lu, W.; Ghorbani, A.A. A detailed analysis of the KDD CUP 99 data set. In Proceedings of the 2009

IEEE Symposium on Computational Intelligence for Security and Defense Applications, Ottawa, ON, Canada, 8–10 July 2009;
pp. 1–6.

42. Elsayed, M.S.; Le-Khac, N.A.; Jurcut, A.D. InSDN: A novel SDN intrusion dataset. IEEE Access 2020, 8, 165263–165284. [CrossRef]

http://dx.doi.org/10.1145/3001836
http://dx.doi.org/10.1109/MCOM.2018.1701001
http://dx.doi.org/10.1016/j.jnca.2020.102595
http://dx.doi.org/10.1109/TR.2015.2421391
http://dx.doi.org/10.1109/COMST.2016.2618874
http://dx.doi.org/10.3390/su12031035
http://dx.doi.org/10.1109/ACCESS.2020.3009849
http://dx.doi.org/10.1016/j.jisa.2021.102853
http://dx.doi.org/10.1016/j.comnet.2021.108015
http://dx.doi.org/10.1016/j.jnca.2020.102942
http://dx.doi.org/10.1155/2020/8850550
http://kdd.ics.uci.edu/
http://dx.doi.org/10.1109/ACCESS.2020.3022633

	Introduction
	Related Work
	Proposed Model
	Deep Auto-Encoder
	Convolutional Neural Networks
	Attention Mechanism
	The DCA Model

	Exeperimental Evaluation
	InSDN Dataset
	Simulation Setup
	Simulation Metrics
	Simulation Scenarios
	Experimental Results of Binary Classification
	Experimental Results of Multiple Classification

	Conclusions
	References

