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Abstract: Swarming is one of the important trends in the development of small multi-rotor UAVs.
The stable operation of UAV swarms and air-to-ground cooperative operations depend on precise
relative position information within the swarm. Existing relative localization solutions mainly rely on
passively received external information or expensive and complex sensors, which are not applicable
to the application scenarios of small-rotor UAV swarms. Therefore, we develop a relative localization
solution based on airborne monocular sensing data to directly realize real-time relative localization
among UAVs. First, we apply the lightweight YOLOv8-pose target detection algorithm to realize the
real-time detection of quadcopter UAVs and their rotor motors. Then, to improve the computational
efficiency, we make full use of the geometric properties of UAVs to derive a more adaptable algorithm
for solving the P3P problem. In order to solve the multi-solution problem when less than four motors
are detected, we analytically propose a positive solution determination scheme based on reasonable
attitude information. We also introduce the maximum weight of the motor-detection confidence into
the calculation of relative localization position to further improve the accuracy. Finally, we conducted
simulations and practical experiments on an experimental UAV. The experimental results verify the
feasibility of the proposed scheme, in which the performance of the core algorithm is significantly
improved over the classical algorithm. Our research provides viable solutions to free UAV swarms
from external information dependence, apply them to complex environments, improve autonomous
collaboration, and reduce costs.

Keywords: UAV swarm; relative localization; Perspective-n-Point; GNSS-denied environments;
YOLO; keypoint detection

1. Introduction

Small multi-rotor UAVs have the advantages of good maneuverability, rich expansion
functions, and great intelligence potential, but the limited performance of a single aircraft
and poor survivability have also been exposed in use [1]. Swarming can compensate
for the weaknesses of a single UAV while further leveraging its strengths [2]. Currently,
UAV swarms have shown great value and potential in missions such as aerial Internet
of Things (IoT) [3,4], relay communication support [5,6], aerial light shows, regional se-
curity [7], and military operations [8], which have become one of the inevitable trends
in the development of UAV applications. Accurate real-time position information is the
basis for UAVs to accomplish a variety of air-to-ground missions. In addition to absolute
position information, it also involves the relative position relationship between each UAV
within a swarm. It is no exaggeration to say that relative location information is no less
important than absolute location information from a swarm perspective. It enables UAVs to
maintain planned formations, avoid collisions with each other, and accomplish coordinated
maneuvers [9]. Therefore, precise relative localization is a must for swarm UAVs, which is
of great significance in reducing the swarm’s reliance on absolute position information and
improving the swarm’s ability to survive in hazardous environments.
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In recent years, solutions based on various hardware and methods have emerged
for relative localization problems. While they show good performance, the different
characteristics and conditions of use make many of these solutions inappropriate for small
multi-rotor UAV swarms. Currently, the acquisition of relative localization information
between UAVs still relies heavily on the absolute position data of each UAV from the
Global Navigation Satellite System (GNSS) [10]. In addition, similar problems exist with
relative localization via motion capture systems, simultaneous localization and mapping
(SLAM) [11,12], and ground-based ultra-wide band (UWB) localization systems [13]. They
all need to first obtain their respective position coordinates in the same spatial coordinate
system from external infrastructure or environmental information and then solve for the
relative localization information based on this. These methods have obvious drawbacks.
Firstly, once absolute localization has failed, relative localization will also not be possible, for
example, when encountering a GNSS-denied environment, when the coverage of ground-
based localization stations is exceeded or when the environmental features required for
SLAM are not evident. Secondly, errors in absolute localization will be superimposed
and magnified during the conversion to relative localization information [14]. In addition,
absolute localization will take up limited resources per swarm UAV, which could have
been avoided.

The model for UAV swarms is derived from the group behavior of flying creatures
in nature [15]. They usually rely on organ functions such as vision and hearing to di-
rectly obtain information about their relative positions to each other. UAV swarms, as
multi-intelligence systems, should also have the ability to achieve relative localization
without relying on external facilities or information. Similar functions have already been
implemented in the rapidly developing field of advanced driving assistance system (ADAS)
research [16,17]. Based on the information provided by vision, laser, and other sensors, it
has been possible to achieve accurate relative positioning of objects within a certain range
while the vehicle is in motion. However, the environment in which vehicles are driven
can be approximated as a two-dimensional space, whereas drones are in a more complex
three-dimensional scenario.

Relative localization based on radio signals is a classical approach, currently repre-
sented by airborne UWB and relative localization based on carrier phase [18,19]. Although
they are superior in terms of localization accuracy, they will significantly increase the cost,
power consumption, and system complexity of each UAV, as well as taking into account
mutual interference problems. While LIDAR has superior performance and proven appli-
cations, the same expensive price and high power consumption prevent it from being the
first choice for swarm UAVs [20]. Millimeter-wave radar is less expensive, but it has lower
localization accuracy and a smaller measurement range [21].

While relative localization achieved based on vision SLAM is not considered due to its
indirectness and instability, vision sensors can also directly provide useful information for
relative localization [22]. Wide-angle lenses, gimbals, camera scheduling algorithms, and
target tracking algorithms [23] ensure flexible acquisition of environmental images [24].
Binocular cameras and depth cameras are the current mainstream vision solutions [25].
Binocular vision localization uses the principle of triangular geometric parallax to achieve
relative localization. However, the co-processing of binocular data requires high computing
resources and speed, and the accuracy and range of measurements are limited when the
parallax is small. Depth cameras can obtain depth data based on the principle of structured
light or time of flight (ToF), but they have a relatively small applicable distance and imaging
field of view, making them unsuitable for the relative localization of drones in motion [26].

Monocular cameras are common onboard sensors for UAVs and have the advantage
of being cheap and easy to deploy. However, information based solely on a single frame
from a single camera can only measure direction but not distance unless more auxiliary
information is introduced, which is also the core problem that needs to be solved for
monocular visual localization [27]. The implementation of relative localization based on
airborne monocular vision offers significant advantages in terms of cost, complexity, and
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hardware requirements compared to the other methods mentioned above, but there is a lack
of mature solutions. Therefore, the development of a relative localization method based
only on airborne monocular vision is of great practical importance to solve the relative
localization problem of small multi-rotor UAV swarms.

In this research, we develop an airborne monocular-vision-based relative localization
scheme using a small quadrotor UAV as an experimental platform. It achieves accurate
real-time relative localization between UAVs based only on a single airborne camera’s data
and simple feature information of the quadrotor UAV. In summary, our contributions are
as follows:

• We propose a new idea of directly using only the rotor motors as the basis for local-
ization and use the deep-learning-based YOLOv8-pose keypoint detection algorithm
to achieve fast and accurate detection of UAVs and their motors. Compared to other
visual localization information sources, we do not add additional conditions and data
acquisition is more direct and precise.

• A more suitable algorithm for solving the PnP (Perspective-n-Point) problem is derived
based on the image plane 2D coordinates of rotor motors and the shape feature
information of the UAV. Our algorithm is optimized for the application target, reduces
the complexity of the algorithm by exploiting the geometric features of the UAV, and
is faster and more accurate than classical algorithms.

• For the multi-solution problem of P3P, we propose a new scheme to determine the
unique correct solution based on the pose information instead of the traditional
reprojection method, which solves the problem of occluded motors during visual
relative localization. The proposed method breaks the limitations of classical methods
and reduces the amount of data necessary for visual localization.

A description of symbols and mathematical notations involved in this paper is shown
in Table 1.

Table 1. Description of symbols and mathematical notations.

{Ai} The set of points corresponding to all values of i.
(a, b) Coordinates in the specified coordinate system.

Oxyz The spatial coordinate system with O as the origin and Ox, Oy and Oz as the positive
directions of the coordinate axes.

∠AOB The angle between the rays OA and OB with O as the vertex.
A Matrices, including vectors.
AB A vector with A as the starting point and B as the ending point.

tm
n

The displacement matrix of the Om-coordinate system with respect to the On-coordinate
system.

Rm
n

The rotation matrix of the Om-coordinate system with respect to the On-coordinate
system.

A× B Multiply matrix A with matrix B.
[·]T The transpose of the matrix.
‖·‖ The modulus of the vector.

2. Related Work
2.1. Monocular Visual Localization

Currently, the main specific methods for monocular visual localization are feature
point methods, direct methods, deep-learning-based methods, and semantic-information-
based methods. References [28,29] both propose the use of deep learning target detection
algorithms to classify and detect images from different angles of the UAV and then combine
this with the corresponding dimensional information to estimate the relative position of
the UAV. However, this places high demands on the detection model; an accurate detection
model often means a larger amount of data collection for training as well as slower detection
speeds, while simplifying the model will lead to a significant increase in error. Another
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idea is to artificially add features to the UAV to aid detection. In reference [30], Zhao et al.
used the derived P4P algorithm to solve the relative position information of the target UAV
based on the image positions of four LEDs pre-mounted on the UAV, but only semi-physical
simulation experiments were carried out. Walter et al. obtained real-time relative position
information of the UAV by detecting scintillating UV markers added to the UAV and using
a 3D time-position Hough transform [31]. In reference [32], Saska et al. achieved relative
localization in their study by deploying geometric patterns on the UAV and detecting them,
with the study also incorporating inertial guidance information. Zhao et al. instead used the
April Tag algorithm to achieve the acquisition of UAV position and attitude information by
detecting and processing the onboard 2D code [33]. While these methods can achieve good
results, the additional addition of features is not conducive to practical application and is
not a preferred option. In reference [34], Pan et al. propose a learning-based correspondence
point matching model to solve the position information of ground targets based on multiple
frames from the UAV’s onboard monocular camera. But this method is based less on real
time and cannot adapt to the high-speed movement characteristics of UAVs. Reference [35]
presents a method for obtaining UAV position and attitude information by inspecting the
four rotor motors and other key components of the UAV and applying an improved PnP
algorithm. However, we do not believe it is possible to detect so many characteristics of a
UAV at the same time when detecting it in the air.

Based on the above analysis, harsh condition constraints, higher acquisition difficulty,
and lower real-time and accuracy are the main problems in acquiring data sources for visual
localization. We believe that relative localization based on the image feature information of
the UAV itself is a feasible idea. Moreover, the number of feature points should be required
to be as small as possible to facilitate detection and fast solving. The rotor motors are a
necessary component of a quadcopter drone, and there are at least three of them visible
when viewed from almost any angle. Therefore, we consider the motors as a reference point
for visual localization and explore solving the PnP problem based on better parameters
and computational effort.

2.2. Target and Keypoint Detection

Accurate detection of the UAV and its motors is the basis for visual localization.
Deep-learning-based target detection algorithms are the current mainstream solution, with
representative algorithms such as Faster R-CNN, YOLO, and SSD. Compared to other
algorithms, the YOLO algorithm is based on the idea of one-off detection, which is faster to
process and more suitable for applications in real-time scenarios [36]. Thanks to the simple
network architecture and optimized algorithm design, the YOLO algorithm is simple
to deploy and more conducive to deployment on lower-performance edge computers.
Based on these advantages, the YOLO algorithm is widely used in ground-to-UAV and
UAV-to-ground target detection in real time. However, detection accuracy, localization
precision, and performance on small targets have been the relative disadvantages of the
YOLO algorithm and have been the focus of its iteration and improvement [37].

The YOLO algorithm has now evolved to the latest v8 version, with many improve-
ments referencing the strengths of previous versions. YOLOv8 improves on the FPN
(feature pyramid networks) idea and the Darknet53 backbone network by replacing the
C3 structure in YOLOv5 with the more gradient flow-rich C2f structure. This improves
the multi-scale predictive capability and lightness of the algorithm. In the Head section,
YOLOv8 uses the mainstream decoupled head structure and replaces Anchor-Base with
Anchor-Free. in addition, YOLOv8 is optimized for multi-scale training, data enhance-
ment, and post-processing optimization, making it easier to deploy and train [38]. The
YOLOv8 development team has also released a pre-trained human pose detection model,
YOLOv8-pose, as seen in reference [39]. Pose estimation is realized based on the detection
and localization of specific parts and joints of the human body. Therefore, YOLOv8-pose
can be considered as a method for keypoint detection [40].
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Previous related work has focused on detecting UAV motors as area targets based on
their additional characteristics [30,31,35]. In this study, we apply YOLOv8-pose, which
is used for human posture detection, to the detection of the motors of UAVs. We hope
to realize direct, accurate, and real-time access to localization data sources based on the
advantages of YOLOv8-pose.

2.3. Solving the PnP Problem

The PnP problem is one of the classic problems in computer vision. It involves
determining the position and orientation of a camera, given n points in three-dimensional
space and their corresponding projection points on the camera image plane, combined
with the camera parameters. Common solution methods include Gao’s P3P [41], direct
linear transformation (DLT) [42], EPnP (Efficient PnP) [43], UPnP (uncalibrated PnP) [44],
etc. They have different requirements for the number of 2D–3D point pairs and are suitable
for different scenarios. In practice, there are often errors in the coordinates of the projected
points. More point pairs tend to help improve the accuracy and robustness of the results
but increase the amount of work involved in matching and solving the point pairs. Due
to the occurrence of occlusion, when photographing another quadcopter UAV with the
onboard camera, often only three motors are detected. Three sets of point pairs are also the
minimum requirement for solving the PnP problem, also known as the P3P problem.

Current solution methods for P3P problems can be divided into two-stage methods and
single-stage methods. The classical Gao’s method [41] mainly uses similar triangles, the co-
sine theorem, and Wu’s elimination method to solve the problem. In reference [45], Li et al.
proposed a geometric feature based on a perspective similar triangle (PST), reducing the un-
known parameters, reducing the complexity of the equations, and showing a more robust
performance. However, they all require the distance from the camera to the three points to
be found first, and then use methods such as singular value decomposition (SVD) to obtain
position and pose information. The single-stage method eliminates the intermediate process
of solving for distance values, which is more in line with the application needs of this study.
The method proposed by Kneip is representative of the single-stage method, which derives
the solution for camera position and pose directly by introducing an intermediate camera
and a series of geometrical treatments [46]. It offers a significant speed improvement over
Gao’s method, although at the cost of complex geometric transformations. Furthermore,
all P3P solutions mention the need to deal with the non-uniqueness of the solution of the
P3P problem by the reprojection method using the fourth set of point pairs. However, in
reality, when viewed from a partial angle, only three motors are often observable due to
the fuselage’s shading.

Classical PnP solution methods are devoted to solving general problems and do not
satisfy the special cases in this study. Meanwhile, more geometric features of rotor UAVs are
not utilized in these methods. In this research, we follow the idea of the single-stage method
and derive the position result of the P3P problem directly from an algebraic resolution
perspective based on the dimensional characteristics of the quadrotor UAV. For the multi-
solution problem of P3P, we propose a solution that does not require a fourth set of point
pairs based on the attitude characteristics of the UAV.

3. Detection of UAVs and Motors
3.1. Detection Model Training

First, we simulate the perceptual behavior of on-board vision by photographing a
quadrotor UAV hovering in the air from different angles and distances, as shown in Figure 1.
We then label the captured images, where UAVs are labeled as detection targets with
rectangles and motors are labeled as keypoints with dots. In order to correctly correspond
to the 2D–3D point pairs, the motor labeling order is specified as clockwise from the first
motor on the left, viewed from the bottom up. Obscured motors are not labeled. Finally,
following the general steps of YOLOv8-pose model training, the labeled images and data
were imported to generate the training model.
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Figure 1. Acquisition of UAV images.

3.2. Sequencing of Motor Keypoints

Although the labeling order of the motors has been specified, the output order of the
motor keypoints may still be wrong due to the complexity of the UAV’s flight attitude and
the multiple angles of detection. Therefore the sequence of keypoints of motors needs to
be calibrated. Due to the presence of occlusion, two to four motors can be detected in one
frame, as shown in Figure 2.

Figure 2. Three cases of the number of motors can be seen.

We set the pixel coordinates of the motors on the image plane to be {P0
i = (u0

i , v0
i )}

(i = 1,2,3,4), and the correct coordinates after sorting to be {Pi = (ui, vi)}. When two to three
motors can be detected, we specify that the motors appearing on the screen are sorted from
left to right. When all four motors are detected, we use the condition that the two midpoints
of the lines connecting the non-adjacent motors should theoretically overlap to judge and
correct the motor order. The specific algorithm for sorting is shown in Algorithm 1:
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Algorithm 1 Sorting the four motors

Require: {P0
i = (u0

i , v0
i )}, i ∈ {1 : n}

Ensure: {Pi = (ui, vi)}
1: if n < 4 then
2: Sort P0

1:n by u0
1 < u0

2 ( < u0
3 )

3: else
4: for i, j ∈ {1 : n}, i < j do

5: oij = [
u0

i +u0
j

2 ,
v0

i +v0
j

2 ]

6: end for
7: d1 = ‖o12o34‖, d2 = ‖o13o24‖, d1 = ‖o14o23‖
8: if min{d1:3} = d1 then
9: Swap the values of P0

2 and P0
3

10: else if min{d1:3} = d3 then
11: Swap the values of P0

3 and P0
4

12: end if
13: end if
14: {Pi} = {P0

i }

4. Relative Position Solution Method
4.1. Problem Model

Typically, the onboard vision sensor can detect three to four motors of the UAV within
the field of view. The solution of the relative position at this point is a P3P problem.

The model of the P3P problem is shown in Figure 3. Camera coordinate system,
pixel coordinate system, and motor coordinate system are established separately. Oc is
the optical centre of the camera and Opuv is the pixel coordinate system. The right-angle
coordinate system Ocxcyczc is established with Oc as the origin, where the xc-axis is in the
same direction as the u-axis, the zc-axis is reversed with the v-axis, and the yc-axis is on
the optical axis. {Mi}(i = 1, 2, 3, 4) represents the four motors of the UAV and Om is the
intersection of the central axis of the UAV with the plane where the motors are located,
here representing the spatial position of the UAV. We set up the right-angle coordinate
system Omxmymzm with the point Om as the origin, where the xm-axis and ym-axis are in
the positive direction of Om M3 and Om M4, respectively, and the zm-axis points above the
top of the UAV.

In fact, the camera coordinate system and the motor coordinate system express the
motion attitude of the camera gimbal and the UAV, which can be understood as the result
of the transformation with respect to the Earth coordinate system or the inertial coordinate
system. The pixel coordinate system is fixed with respect to the camera coordinate system
and is determined by the internal parameters of the camera. Then, the P3P problem is
converted to solving for the translation tm

c and rotation Rm
c of the motors coordinate system

with respect to the camera coordinate system, which are set as

tm
c =

 tx
ty
tz

, Rm
c =

 r11 r12 r13
r21 r22 r23
r31 r32 r33

, (1)
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Oc

zc

xc

yc

Om

xm

ym

zm

α1

P1
M2

M3

Op

u
v

M1

P2

P3

M4

Image Plane

α2
α3

Figure 3. The model for the P3P problem.

4.2. Improved Solution Scheme for the P3P Problem

We first consider the general case where only three motors are detected. The pixel
coordinates Pi of the motors and the camera focal length f are known. The vectors αi
represent OcPi. Obviously,

αi = [uc
i , f , vc

i ]
T, i = 1, 2, 3, (2)

where 
uc

i =
ui −

Wp
2

Wp
2

· WI
2

,

vc
i = −

vi −
Hp
2

Hp
2

· HI
2

,

(3)

where Wp and Hp represent the pixel width and height of the image plane, and WI and HI
represent the actual width and height of it.

Obviously, the point Pi is the projection on the image plane of the reflected rays from
the point Mi when they strike the focal point Oc along a straight line. So, Oc Mi can be
expressed as

Oc Mi = kiαi, i = 1, 2, 3. (4)

We set ‖Om Mi‖ = d, which can be obtained by measuring. Accordingly,

Om M1 = [−d, 0, 0]T,

Om M2 = [ 0,−d, 0]T,

Om M3 = [ d, 0, 0]T.

(5)

Based on the rules of vector transformation, Oc Mi can also be obtained from Om Mi by the
following transformation,

Oc Mi = Rm
c ×Om Mi + tm

c , i = 1, 2, 3. (6)
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From (1), (4), (5), and (6), it follows that

k1α1 = −

 r11
r21
r31

d + tm
c ,

k2α2 = −

 r12
r22
r32

d + tm
c ,

k3α3 =

 r11
r21
r31

d + tm
c .

(7)

To eliminate the unknown quantity ki, the first and second rows of each equation in
(7) are divided by the third row, respectively, and substitute (2), thus obtaining

−r11d + tx

−r31d + tz
=

uc
1

vc
1

,
−r21d + ty

−r31d + tz
=

f
vc

1
,

−r12d + tx

−r32d + tz
=

uc
2

vc
2

,
−r22d + ty

−r32d + tz
=

f
vc

2
, (8)

r11d + tx

r31d + tz
=

uc
3

vc
3

,
r21d + ty

r31d + tz
=

f
vc

3
.

Then, divide both the numerator and denominator on the left side of the Equation (8) by tz,
and we can obtain

−r11d/tz + tx/tz

−r31d/tz + 1
=

uc
1

vc
1

,
−r21d/tz + ty/tz

−r31d/tz + 1
=

f
vc

1
,

−r12d/tz + tx/tz

−r32d/tz + 1
=

uc
2

vc
2

,
−r22d/tz + ty/tz

−r32d/tz + 1
=

f
vc

2
, (9)

r11d/tz + tx/tz

r31d/tz + 1
=

uc
3

vc
3

,
r21d/tz + ty/tz

r31d/tz + 1
=

f
vc

3
.

For ease of expression, we make the following definitions:

uc
i = mivc

i , f = nivc
i , i = 1, 2, 3, (10)

a1 = tx/tz, a2=ty/tz, a3 = r11/tz, a4 = r21/tz,

a5 = r31/tz, a6 = r12/tz, a7 = r22/tz, a8 = r32/tz.
(11)

Substituting (10) and (11) into (9) gives

−da3 + a1

−da5 + 1
= m1,

−da4 + a2

−da5 + 1
= n1,

−da6 + a1

−da8 + 1
= m2,

−da7 + a2

−da8 + 1
= n2, (12)

da3 + a1

da5 + 1
= m3,

da4 + a2

da5 + 1
= n3.
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In (12), only ai(i = 1, 2, ..., 8) are unknown quantities, which can be simplified as

a1 = M2d2a5 + M1, a2 = N2d2a5 + N1,

a3 = M1a5 + M2, a4 = N1a5 + N2,

a6 = m2a8 −M2da5 + M3, a7 = n2a8 − N2da5 + N3,

(13)

where
M1 =

m1 + m3

2
, N1 =

n1 + n3

2
,

M2 =
m1 −m3

2d
, N2 =

n1 − n3

2d
, (14)

M3 =
2m2 −m1 −m3

2d
, N3 =

2n2 − n1 − n3

2d
.

By the nature of the rotation matrix, we have

r11r12 + r21r22 + r31r32 = 0, (15)

r11
2 + r21

2 + r31
2 = r12

2 + r22
2 + r32

2 = 1. (16)

Divide both sides of (15) and (16) by t2
z , and substitute (11) and (13) into, and we

can obtain
p1a5

2 + p2a5a8 + p3a5 + p4a8 + p5 = 0, (17)

q1a8
2 + q2a5

2 + q3a5a8 + q4a8 + q5a5 + q6 = 0. (18)

where
p1 = −d(M1M2 + N1N2),

p2 = m2M1 + n2N1 + 1,

p3 = M1M3 + N1N3 − d(M2
2 + N2

2),

p4 = m2M2 + n2N2,

p5 = M2M3 + N2N3,

(19)

q1 = m2
2 + n2

2 + 1,

q2 = d2(M2
2 + N2

2)−M1
2 − N1

2 − 1,

q3 = −2d(m2M2 + n2N2),

q4 = 2m2M3 + n2N3,

q5 = −2d(M2M3 + N2N3)− 2(M1M2 + N1N2),

q6 = M3
2 + N3

2 −M2
2 − N2

2.

(20)

From (17) we can also obtain

a8 = − p1a5
2 + p3a5 + p5

p2a5 + p4
. (21)

By substituting (21) into (18) and simplifying it, we can obtain

s1a5
4 + s2a5

3 + s3a5
2 + s4a5 + s5 = 0, (22)



Drones 2023, 7, 612 11 of 27

where

s1 = p2
1q1 + p2

2q2 − p1 p2q3,

s2 = 2p1 p3q1 + 2p2 p4q2 − p1 p4q3 − p2 p3q3 − p1 p2q4 + p2
2q5,

s3 = p2
3q1 + 2p1 p5q1 + p2

4q2 − p3 p4q3 − p2 p5q3 − p1 p4q4 + p2
2q6 − p2 p3q4 + 2p2 p4q5,

s4 = 2p3 p5q1 − p4 p5q3 − p3 p4q4 − p2 p5q4 + p2
4q5 + p2 p4q6,

s5 = p2
5q1 − p4 p5q4 + p2

4q6.

(23)

Using the formula for the roots of an unary quartic equation, we can quickly obtain
the value of a5 by (22). The filtering of multiple solutions is described in the next subsection.
The remaining value of ai can then be solved for by (13) and (21).

From (11) and (16), we can obtain the value of tz by

tz =
1√

a32 + a4
2 + a52

, (24)

and solve for the values of tx and ty from (11). Here, we use the non-negativity of ty to
exclude the wrong solution of (24) and obtain the translation vector tm

c . Since rotation
matrices are special orthogonal matrices, Rm

c also satisfies

rij = Aij, i, j = 1, 2, 3, (25)

where Aij stands for the algebraic cosine formula of rij. So, the rotation matrix Rm
c can

be solved from (11) and (25). Due to the accuracy limitations of the actual calculations,
Schmidt orthogonalization of Rm

c is also required.

4.3. Conversion of Coordinate Systems

The relative localization model of the two UAVs is shown in Figure 4. Multiple
coordinate systems are established with Ob, Oc, and Om as the origin, respectively. The
definitions of Oc and Om are given in the previous section, and Ob is determined in the same
way as Om. Obixbiybizbi, Ocixciycizci, and Ouixuiyuizui are three inertial coordinate systems,
so each of their axes corresponds to parallel, respectively. Ocxcyczc and Omxmymzm are
defined in the previous section. Obxbybzb and Ouxuyuzu are the fuselage coordinate systems
of the two UAVs, where the xb(xu)-axis points directly to the right of the fuselage, the yb(yu)-
axis points directly in front, and the zb(zu)-axis is perpendicular to Obxbyb(Ouxuyu) and
points above the fuselage. The difference between Ouxuyuzu and Omxmymzm is that unlike
Omxmymzm, which is set up to simplify calculations, Ouxuyuzu is a common coordinate
system used when expressing UAV attitude. Due to the symmetry of the quadcopter UAV,
we start by assuming that the positive direction of the yu-axis is always in the first quadrant
of the Omxmym.

Obi (Ob)
ψc

φc

θc

ψb

φb

θbxbi

ybi

zbi

xb

yb

zb

zc

xc

yc

xu

yu

zu(zm )

ψu

φu

θu

Oci

(Oc)xci

yci

zci

Oui (Ou) (Om)

xui
yui

zui

xm

ym

Figure 4. The coordinate system of interest for relative localization of the UAV.
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Obviously, the relative position of the positioned UAV can be expressed as tu
bi = ObiOu.

Due to the same orientation of the inertial coordinate systems, the attitude of the positioned
UAV can be expressed as the rotation matrix Ru

bi of Ouxuyuzu with respect to Obxbybzb.
Ru

bi and tu
bi can be considered as the result of a series of coordinate system transforma-

tions and the flexible kinematic properties of UAVs and gimbals increase the difficulty of
solving them.

The solution scheme for Rm
c and tm

c is given in the previous section. The attitude
rotation matrices of the localization UAV and gimbal can be obtained based on their Euler
angles acquired in real time. The Euler angle consists of roll angle ϕ, pitch angle θ, and yaw
angle ψ, and the order of rotation is, based on an inertial coordinate system, first ψ degrees
around the z-axis, then θ degrees around the transformed x-axis, and finally ϕ degrees
around the transformed y-axis. The conversion formulas for Euler angles to the rotation
matrix R in the right-handed coordinate system are

Rx(θ) =

 1 0 0
0 cos θ − sin θ
0 sin θ cos θ

,

Ry(ϕ) =

 cos ϕ 0 sin ϕ
0 1 0

− sin ϕ 0 cos ϕ

,

Rz(ψ) =

 cos ψ − sin ψ 0
sin ψ cos ψ 0

0 0 1

,

(26)

and
R = Rz(ψ) · Rx(θ) · Ry(ϕ). (27)

The attitude rotation matrices Rb
bi and Rc

ci can be obtained by substituting the Euler angles
ϕb, θb, ψb and ϕc, θc, ψc of the localization UAV and the gimbal into (26) and (27), respectively.

Based on the above known information, we give the solution scheme for Ru
bi and tu

bi.
Since the isotropy of inertial coordinate systems it follows that

Ru
bi = Ru

ci. (28)

where Ru
ci denotes the rotation matrix of the positioned UAV relative to the camera inertial

coordinate system. By the transitivity of the rotation matrix, Ru
ci can be expressed as

Ru
ci = Rc

ci · Rm
c · Ru

m, (29)

where, according to the direction in which the coordinate system is set up, it is easy to
know that

Ru
m = Rz(−

π

4
). (30)

By the additive property of vectors, tu
bi can be expressed as

tu
bi = tci

bi + tu
ci, (31)

where tci
bi can be obtained from

tci
bi = Rb

bi · t0, (32)

where t0 represents the initial value of tci
bi when ϕb, θb, ψb=0, which can be easily obtained

by measurement. And we can obtain tu
ci by

tu
ci = Rc

ci · tm
c . (33)
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In summary, the relative position and attitude of the positioned UAV are finally given as

tu
bi = Rb

bi · t0 + Rc
ci · tm

c ,

Ru
bi = Rc

ci · Rm
c · Ru

m.
(34)

4.4. Determination of Correct Solution

Theoretically, the quartic equation of one unknown of (22) has at most four different
real roots. However, according to the conclusions of [47], in the P3P problem, the equation
can be considered to have only two sets of real solutions, i.e., two sets of three-dimensional
spatial points can be derived from one set of two-dimensional projected points. We verified
this conclusion in simulation experiments, and the simulation model is shown in Section 5.

The two sets of solutions correspond to two sets of UAV positions and attitudes, as
shown in Figure 5. {M′i}(i = 1, 2, 3, 4) represents another set of erroneous motor positions
derived from the projected points {Pi}, and O′m is the erroneous position of the UAV.
The degree of inclination of the UAV body corresponding to the two sets of solutions
can be represented by the angle ∠zuOmzui and angle ∠z′uO′mz′ui, which are set as βu and
β′u, respectively.

Oc

P1

P2

P3

M2

M3

M1

M1'

M3 '

M2 '

M4

M4 '

Om
Om'

zu
zui

zui'

zu '

βu

βu'

Figure 5. The position and attitude of the UAV corresponding to the two sets of solutions.

βu is a result of the roll and pitch that occurs in the UAV, so the value of βu should be
within a limited range during normal flight. According to the vector angle formula, we
can obtain

cos βu =
w3 · zci

‖w3‖‖zci‖
, (35)

where w3 denotes the third row of Ru
bi, which also represents the unit vector of the zu-axis

in the inertial coordinate system. Let w3 = [w31, w32, w33] and zbi = [0, 0, 1]; βu can be
obtained from

βu = arccos w33. (36)

From (26) and (27), we have w33 = cos ϕu cos θu. The roll and pitch angles of UAVs are
usually finite, denoted as θu ∈ [ϕmin

u , ϕmax
u ] and θu ∈ [θmin

u , θmax
u ]. And, due to the symmetry

of quadrotor UAVs, usually ϕmax
u = θmax

u = −ϕmin
u = −θmin

u . Then, the range of βu can be
expressed as

βu ∈ [ 0, cos2 ϕmax
u ]. (37)

We therefore set the maximum value of pitch and roll angles uniformly to αmax
u .

Since it is difficult to obtain the range of β′u by mathematical derivation, we each
obtained the approximate distribution of β′u at ϕmax

u = θmax
u = π/6 and ϕmax

u = θmax
u = π/4

based on 10,000 simulation experiments, respectively, as shown in Figure 6.
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(a) ϕmax
u = θmax

u = π/6 (b) ϕmax
u = θmax

u = π/4

Figure 6. Distribution of UAV body tilt angles corresponding to the two sets of solutions.

It can be seen that the vast majority of the values of β′u are greater than βmax
u , the

maximum value of βu, compared to the values of βu that are strictly in the range shown
in (37). In the two sets of experiments, the values of β′u greater than βmax

u are approximately
99.8% and 98.8%, respectively. Therefore, in the vast majority of cases, the correct solution
can be identified based on the value of βmax

u . Subject to errors in the projection points of
motors, the value of βmax

u tends to be slightly larger than cos2 ϕmax
u . Approximate values of

βmax
u can be obtained based on a large number of simulation experiments.

When β′u is also smaller than βmax
u , partially incorrect solutions can be further detected

based on whether θu and ϕu corresponding to each set of solutions are simultaneously
smaller than ϕmax

u and θmax
u , respectively. We set the maximum value of pitch and roll

angles uniformly to αmax
u . Similar to βmax

u , the actual values obtained for αmax
u are slightly

larger than ϕmax
u and θmax

u , and their approximations can be obtained through extensive
randomized experiments.

For the mis-solutions that remain unfiltered, we find that their average error is much
smaller than the measured distance and much lower than the average error of the full set
of mis-solutions. When ϕmax

u = θmax
u = π/6 and ϕmax

u = θmax
u = π/4, simulation results

show that the average errors of these incorrect solutions are only about 0.05%
∥∥tu

bi

∥∥ and
0.63%

∥∥tu
bi

∥∥, which are about 1/30 and 2/5 of the overall average error, respectively. We
therefore take the average of these group solution pairs as the result.

In summary, the algorithm for determining the correct solution is shown in Algorithm 2:

4.5. Four Motors Detected

When all four motors are detected, positioning accuracy can be further improved. We
divide the four projection points of motors into groups of three each in the order specified
in Section 3.2. By substituting each of the four sets of projection points into the above
solution scheme, four sets of localization results can be obtained. We set ti to denote the
relative position obtained based on the three points other than point Pi.

The keypoint detection module gives the detection confidence for each motor, set to
c1:4. The weight Wi of ti can be obtained based on ci by

Wi =

(
4
∑

j=1
cj)− ci

3
4
∑

j=1
cj

. (38)
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Then tu
bi can be given by

tu
bi =

4

∑
i=1

Witi. (39)

Algorithm 2 Determining the correct solution

Require: T = {tu
bi1, tu

bi2}, B = {βu1, βu2}, A = {{θu1, ϕu1}, {θu2, ϕu2}}
Ensure: tu

bi
1: if min(B) < βmax

u and max(B) > βmax
u then

2: idx = min(B)’s index of B
3: else if max(abs(A1)) < αmax

u and max(abs(A2)) > αmax
u then

4: idx = 1
5: else if max(abs(A1)) > αmax

u and max(abs(A2)) < αmax
u then

6: idx = 2
7: else if max(abs(A1)) < αmax

u and max(abs(A2)) < αmax
u then

8: idx = 0
9: end if

10: if idx = 0 then
11: tu

bi =
tu

bi1+tu
bi2

2
12: else
13: tu

bi = Tidx

14: end if

4.6. Two Motors Detected

Since the case where only two motors are detected rarely occurs, we give a transitional
estimation scheme. The problem model at this point is shown in Figure 7.

Oc

zc

xc

yc

Om

xm

ym

zm

P1

M2

Op

u
v

M1

P2

Image Plane

P0

N1

α0

M0

N2

Figure 7. Schematic diagram when two motors are detected.

Taking into account the occlusion, we approximate that Oc is coplanar with {M1:4}
and that ‖Oc M1‖ = ‖Oc M2‖. So, OcOm intersects M1M2 at the midpoint of M1M2 and the
intersection is set to M0. The projection point of Om on the image plane is set to P0 and α0
represents the vector OcP0. Then, the displacement vector tm

c can be expressed as

tm
c =

‖Oc M0‖+ ‖Om M0‖
‖α0‖

α0, (40)

where ‖Om M0‖ is known to be
√

2
2 d.
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Make a parallel line of M1M2 through P0, intersecting Oc M1 and Oc M2 at N1 and N2,
respectively. From the properties of similar triangles we have

‖α0‖
‖Oc M0‖

=
‖N1N2‖
‖M1M2‖

, (41)

where it is easy to see that ‖M1M2‖ =
√

2d. Since P1 and P2 are known, the angles of
∠P1OcP2, ∠OcP1P2, and ∠OcP2P1 can be obtained based on the vector pinch equations,
which are set to η1, η2 and η3, respectively. Here, it is specified that η2 < π/2 < η3. By the
sine theorem, it can be obtained that

‖P0N1‖
sin η2

=
‖P0P1‖

sin(π
2 + η1

2 )
,

‖P0N2‖
sin(π − η3)

=
‖P0P2‖

sin(π
2 −

η1
2 )

.
(42)

It is also known that
‖P0N1‖ = ‖P0N2‖, (43)

and
‖P0P1‖+ ‖P0P2‖ = ‖P1P2‖. (44)

From (42)–(44), we can obtain

‖N1N2‖ = 2‖P1P2‖
sin η2 sin(π − η3)

sin(π
2 + η1

2 ) sin(π − η3) + sin η2 sin(π
2 −

η1
2 )

, (45)

and

‖α0‖ =
1
2‖N1N2‖

tan η1
2

. (46)

Then, we can obtain ‖Oc M0‖ first by (41) and then tm
c by (40). Finally, after the

coordinate transformation of Section 4.3, tu
bi can be obtained.

5. Experimental Results and Analysis

Our experiment is divided into three parts. First, we obtained a self-training model of
YOLOv8 by training based on the captured images and tested its effectiveness in detecting
experimental UAVs and their motors. In the second part, we constructed the high-fidelity
airborne gimbal camera model and localized UAV model based on the actual parameters,
and examined the performance of the relative localization algorithm in various situations.
Finally, we conducted system experiments based on two UAVs to verify the feasibility of
our overall scheme using GPS-based relative localization data as a reference.

5.1. Experiment Platform

The hardware composition and operational architecture of the UAV experimental
platform used to validate the proposed scheme is shown in Figure 8. We conduct secondary
development and experiments based on two Prometheus 450 (P450) UAVs producted by
Amovlab, Chengdu, China [48]. Each UAV is equipped with NVIDIA’s Edge AI super-
computer Jeston Xavier NX and a Pixhawk 4 flight controller. The Jeston Xavier NX has a
hexa-core NVIDIA Carmel ARM CPU, 6GB of LPDDR4x RAM and a GPU with 21TOPS of
AI inference performance, which is capable of meeting the arithmetic requirements under
Ubuntu 18.04. The Pixhawk 4 flight controller is the control hub of the UAV. We retrofitted
the UAV with amovlab’s G1 gimbal camera to stream real-time images to the Jeston Xavier
NX. The edge computer also obtains attitude data from the gimbal and flight controller
through their ROS topics published in real time via the serial port. Based on the above
data, the UAV achieves real-time detection and relative localization for other UAVs within
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its visual perception range on the Jeston Xavier NX. All experimental data were obtained
based on this platform system. Key parameters of the UAV: d = 21 cm, t0 = [0, 13,−6] cm.

5.2. Detection Performance Experiment

We labeled 1250 collected images of experimental UAVs and used them as a dataset
to obtain a self-training model by training. We conducted UAV-to-UAV target detection
experiments at distances ranging from 2 to 12 m. The experimental results show that the
YOLOv8-pose target detection module based on the self-trained model is able to stably
detect the target UAV and its visible motors. The motor’s image plane positioning point
can basically remain within the range of the motor’s projected image. Screenshots of the
detection results are shown in Figure 9, where the motors are marked by blue dots. The
average detection time of the on-board target detection module for each image frame is
about 43.5 ms.

Flight Controller
Edge AI 

Supercomputer
Gimbal Camera

Detecting UAVs 
and Motors

Solving the
P3P Problem 

Generating Position 
and Attitude

Streaming 

Image

Attitude of 

the Gimbal
Attitude of 

the Fuselage

Two UAVs of the same type

Figure 8. The hardware composition and operational architecture of the UAV experimental platform.

Figure 9. Detection effects of the UAV and its motors.

In summary, we verified the feasibility of realizing real-time detection of UAVs and
their motors with an airborne camera based on YOLOv8.

5.3. Relative Localization Simulation Experiment

We tested the speed and accuracy of the proposed algorithm based on a self-built
simulation model and compared it with three mainstream algorithms, which are Gao’s,
iterative method (IM) and AP3P. In order to increase the fidelity, all of our simulation
experiments were performed on the edge computer of the P450 UAV.
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5.3.1. Simulation Model

We constructed a virtual camera model based on the parameters of the G1 gimbal
camera with an intrinsic matrix K of

K =

 640 0 640
0 640 360
0 0 1

. (47)

Based on the camera calibration work that has been performed, we assume that the
camera’s distortion is zero. The pitch angle of the gimbal θc ∈ [−π/3, π/3]. The camera is
capable of detecting drones from 2 to 12 m away from itself, which means that D ∈ [2, 12] m,
where D = ‖ttrue‖.

In order to describe the situation where the motor is obscured, we designed a UAV
model based on the P450, as shown in Figure 10. In the aforementioned Omxmymzm
coordinate system, the body of the fuselage is represented by a sphere with O f as the center
and radius R = 10 cm, and the motors are represented by spheres with M1:4 as the center
and radius r = 2 cm. The coordinate of O f is [ 0, 0,−5] cm.

M1

M2

M3

M4

Of

Figure 10. Simplification of the UAV.

The attitude of the UAV is determined by randomly generated Euler angles and Euler
angles ϕb, θb, ψb ∈ [−π/4, π/4]. The coordinates of O f and M1:4 in the Oxyz coordinate
system can be obtained based on the Euler angles. Then, based on the projection relation,
the projection points Pf and P1:4 of O f and M1:4 on the image plane, and the radius Rp and
rp1:p4 of the projection circles of the fuselage and motors can be obtained.

According to the masking relation, the decision condition that three motors can be
detected is expressed as ∥∥Pf P4

∥∥ < Rp, (48)

and the decision condition for detecting only two motors is

‖P1P4‖ < rp1 ∧ ‖P2P3‖ < rp2. (49)

To simulate the error in motor detection, we add white noise obeying a two-dimensional
Gaussian distribution to the image plane projection point {Pi(ui, vi)} (i = 1, 2, 3, 4) of mo-
tors, i.e., the actual projection point P′i (u

′
i, v′i) is denoted as

(u′i, v′i) ∼ N(ui, vi, σ2
i1, σ2

i2, 0), (50)

where
σi1 = σi2 = σ

f
yi

. (51)

σ is the standard deviation in centimeters of the 3D spatial point corresponding to the
motor’s localization point on the image plane and the position of the motor’s true point.
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f represents the focal length and yi denotes the coordinates of the motor Mi in the y-axis
under the camera coordinate system, in meters.

We designed three values of σ, which are 0.5 cm, 1.0 cm, and 1.5 cm, based on the
actual radius of the P450, which is 2 cm for the motor. The three values from small to large
correspond to high to low accuracy and can be described as the localization point basically
on the motor center, basically on the motor, and partially on the motor, respectively.

5.3.2. Execution Speed

The time taken to solve the P3P problem is the main factor affecting the speed of
the relative localization algorithm. We performed execution time tests of the proposed
algorithm as well as other classical algorithms at the same performance state of the edge
computer. Each algorithm was run for 10,000 rounds. The distribution of single execution
time is shown in Figure 11, and the average time taken is shown in Table 2.

Figure 11. Distribution of single execution time for four algorithms.

Table 2. Average single execution time for the four algorithms.

Algorithms Time [ms] Proportionality

Ours 0.534 1
Gao’s 1.845 3.46

IM 2.614 4.90
AP3P 0.722 1.35

It can be seen that our algorithm executes approximately 3.5 times faster than Gao’s,
5 times faster than IM, and 35% faster than AP3P. Experimental results show that our
proposed algorithm executes significantly faster than Gao’s and IM. Compared to AP3P,
we have a smaller but more consistent speed advantage. This is largely due to the fact
that we have taken full advantage of the geometric characteristics of UAVs for targeted
problem modeling. Our algorithm takes relative position as the unique objective and
solves for it directly instead of obtaining it indirectly, reducing the accumulation and
amplification of errors. Based on the results of the previous mathematical derivation, we
only need to carry out simple algebraic calculations in the actual solution, which avoids
the solution of the angle and the operation of the matrix and significantly reduces the
computational complexity.
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5.3.3. Computational Accuracy

In order to measure the accuracy of the relative localization and the correct choice of
the solution, we denote the relative localization error as

et = ‖test − ttrue‖. (52)

Following the approach of Section 4.4, we obtain reasonable values of βmax
u and αmax

u
for three levels of detection accuracies with a sufficient number of randomized simulation
experiments with known correct solutions. The values taken are shown in Table 3.

Table 3. Values of βmax
u and αmax

u for different detection accuracies.

σ [cm] βmax
u αmax

u

0.5 70◦ 52◦

1.0 75◦ 58◦

1.5 80◦ 62◦

We randomly generated 10,000 sets of UAV position and attitude data in the simulation
scenario. According to our occlusion model determination, there are 7871 sets of data where
all four motors are detected, 2114 sets of data where three motors are detected, and 15 sets
of data where only two motors are detected. This suggests that it is common for all four
motors not to be detected. And given the simplified nature of the model and the fact that
UAV swarms are often at similar altitudes during actual flight, the probability of detecting
less than four motors should be greater. This supports the need for the study.

We first tested the overall accuracy of the proposed algorithm based on the simulation
data and the experimental results are shown in Figure 12, and the vertical coordinate
indicates the value of the kernel density estimate.

Figure 12. Error distributions of our algorithm under three levels of noise corresponding to σ = 0.5,
1.0 and 1.5, respectively.

The average localization errors at the three levels of noise are 1.53% D, 2.39% D,
and 3.01% D, respectively, and are marked with vertical dashed lines in the figure (the
same below). The data show that the localization accuracy of our algorithm has generally
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stabilized at a high level, and continues to provide less error-prone and stable localization
data in the presence of increased noise. To further study the performance of the proposed
algorithm, we analyze the specific performance of the algorithm when different numbers
of motors are detected.

We solved the 7871 sets of data detected for the four motors by applying Gao’s, IM,
and AP3P methods, respectively, and compared them with the results of our algorithm.
The error distribution of the four algorithms under different levels of noise is shown in
Figure 13, and the corresponding average errors are shown in Table 4.

It is clear that the accuracy of IM and AP3P is significantly reduced when noise is
present. The large error indicates that these two methods are not applicable to the solution
of our research problem. The proposed algorithm is slightly more accurate than Gao’s.
We speculate that this advantage may stem from our weighting of the data based on the
detection confidence of each motor. We speculate that this advantage may be the result of
our multi-resolution solution as well as the regrouping weighting process. Therefore, we
replaced our proposed post-processing scheme for the P3P solution with the reprojection
method used by Gao and compared the experimental results with the results of our and
Gao’s schemes. The results of this experiment are shown in Figure 14.

(a) σ = 0.5 (b) σ = 1.0 (c) σ = 1.5

Figure 13. Error distributions of the four algorithms for the three noise levels corresponding to
σ = 0.5, 1.0 and 1.5.

Table 4. Localization errors of four algorithms with different detection accuracies.

σ [cm] Ours Gao’s IM AP3P

0.5 0.015 0.019 0.242 0.239
1.0 0.024 0.029 0.251 0.239
1.5 0.030 0.036 0.252 0.240

(a) σ = 0.5 (b) σ = 1.0 (c) σ = 1.5

Figure 14. Error distributions of our original, adjusted, and Gao’s algorithm for three levels of noise
corresponding to σ = 0.5, 1.0, and 1.5.
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It can be seen that the accuracy of our algorithm is very close to that of Gao’s after
using the reprojection method instead of our post-processing scheme. This verifies the
effectiveness of our post-processing scheme for accuracy improvement. By comparing
the data in detail, we found that our post-processing algorithms are able to keenly detect
outliers with large deviations and eliminate them or reduce their impact. Thus, our post-
processing algorithm improves the robustness of the solution. However, our regrouping-
weighted processing approach increases the computational cost, so we can choose to discard
this part of the scheme when the arithmetic power is limited.

Due to the lack of other algorithms for obtaining the correct displacement based on
the three key points, we can only compare the localization accuracy when three motors are
detected with that when four motors are detected. Additional experiments were conducted,
resulting in 7871 sets of localization data based on three motor points at each of the three
levels of detection accuracy. The localization errors are shown in Figure 15.

As can be seen from the figure, our algorithm maintains a similar localization accuracy
when only three motors are detected as when four motors are detected, specifically 1.68% D,
2.58% D, and 3.19% D. Localization errors still come mainly from detection errors. This
shows that the performance of our pose-based multi-resolution determination scheme is
robust. In the absence of a fourth motor point as a reprojection point, our method can
effectively replace the reprojection method to obtain a stable and accurate solution.

We also tested the performance of the transitional solution when only two motors
were detected. We obtained the results of 1,000 sets of experiments through a much larger
number of randomized experiments, as shown in Figure 16.

(a) σ = 0.5 (b) σ = 1.0 (c) σ = 1.5

Figure 15. Error distribution of our algorithm when only two motors are detected.

Figure 16. The localization error of our algorithm when two motors are detected.
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It can be seen that the average error of our localization scheme when detecting
two motors is controlled within 10% D, specifically 6.58% D, 7.33% D, and 8.10% D,
respectively. Although some of the errors are large, given the small probability of the event
occurring, we believe that its performance is acceptable as a transitional solution for special
cases. In the process of processing data from consecutive frames, it is possible to combine
the data from previous frames when more than two motors were detected and reduce the
error by methods such as Kalman filtering.

5.3.4. System Experiment

Based on the demonstration of simulation experiments, we conducted real system
experiments based on two P450 UAVs in a real environment. Due to the temporary lack of
other more accurate means of localization, we generate the true relative position coordi-
nates of the two UAVs based on GPS positioning data in an unobstructed environment. To
minimize the increase in error due to other factors, we controlled the UAV used for local-
ization to remain hovering in the air, and the localized UAV flew within the field of view
of the camera for one minute, as shown in Figure 17. The real-time true relative position
during the flight and the estimated relative position based on the proposed algorithm are
shown in Figure 18, and Figure 19 illustrates the corresponding error distribution.

Figure 17. Real experimental scene diagram.

As shown in the figures, our scheme is generally able to achieve real-time vision-based
relative localization between UAVs. The average relative error of the real experiment
is 4.14%, which is slightly larger than the maximum average error of the simulation
experiment. The error in the y-axis direction is significantly larger than that in the x-axis and
z-axis directions, which is in line with the principle of our scheme. More outliers with larger
deviations appear in the estimation results. By analyzing the data, we determined that this
was the result of larger errors in the image plane coordinates of the motors. In addition,
ttrue itself, which is generated based on GPS and barometric altimeter data, actually has
some error.
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(a) True and estimated values in the x-axis direction

(b) True and estimated values in the y-axis direction

(c) True and estimated values in the z-axis direction

Figure 18. Comparison of true and estimated values of relative positions.

Figure 19. Error distribution in real experiments.
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6. Conclusions

In order to realize real-time accurate relative localization within UAV swarms, we
investigate a visual relative localization scheme based on onboard monocular sensing
information. The conclusions of the study are as follows:

• Our study validates the feasibility of accurately detecting UAV motors in real time
using the YOLOv8-pose attitude detection algorithm.

• Our PnP solution algorithm derived based on the geometric features of the UAV
proved to be faster and more stable.

• Through the validation of a large number of stochastic experiments, we propose for
the first time a fast scheme based on the rationality of UAV attitude to deal with the
PnP multi-solution problem, which ensures the stability of the scheme when the visual
information is incomplete.

Our scheme improves speed and accuracy while reducing data requirements, and the
performance is verified in experiments.

However, there are limitations to our study. First, limited by the detection performance
of the detection module for small targets, our relative localization can currently only be
achieved at a distance of less than 12 m. Of course, with the improvement in the detection
performance, the action distance will be larger. Second, our currently generated position
data has not been filtered. So based on the experimental conclusions, our next research
direction is to improve the detection performance of the detection module for the motors
as small targets at long distances, and the second is to improve the overall stability of the
estimation value under the time series through the filtering algorithm.
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