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Abstract: Micro-unmanned aerial vehicles (UAVs), also known as drones, have been recognized as an
emerging technology offering a plethora of applications touching various aspects of our lives, such as
surveillance, agriculture, entertainment, and intelligent transportation systems (ITS). Furthermore,
due to their low cost and ability to be fitted with transmitters, cameras, and other on-board sensors,
UAVs can be seen as potential flying Internet-of-things (IoT) devices interconnecting with their
environment and allowing for more mobile flexibility in the network. This paper overviews the
beneficial applications that UAVs can offer to smart cities, and particularly to ITS, while highlighting
the main challenges that can be encountered. Afterward, it proposes several potential solutions to
organize the operation of UAV swarms, while addressing one of their main issues: their battery-
limited capacity. Finally, open research areas that should be undertaken to strengthen the case for
UAVs to become part of the smart infrastructure for futuristic cities are discussed.

Keywords: unmanned aerial vehicles; internet of things; autonomy; smart city; intelligent transporta-
tion systems

1. Introduction

The proliferation of internet and communication technologies is driving significant
social and economic changes, fostering the transition of smart cities into the future. As the
number of mobile devices and embedded computers grow, and as they contribute to even
faster-growing data sets, new technologies are emerging to the forefront of extending
wireless network connectivity through fifth-generation (5G) cellular broadband networks
and the Internet of things (IoT) [1]. Aerial and spectrum regulations have evolved to accom-
modate multirotor unmanned aerial vehicles (UAVs) for commercial and private use. As a
result, UAVs will indeed become critical enablers of many emerging applications touch-
ing various aspects of our lives, including but not limited to: pollution monitoring [2,3],
relaying data transmissions [4], acting as network access points [5], surveillance [6–8], good
delivery [9,10], search and rescue [11], archeology and architecture [12], and intelligent
transportation systems (ITS) [13]. UAVs can also play a key role in many applications in
rural areas with limited access to the connected ground infrastructure. In fact, UAVs can be
employed in smart farming to monitor crops and map the field [14]. They can also be used
as remote sensors to detect and classify trees [15].

In smart cities, the main goal of ITS is to mitigate and improve traffic-related issues
and challenges, such as traffic congestion, user mobility, and safety. Moreover, ITS imple-
mentation’s benefits include saving the city’s energy and enhancing the sustainability level.
Therefore, ITS require the collaboration of different stakeholders and the deployment of
multiple technologies to bring optimal benefits for smart cities. Moreover, they necessitate
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the effective exploitation of the available data shared across the city by a variety of road
users and sensors. This includes the interactions among vehicles (vehicle-to-vehicle or V2V),
with the road infrastructure (vehicle-to-infrastructure, V2I), and with other users/devices
(vehicle-to-anything, V2X). Thus, the data and information exchanged across the infras-
tructure of ITS can play an essential function in providing reliable information for better
decision-making and enhanced operation [16].

UAVs can play many essential roles that can contribute to enhancing the mobility and
transportation services in smart cities. In fact, the array of mounted equipment, e.g., on-
board sensors, cameras, and communication interfaces, that UAVs can support would
allow them to be an instrumental player in ITS, performing a long-term collection of data or
real-time monitoring of the traffic network while connected to the network at large. UAVs
hold many significant advantages over more conventional ground and mobile vehicles.
Their flying capabilities give UAVs free mobility in the three spatial dimensions while
providing portable connectivity that fixed-ground infrastructure cannot match. The flight
capability of UAVs also allows for airborne networks to operate. By operating well above
the ground level, UAVs can have more reliable communication links with other devices on
the ground, leading to more direct connections with higher line-of-sight probability less
hampered by interference [17].

Furthermore, groups of UAVs can collectively provide additional connectivity, adjust-
ing to demand fluctuations and system disruptions. They can reorganize themselves on
the fly, forming a dynamic Internet of drones (IoD) network [18]. The coordinated mobility
of the UAVs in the swarm that allows a flexible network topology gives infrastructure
operators additional oversight and control to improve the quality of experience of their
ITS applications [19]. However, this flexibility demands some work in the organization
of the airspace [20]. Indeed, efficient UAV management is required to ensure the effective
completion of the different assigned missions. Moreover, it is necessary to take into account
the limited capabilities of UAVs in accomplishing long-duration missions due to energy
limitations from being powered by batteries. Consequently, UAVs must interrupt their
operations to replenish their batteries [21]. Therefore, managing large-scale UAV fleets
must consider these limitations while keeping the primary application objectives in mind.

The culmination of this work has led to the exploration of a UAV-dominated infras-
tructure of ITS and its potential applications in smart cities. Moving forward, this paper
overviews work related to managing and planning for UAVs in ITS to highlight their
viability in these systems while also recognizing relevant challenges. Afterward, it presents
selected contributions to mitigate some of the most severe challenges, e.g., energy limitation,
to maximize the effectiveness of UAVs in the prior-mentioned applications. Furthermore,
this paper presents future research directions that would widen the pool of UAV-based
applications as well as improve the reliability of these flying IoT devices in future ITS and
smart city systems.

2. UAV Applications for Smart Cities and ITS

In this section, selected applications from the literature to highlight the niche benefit
of UAVs in ITS are investigated. We conclude with a list of challenges for future UAV
applications pertaining to smart cities. Figure 1 illustrates a few examples of the applications
of UAV-based ITS. Examples include communication applications such as delivery, traffic
monitoring, surveillance, and media and entertainment, each requiring different quality
of service and delay tolerance levels. The applications are categorized based on two main
factors: delay tolerance and bandwidth demand. Different challenges can be encountered
for each of these applications according to their objectives and constraints.
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Figure 1. Highlighting diverse UAV applications for smart cities. An increase on the x-axis indicates
higher-bandwidth applications, and an increase in the y-axis represents a higher delay tolerance.
The size of the circles reflects the size of the UAV swarm needed to provide robust service.

Several smart city applications require near-zero latency to ensure reliable and smooth
operation. For instance, when a flying RSU is made available to report the traffic situation
in a certain area, it is mandatory to relay the collected data to the ITS’s control system
in real time [13]. Another interesting example would be the security and surveillance
applications in public spaces where UAVs fitted with cameras can act as literal “eyes in the
sky” allowing for the monitoring of suspicious actors. Such applications require continuous
transmission of high-resolution videos over the network. For this reason, UAVs will need
effective wireless technologies and data-routing strategies to stream their data toward
the central command systems [6]. In addition to the technology, it is worth optimizing
the data routes taken by UAVs in order to develop an architecture that minimizes latency
across transmissions through the UAV swarm network [5]. Utilizing UAVs to form a flying
ad hoc network (FANET) to transfer data [22] allows for a better control of the transmission
channel. A significant disadvantage of utilizing a FANET is the extensive scheduling,
control, and communication framework to ensure reliable operation. UAVs must be able to
position themselves within each other’s transmission ranges to form a multihop network.
Consequently, advanced routing solutions are required while considering the mobility of
UAVs necessary.

Delay-tolerant applications for UAVs do not require the real-time exchange of data.
On the contrary, they tolerate inevitable data transmission and collection delays as long
as these delays do not impact the application’s performance. In that case, the UAVs can
store the data onboard and deliver it to the central sink after a while. For example, we can
cite the applications that primarily revolve around long-term data collection in hard-to-
reach locations, such as pollution monitoring at high altitudes where UAVs are equipped
with low-cost sensors to form a flying mobile wireless sensor network (WSN), capable
of taking air quality readings [2]. In such cases, it is recommended to optimize the data
collection process, which includes, for instance, the UAV trajectories and the clustering of
source nodes. Another application would be the use of UAVs to inspect transportation
infrastructure and identify roads requiring maintenance. In that case, an optimized tour for
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the UAVs needs to be designed while considering its energy limitation and maximizing the
coverage efficiency.

Heavy-bandwidth applications revolve around transmitting more data, such as high-
definition video transmission. A safety-related role of UAVs in ITS is in collision monitoring
and prevention systems [13] that will aid a quick decision-making and provide proper levels
of information to make commutes safer and more efficient. When a collision is detected,
UAVs may be deployed to provide emergency personnel a first look at the severity of an
accident, providing information detailing the magnitude of the accident. This information
allows for a measured response by authorities, allowing them to respond with an optimal
amount of personnel to preserve readiness and reliability for other disturbances that may
arise. UAVs can additionally provide a mode of communication for people in an accident,
especially if they are incapable of accessing their mobile devices and are still conscious.
Beyond accident monitoring systems, UAVs can aerially survey roadways, providing an
avenue to warn approaching vehicles about hazards impeding roadways to provide drivers
additional information to reroute their trip and hence reducing congestion. However, these
systems have one major drawback: multirotor UAVs envisioned for these tasks would be
too small to effectively remove debris from the road in the case of impediments or rescue
collision victims. Hence, they are, for now, only considered in a data-powered support
role. Communication aspects of this application also require large amounts of continuous
bandwidth that may be interfered with in poor weather, which could also be a factor
in accidents.

While UAVs have many practical advantages, there are numerous challenges to over-
come before they are fully viable as instruments of future smart city systems. The main
challenge facing the utilization of UAVs across all applications is managing energy con-
sumption efficiently. UAVs typically run on a limited-charge battery, limiting the effective
range of the UAV’s flight, the range of onboard sensors, and the number of onboard
technologies that may be present. Another potential challenge is spectrum scarcity due
to (1) a massive growth of predicted connected devices and (2) UAV control transmis-
sions interfering with the actual network communications’ traffic [1]. The authors of [23]
proposed a system for partitioning the UAV-to-UAV (U2U) communications from UAV-to-
infrastructure (U2I) or end-user communications, ensuring that the control system does
not adversely reduce the performance of the communication system at large. Manage-
ment issues of the UAVs in transit are an issue: complex systems must be implemented
to coordinate the UAV fleet, plan the UAV trajectory/missions, and ensure collisions are
minimal or nonexistent. The main challenge of energy limitations, as well as the mobility
and coordination challenges, is addressed by multiple studies on solving open-planning
problems for UAV operations management [24–26]. Afterward, a focus on possible new
challenges and potential work to mitigate them are discussed in the perspectives and future
research considerations.

Table 1 examines some of the recent studies that utilize UAVs to solve some challenges
of ITS in smart cities. The main challenges that are tackled can be summarized in the follow-
ing areas: (1) traffic monitoring, (2) personal and goods mobility, (3) information exchange,
(4) network and communication, (5) data processing and computation, and (6) security
and privacy. In addition, this table provides the methods used in these studies to solve the
investigated issues. Through these selected references, we can confirm that the applications
of UAVs for ITS are very broad and varied, with different objectives. Diverse technical
methods and algorithms address ITS-related challenges, including optimization, algorithm
design, game theory, and artificial intelligence.
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Table 1. Recent studies addressing smart cities’ challenges using UAVs for ITS.

Reference Title Application Domain Employed Algorithm

[27]
An UAV-assisted VANET architecture for

intelligent transportation system in
smart cities.

Communication and data exchange Simulation of ad hoc network architecture

[28]
Caching and computation offloading in high

altitude platform station (HAPS) assisted
intelligent transportation systems.

Data processing and edge computing Computation framework for ITS
(high-altitude platform station)

[29]
AoI optimization in the UAV-aided traffic

monitoring network under attack: A
stackelberg game viewpoint.

Traffic monitoring Game theory: Stackelberg game

[30]
Toward Smart Traffic Management With 3D
Placement Optimization in UAV-Assisted

NOMA IIoT Networks.
Traffic management Improved adaptive whale

optimization algorithm

[31]
Joint Channel Allocation and Data Delivery

for UAV-Assisted Cooperative Transportation
Communications in Post-Disaster Networks

Emergency situation Game theory: Stackelberg game

[32]
Stochastic Task Scheduling in UAV-Based

Intelligent On-Demand Meal
Delivery System

Goods delivery Iterated heuristic framework, stochastic
event scheduling

[33] Decentralized multi-agent path finding for
UAV traffic management Traffic management

novel multiagent path finding:
(a) prioritization approach and (b) pairwise

negotiation approach

[34] Throughput Maximization for RIS-UAV
Relaying Communications Data transfer

Formulate nonconvex optimization problem
with three subproblems: (a) passive

beamforming optimization, (b) trajectory
optimization, and (c) power

allocation optimization

[35]
FRCNN-Based Reinforcement Learning for
Real-Time Vehicle Detection, Tracking and

Geolocation from UAS
Surveillance

Adaptive filtering, top-hat and bottom-hat
transformations, Kanade–Lucas–Tomasi

trackers, density-based spatial clustering of
applications with noise (DBSCAN) clustering,
efficient reinforcement connecting algorithm,

and fast regional convolutional neural
network (Fast-RCNN)

3. Potential Solutions to UAV Shortcomings as ITS Infrastructure

This section discusses some potential solutions that contribute to managing the flying
UAV fleet while satisfying the applications’ objectives of ITS and dealing with the different
challenges that can be encountered.

3.1. Charging Station Placement

Due to the limited flying range of UAVs caused by the battery limitation and the
need to return to charging stations to replenish the batteries frequently, in [36], a joint
RSU–UAV charging station planning approach for ITS, where the objective was to find the
best geographical locations for the charging stations that would complement gaps in the
RSU coverage, was proposed. Besides the motivation to fill gaps in the RSU coverage, we
aimed to consider the joint planning of RSUs and UAV base stations in tandem, as this
still needed to be thoroughly explored in the literature. To this end, we combined RSU
planning considerations such as formulating the problem as a constrained combinatorial
maximization problem [37] with regards to the UAV base station planning discussed
in [26,38] and estimating traffic conditions based on the average behavior [39], while
considering how to incorporate financial and energy-efficiency considerations as well.

The placement decisions were based on average road network statistics, which mea-
sure the accident and incident histories in the area of interest’s road segments and inter-
sections. The charging stations had to be located in regions where UAVs can monitor the
most important points of interest. A few conditions were taken into account. (i) The UAV
had to operate within a fixed range from the base station based on relationships defined
in [26]. (ii) We considered the long-run operational characteristics of the UAV based on how
they were scheduled, as a UAV could spend fractions of the time period either charging,
flying to a task, or performing a monitoring task, and the UAVs were scheduled in a way
that avoided the depletion of the battery while in transit or operation. (iii) The UAVs that



Drones 2023, 7, 79 6 of 16

operated from the base station covered a circular subarea of the base station’s coverage area,
thus leading to a long-run coverage probability that could be considered when planning
alongside RSUs. (iv) There were amortized capital costs and recurring operational costs that
could be discounted onto a series of uniform cash flows, allowing for a time-independent
consideration in the trade-offs of costs when considering a budget amortized over the same
set of period increments. (v) The standardization of the cash flows of the costs allowed for
the consideration of how green energy could offset the operational costs of the UAVs and
RSUs. In [36], both an exact method approach based on a novel mixed-integer program-
ming (MIP) problem formulation and a heuristic method were employed to determine
optimized UAV charging station and RSU locations for realistic traffic network maps based
on the aforementioned conditions.

We demonstrate the joint UAV and RSU coverage that was calculated by the MIP-
based technique in peak traffic time in Figure 2. The positioning of UAVs was done so
that the coverage was maximized within the allocated budget. The RSUs and UAV base
stations’ range overlapped because multiple RSUs deactivated to preserve energy during
less active hours. It is also worth noting that optimizing coverage efficiency did not imply
maximizing the number of covered points. Instead, the algorithms prioritized sites of
interest with greater fitness levels, where the fitness was specified as a utility function in
the range [0, 1]. These values would depend on criteria that ITS operators stated to the
system, such as traffic density, accident rate, etc. [36]. The remaining charging stations were
then distributed to places with lower fitness levels or multiple junctions and road segments.
Hence, the points of interest (e.g., intersections) characterized by a high fitness score were
given a higher priority to be covered by a charging station. The fitness was designed to
avoid the redundant placement of charging stations and RSUs to improve the coverage
efficiency of the deployed infrastructure [36].

Figure 2. A part of Hoboken, New Jersey, USA, is shown on the map above, which displays the
coverage by the integrated RSU/UAV infrastructure during peak hours. The light gray highlights
denote the RSU coverage (red inverted triangles), and the dark gray areas convey the UAV base
station coverage (black triangles). All other points’ colors signify their “fitness”, a standardized
utility value, with a value of one being a pivotal point to cover; otherwise, a zero value indicates an
insignificant point.
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Figure 3 depicts the effect the number of candidate locations had on the overall
effectiveness of the joint RSU/UAV coverage using the optimal approach and a heuristic
approach. The exact approach, denoted by opt_CE corresponded to the solution obtained
by solving the optimal MIP, which is, in practice, very complex. Therefore, we designed a
heuristic algorithm to optimize the planning. The heuristic approach had different levels of
increments, denoted by, e.g., 2_CE, 5_CE, and 10_CE in the figure (i.e., dividing the power
budget into several possible values), achieving a trade-off between complexity and coverage
efficiency [36]. The heuristic increments corresponded to how the algorithm incremented
the reduction in the power for a potential unit (charging station or RSU). The larger values
were essentially larger step sizes for reducing power. Hence, 2_CE corresponded to a
decrease of 2% from the maximum per step size (50 total potential settings in power to
the base station) and 50_CE corresponded to 100%, 50%, or not set/installed. The smaller
values had more degrees of freedom when iterating for a solution, at the cost of requiring
more steps to find a solution. Therefore, in terms of coverage efficiency, the algorithm
tended to perform better with small increments. The case of 1_CE corresponded to the
highest complexity level of the algorithm. However, the algorithm failed to achieve the
effective coverage efficiency due to the fact that the maximum number of iterations had
been reached and the algorithm failed to achieve a near-optimal solution. Hence, 2_CE
achieved the best coverage efficiency in our setting. Figure 3 also shows that as the number
of candidate points (out of the around 215 total points of interest in the problem scope)
increased, the overall coverage efficiency increased, but only to a certain point. This was
likely due to the fact that beyond a certain threshold, the likelihood of an effective candidate
location being contained in the set of all candidate locations increased rapidly. It could be
observed that beyond the consideration of one-quarter of all points, there was no immense
benefit to consider any more, as there was no notable increase in coverage efficiency with a
drastic increase in complexity beyond that point.
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Figure 3. Coverage efficiency vs. maximum number of candidate locations for the exact approach
(blue line with “x” markers) along with various heuristic increment values; a larger increment value
corresponds to a faster convergence at the cost of a lower solution granularity.

To summarize, the optimized placement of UAV charging stations in urban areas must
be carefully carried out to increase the coverage efficiency of the road network while taking
into account the need for UAVs to go back to recharge their batteries regularly. Planning
UAV charging stations is the first step for any large-scale aerial infrastructure in smart cities.
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The optimized locations of the charging stations can positively impact the performance of
the UAV operation, help save energy by reducing redundant flying time, and guarantee
the smooth operation of the fleet.

3.2. Tour Planning for Flying IoT Gateways

UAVs, an excellent alternative to crewed aircraft with advantages in size variety and
movement agility, have begun to play a significant role in enabling IoT systems to be
utilized as wireless and mobile gateways. However, despite the advantages of deploying
these flying units, various challenges must be solved to maintain an efficient operation.
One of UAVs’ primary obstacles, restricting their use and full adoption in smart cities, is
their energy-related issues. Due to limited battery energy, UAVs are constantly jeopardized
by mission failure, potentially destroying these devices. As a result, an efficient scheduling
framework must be built to create an activity plan that ensures successful and safe UAV
mission execution. The activity plan typically consists of a plan that retains the locations
and the order of the missions to be covered by the UAVs, as well as the duration to reach the
charging station, taking into account the features of the UAVs, such as the limited battery
capacity and the mission’s priorities.

Over the past few years, many relevant and recent contributions have been made
to research projects concerning UAV scheduling. In [40], the authors solved a mixed-
integer linear programming (MILP) problem using an approximation algorithm and a fast
heuristics-based solution to address the path-planning problem for a single UAV, making
sure that the flying unit covered each target at least once while taking into consideration
its limited battery. In [41], the authors tackled an MILP problem by introducing a generic
scheduling strategy to handle a fleet of UAVs to cover temporally and spatially dispersed
events. In [42], the work presented a study about flight scheduling and trajectory control
for UAV-based wireless networks. With an interest in optimizing the UAVs’ flight time,
trajectory, and power consumption, the authors proposed a scheduling algorithm for UAVs
serving a set of ground users. Finally, in [43], the authors introduced the application of
model-based reinforcement learning (RL) to empower UAVs with the capability to find a
route home when their battery life was constrained.

The majority of the solutions, however, are either based on MILP or metaheuristic
solutions, such as in [40,41], which are computationally demanding. Furthermore, a limited
number of papers have addressed every aspect of the UAV scheduling problem. In other
words, each solution is tailored to a given application, and some critical variables, such
as time duration of events, unexpected events, and event prioritization, are disregarded
when modeling the route-scheduling problem. As a result, in [44], a general spatiotemporal
scheduling technique for autonomous UAVs based on an RL algorithm, was developed.
The framework provided adequate intelligence to the UAV to autonomously create an
activity plan that achieved the maximum number of missions scattered across a region,
with duration and priority ranks, while taking the resource-constrained nature of the
flying units into account. Furthermore, the suggested technique let the UAV change its
prescheduled plan for unexpected activities while in operation.

The activity plan pursued by the UAV, denoted as d1, is shown in Figure 4. The goal
was to design an activity schedule that permitted the UAV to serve as many events as
possible while considering its energy constraints, such as the requirement to recharge
the battery. Given these limits and the flight period required to travel from one event
to the next, the UAV covered about 28% of the total events. The UAV learned to cover
missions while staying within the battery’s limitations. Furthermore, a chronological
division was employed in this framework (horizontal dotted red lines). The UAV created
the activity schedule for the following period towards the conclusion of each session. Such
an approach allowed the UAV to change its path in the event of an unforeseen incident.
When an unexpected incident was set as a higher-priority event, as illustrated in Figure 5,
the UAV autonomously departed its current mission midway to cover the higher-priority
event, which is colored in green. The results demonstrated that UAVs could make in-flight
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scheduling decisions using adaptive RL models to define their activity plans and cover
numerous predicted and unexpected occurrences.

Figure 4. Illustration of the maximization of event coverage efficiency with an RL algorithm (i.e.,
Q-learning model) to optimize a UAV’s schedule. (a) Autonomous restricted battery scheduling
(4000 mAh); the blue bottom line represents the charging station event available along the operation
time; the other blue lines on the red peaks represent the event time duration. (b) UAV battery
fluctuations during task execution. The solid blue lines represent the UAV battery capacity boundaries,
while the blue dashed line denotes the maximum energy required in each period to cover the most
distant reachable event. The latter energy depends on the flight distance separating the charging
station and the farthest event occurring during that period.

Figure 5. (a) Autonomous scheduling of a restricted battery capacity of 4000 mAh in the case of an
unforeseen incident, and (b) the evolution of the UAV battery during mission execution. The green
line conveys an unexpected event.
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3.3. Urban Navigation for UAVs

As previously discussed, UAVs are “game-changing” devices that have changed the
view of everyday activities, let alone smart city activities in general. UAVs are easy to
deploy, and thanks to their versatility and flexibility, these flying IoT devices are able
to perform challenging and remote tasks, offering a bird’s-eye view. However, UAVs’
path planning is considered one of the major concerns that must be addressed to improve
their navigation, particularly in urban areas. A critical point to take into consideration
while deploying these flying units in urban environments is that they are vulnerable and
exposed to a considerable risk of collisions with environmental obstacles. The routing
and navigation of UAVs are therefore indispensable in order to significantly improve the
operation of UAVs, decrease risks, and increase efficiency.

In [45], the authors proposed a deep RL-based solution to solve the problem of UAV
navigation in a large-scale obstacle-constrained environment using GPS signals and sensory
information. In [46], the authors proposed a goal-oriented routing algorithm based on
Q-learning to enable UAVs to execute tasks in a given mission area while navigating
obstacles. However, the presented models used a simplified 2D navigation model, where
the UAV lost one of its most significant key points, the third dimension. Hence, the UAVs
were unable to change their altitude to cross over obstacles.

In [47], the authors presented a Q-learning-based approach to address the autonomous
scheduling problem of UAVs. Q-learning was also employed to establish obstacle-aware
navigation in [48]. However, the authors utilized discrete actions (i.e., the system was
represented as a grid world with a reduced UAV action space), which could greatly affect
the performance of these flying units when dealing with real-world situations.

Therefore, in [49], we proposed a UAV path-planning framework using the deep RL
approach. The framework enabled the UAV to autonomously navigate obstacles in order to
reach spatially scattered moving or static targets. Unlike other works, the UAV was trained
in a three-dimensional (3D) environment with a high matching degree to the real world,
using a continuous action space.

Figure 6 depicts instances of UAV trajectories, shown as red dots, used to achieve its
target utilizing the autonomous navigation system. In Figure 6a, the UAV successfully
arrived at its target while avoiding the obstacles depicted by a gray polygon with varying
heights. The UAV ringed the barrier, obstacle 2 (obs2), on its route to the destination since it
could not fly above the building because the maximum height and flying altitude were both
set to their highest (i.e., normalized value of one). In the scenario illustrated in Figure 6b,
the UAV passed over obstacle 2 obs2 to reach the destination quickly.

Optimizing the navigation of UAVs in urban environments helps reduce propulsion
energy consumption, which constitutes the main energy-hungry component in UAVs.
Therefore, the main challenges in designing RL-based navigation paths are to devise
a reward function that guarantees the fastest navigation toward the destination while
avoiding collision with existing obstacles, i.e., static and mobile obstacles. Additionally,
UAV motion control aspects must be considered when designing RL for real-world UAV
navigation. This should consider the physical limits on velocity and acceleration and the
requirements for main stability and safety. Finally, robust RL models need to be designed
to cope with novel or unexpected system perturbation. Hence, the RL model needs to
be sensitive to changes in the environment (i.e., minor changes such as moving obstacles
and wind effects) as well as the dynamics of the UAVs (e.g., different speed profiles and
acceleration modes).
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Figure 6. The UAV generates autonomous pathways to its destination. The red dots denote the UAV
path, the green dots symbolize the target, and the gray boxes represent the obstacles. (a) Environment
1 and (b) environment 2. The height of each obstacle is indicated above it. The z-values indicate the
altitude of the UAV at that position.

3.4. Spatiotemporal UAV Scheduling

In many applications, the separate design of the optimized scheduling and the nav-
igation of UAVs is insufficient to achieve the desired objectives. In many cases, the joint
consideration of all the system’s parameters and inputs is mandatory to achieve effective
UAV operation in urban environments. As an example, the flying time between two events
can dynamically change, unlike in the open-space case where only direct routes are consid-
ered. In urban environments, the scheduling of UAVs depends on the possible nondirect
trajectories that can be deduced from the 3D environments. Moreover, when a fleet of
swarms is operated, coordination among UAVs needs to be ensured such that redundant
use of UAVs is avoided. For instance, UAVs should not operate on the same event at the
same time. The scheduler needs to guarantee that UAVs can substitute for each other to
cover an event. The coordination needs to enclose the battery status of each flying unit so
as to guarantee their safe operation and avoid crashes.

In [41], developed a mixed-integer linear program (MILP) that provided optimal
spatiotemporal scheduling for UAVs. Thus, each UAV with a specified time window had
to finish multiple missions, such as monitoring distinct areas for different periods and
acting as temporary RSUs at various intersections. The UAV fleet operator determined
the missions’ locations, start times, and duration. The MILP’s objective was to generate
a precise activity plan for the next period (hours or days) so that all missions were met
with the least quantity of resources, i.e., the least energy and number of units utilized.
The UAVs began their missions at a charging station, to which they could return at any
moment to recharge their batteries. To avoid the simultaneous execution of the same tasks
by two or more UAVs, parallel and collision-free coverage was guaranteed. Furthermore,
the architecture allowed for the replacement of one UAV with its counterparts. As a result,
if one UAV’s energy was depleted, another UAV would take its position without interfering
with the mission goals.

For tractability and clarity, Figure 7 illustrates a simplified scheduling scenario using
two UAVs aiming at completing four missions. Two missions were selected to be relatively
long such that the UAV battery, even full, would not be enough for a UAV to complete
the task alone. Two charging stations were available in the area. The MILP was solved
using off-the-shelf software to find the optimal activity plan for each flying unit [41].
The long missions 2 and 3 required both UAVs to cover them consecutively. UAV 2,
the closest to mission 3, started the mission, allowing UAV 1 to reload its battery to pursue
the task sufficiently. UAV 1, which initially took off from charging station 1, landed on
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charging station 2 to continue covering mission 4. A similar remark can be made for UAV 1.
Optimized scheduling allowed a better fleet management by using the minimum resources.

Figure 7. Spatiotemporal scheduling using two UAVs to accomplish four missions. Two charging
stations (DS) are made available in the area of interest. Mission and charging station locations (Left),
UAV scheduling (Right); labeled solid lines represent the trajectories taken by the UAVs. Numerical
order: UAV 1, alphabetical order: UAV 2.

4. Perspectives and Future Research Directions

The various studies discussed earlier provide an initial set of a full suite of methods to
enable dynamic aerial IoT infrastructures for smart cities and ITS. With innovative methods
for placing UAV charging stations, scheduling missions, routing data, and minimizing
energy consumption across all, smart city and ITS planners have a strong basis for a toolkit
that will aid in the design of temporary flying IoT devices that will help support ground-
based infrastructure. Although a considerable amount of efforts have been made to mitigate
some of the energy-related challenges that apply to UAVs for ITS, various concerns remain
open research problems when making a UAV-dominant system adequately robust to be
implemented in real-world applications.

4.1. Front-End Intelligent Drones

Supporting UAVs by embedded processors will make them viable contributors to
edge-computing platforms. In order to maximize the use of the uptime of UAVs on
scheduled missions, distributed computing jobs could be assigned to the extra cache space
on the onboard microprocessors. This allocation of jobs would reduce the quantity of
data transmitted to the central control system for trip planning and other jobs, reducing
the transmission traffic on the spectrum. In another direction, cooperative processing
needs to be leveraged to promote the independence of UAVs from the central stations
and hence, increase their autonomy. In addition to the distributed processing discussed
earlier, cooperative processing procedures, e.g., based on federated learning, can be devised.
Multiple UAVs can cooperate together in collecting data, sharing the data, or sharing the
AI models processing the data. Hence, UAVs can improve the accuracy of their decision-
making, increase the coverage of their operation, and make the aerial infrastructure more
scalable and not limited to a single unit.

4.2. Autonomous UAVs and Collision-Free Navigation

One way to make the system more robust is to add a degree of autonomy to the
operations of UAVs, either when operating individually or in a group. For example, in the
case of a connection loss to the central control, or for UAV missions involving traveling far
distances, UAVs must be capable of autonomously planning their trip and returning home.
Future research can focus on computer vision applications to utilize onboard cameras to
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mitigate collisions and accomplish their mission (e.g., find sensors). UAVs could also be
trained on data generated on how a human operator would navigate obstacles or avoid
collisions. In an online-learning pipeline, the human operators would act as the training
data inputs in a controlled scenario. Over time, the UAV could be tested in controlled
scenarios, or multiple UAV-control algorithms could be pitted together in an agent-based
simulation to see how they behave around each other.

Machine-learning UAV autonomy is only one piece of the puzzle to developing anti-
collision frameworks for swarms. Complex navigation rules based on existing flight control
systems for human air traffic can be put in place on UAVs. Agent-based simulation can be
utilized to test the hard-coded rules in the UAV to see how decisions made by individual
UAVs propagate in a swarm, assuming a movement based on the optimization frameworks
discussed in the previous section. Researchers should also consider joint frameworks
considering a multimodal concert of UAVs and ground transmitters working in harmony to
take advantage of the strengths of both to mask their weaknesses. Efforts should also focus
on fast solution methods; as the size of the UAV fleet grows, the complexity of scheduling
problems will grow exponentially due to the NP-hard computational complexity of MIP
scheduling problems.

4.3. Security and Privacy

With the growing concern about the privacy and security of data communications,
these issues should be of the utmost priority due to the higher risks of employing au-
tonomous UAVs in critical applications. In addition to developing and strengthening
encryption transmission protocols, extending physical layer security techniques for UAV
communication should be investigated. In all, “secure by default” approaches must be
adopted to build networks from the ground up, focusing on security instead of adding
security layers as issues arise. Beyond the security and privacy of actual transmissions,
privacy concerns regarding the navigation of UAVs must be considered when devising their
mission scheduling frameworks, especially for use in residential areas. UAVs need to miti-
gate security attacks and ensure the smooth and safe operation of the fleet. Anti-intrusion
UAV systems for communication networks, as well as for detecting unwanted devices,
need to be developed to address the security and privacy challenges of these vulnerable
aerial infrastructures.

4.4. Noise and Environmental Considerations

In addition to electromagnetic signals resulting from their data communication, mul-
tirotor UAVs contribute a non-negligible amount of noise pollution from the action of
their propeller blades. Moreover, these effects should be factored in with the growing
number of UAVs expected to be deployed and the large amounts of data traffic to be
exchanged with 5G and 6G. Specifically, two fundamental research directions can be identi-
fied: (1) a technical analysis of noise propagation models to predict the noise levels as a
function of the number of drones in the area and their operation parameters, e.g., flying
altitudes; (2) the combined effects of multiple electromagnetic radiations with high-energy
millimeter-wave spectrum.

4.5. Multitasking UAVs

Thanks to their flexibility, UAVs can execute multiple missions in parallel especially
when they are equipped with different types of sensors, such as camera, LiDAR, and GNSS.
The UAVs operating essentially for ITS missions can be exploited for secondary missions.
For example, while flying between two events, or while hovering in a certain location.
UAVs can be exploited for other public service activities: they can operate in law enforce-
ment, damaged infrastructure monitoring, and air pollution measurement. Advanced
autonomous operation of multitasking UAVs need to be investigated and devised while
taking into account the objectives of the different missions, their priorities, and the imposed
restrictions such as time limit, no-drone zones, and energy budget.
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5. Conclusions

In this article, the potential of UAVs in leveraging smart cities and ITS was investigated.
First, a high-level overview of promising applications of UAVs in smart cities was provided.
Next, a set of solutions to enable the effective deployment of UAVs and their smart operation
to act as an aerial infrastructure for the applications of ITS was discussed. It was shown
that many challenges need to be addressed to improve the operation of UAVs in an urban
environment: including charging station planning, autonomous navigation and mission
scheduling, and fleet coordination. The paper also highlighted some potential future
research directions to help usher in the benefits of UAVs in future smart cities.
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