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Abstract: Tree of heaven (Ailanthus altissima) is a highly invasive tree species in the USA and the
preferred host of an invasive insect, the spotted lanternfly (Lycorma delicatula). Currently, pest
managers rely solely on ground surveys for detecting both A. altissima and spotted lanternflies. This
study aimed to develop efficient tools for A. altissima detection using drones equipped with optical
sensors. Aerial surveys were conducted to determine the optimal season, sensor type, and flight
altitudes for A. altissima detection. The results revealed that A. altissima can be detected during
different seasons and at specific flight heights. Male inflorescences were identifiable using an RGB
sensor in the spring at <40 m, seed clusters were identifiable in summer and fall at <25 m using
an RGB sensor, and remnant seed clusters were identifiable in the winter at <20 m using RGB and
thermal sensors. Combining all seasonal data allowed for the identification of both male and female
A. altissima. This study suggests that employing drones with optical sensors can provide a near
real-time and efficient method for A. altissima detection. Such a tool has the potential to aid in the
development of effective strategies for monitoring spotted lanternflies and managing A. altissima.

Keywords: drone; detection; invasive species; monitoring; precision management; sensor; spotted
lanternfly; tree of heaven

1. Introduction

Tree of heaven, Ailanthus altissima (Mill.) Swingle, also known as the Chinese sumac
and stink tree, is an invasive tree native to China [1]. It has been widely introduced as an
ornamental and street tree in many parts of the world [2]. In the USA, A. altissima was first
introduced in Pennsylvania in 1784 [1,3], and its widespread invasion occurred in the late
20th century. As of 2023, A. altissima has been found in more than 40 US states, spreading
extensively throughout the Eastern United States [2,4]. The invasion of A. altissima and its
successful establishment in the USA can be attributed to its prolific seed production, which
begins 4–5 years after germination and can last for over 100 years [3,5].

Ailanthus altissima is a medium-sized dioecious tree, meaning male and female trees
are separate, with a height of 12–30 m at maturity [6,7]. It can be easily recognized by its
distinctive bark, leaf, and seed cluster characteristics [8]. It has compound leaves with
heart-shaped leaflets [9], each of which has one glandular tooth, or many glandular teeth,
at the rounded base. Mature female trees produce flat, twisted, winged seeds, bearing up
to 30,000 seeds per tree in a year [7,10]. They can vary from greenish yellow to reddish
brown and are arranged in clusters, with each cluster containing more than 100 seeds [11].
These characteristics are commonly used for the detection and identification of A. altissima,
which is essential for its successful management.

Ailanthus altissima can rapidly colonize both natural and urban habitats [12], and it
is widespread in forest edges, fields, and along roadsides. It poses a significant threat to
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native ecosystems by negatively impacting native vegetation regeneration and growth
and reducing native plant species richness [13,14]. Therefore, monitoring and mapping A.
altissima are essential for developing effective management strategies for this invasive tree.
Currently, A. altissima monitoring activities primarily focus on roadside, trail, and parking
lot areas, exploiting the visual identification of its distinctive traits. After detection, A.
altissima is managed by combinations of mechanical, cultural, and chemical methods [15].

The presence and abundance of A. altissima have a more significant economic impact
due to the invasion of the spotted lanternfly, Lycorma delicatula (Hemiptera: Fulgoridae),
which utilizes A. altissima as its main feeding and reproductive host. The spotted lanternfly
is an agricultural pest that can also be a nuisance in urban areas in the USA. Since its
introduction in 2014 [16], the spotted lanternfly has spread throughout several Mid-Atlantic
States, and it is expected to spread nationally [17,18]. It damages crops by both feeding on
plant sap and excreting a large amount of honeydew [19], which can cause the generation
of sooty mold that interferes with photosynthesis. Of the more than 70 known host plants,
the most preferred host plant is A. altissima [20]. A. altissima is found abundantly along
transportation corridors in areas with the spotted lanternfly [21]. Therefore, A. altissima can
be used as a sentinel plant to monitor the spotted lanternfly [22] for early detection and
rapid response to the invasion. Currently, pest managers solely rely on ground surveys
to detect A. altissima for spotted lanternfly monitoring [23]. Ground surveys are time-
consuming, laborious, and challenging to implement in hazardous and hard-to-access areas.

Modern technologies have been employed in analyzing invasive species distribution
and applying control measures. Specifically, remote sensing has emerged as a powerful
tool for the detection and monitoring of invasive plant species [24–26]. Small unmanned
aerial vehicles (sUAS, also known as drones) have been shown to be effective tools for
aerial surveys of invasive plants, weeds, diseases, and insects [27]. They have been used
to detect plant species in terms of various aspects of agriculture and plant protection
in various agroecosystems, and they can serve as important tools for the detection of
pests [27,28]. While A. altissima has been mapped with the classification of satellite images
with spectral signatures [29], high-resolution aerial images are required for individual tree
detection [30]. Rebbeck et al. [31] conducted aerial mapping to detect A. altissima using seed-
bearing females in winter using a helicopter, but this method could not differentiate male A.
altissima trees from other tree species at such a height. Estimates of A. altissima sex ratios are
1:1 [32], indicating half the population would go undetected with this method. In addition,
flying helicopters at low altitudes poses risks for both those operating the helicopter [33]
and the potential of increasing seed dispersal [34]. Therefore, drones offer advantages over
helicopter or satellite imaging due to their flexibility, low cost, and extremely high image
resolution [35]; however, rotary-wing drones have limitations in covering large survey
areas [34,36]. In addition, it is necessary to determine the optimal season for the detection
of A. altissima because no previous studies have investigated the seasonal detection of
A. altissima.

The goal of this study was to develop a protocol for the aerial detection of A. altissima
which can also be used for its management and for monitoring the spotted lanternfly. The
objectives of this study were to determine the optimal (1) optical sensors, (2) seasons for
aerial surveying, and (3) flight heights for the detection of A. altissima using drones. The
results of this study can help develop an efficient and effective survey tool for detecting A.
altissima and the spotted lanternfly, especially in hard-to-access or hazardous areas.

2. Materials and Methods
2.1. Study Sites

This study was conducted in two locations in West Virginia, USA (Figure 1): Mor-
gantown (39.629524 N, 79.955894 W) and Kearneysville (39.393283 N, 77.898887 W). The
Kearneysville site is a 0.5 ha flat forested area infested with spotted lanternflies. On this
site, A. altissima were found inside and on the edge of the forested area. The Morgantown
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site is a 0.5 ha steep forested area where the presence of spotted lanternflies has not been
reported. A. altissima were found along roadsides on this site.

Drones 2024, 8, x FOR PEER REVIEW 3 of 14 
 

This study was conducted in two locations in West Virginia, USA (Figure 1): Mor-
gantown (39.629524 N, 79.955894 W) and Kearneysville (39.393283 N, 77.898887 W). The 
Kearneysville site is a 0.5 ha flat forested area infested with spotted lanternflies. On this 
site, A. altissima were found inside and on the edge of the forested area. The Morgantown 
site is a 0.5 ha steep forested area where the presence of spotted lanternflies has not been 
reported. A. altissima were found along roadsides on this site. 

 
Figure 1. The locations of the two research sites: Morgantown and Kearneysville, West Virginia, 
USA. 

2.2. Aerial Surveys with Drones 
Aerial surveys were carried out in 2022 and 2023 to determine the optimal optical 

sensors and season(s) for detecting A. altissima. Specifically, aerial surveys were con-
ducted in spring, summer, fall, and winter, when A. altissima is leafing out and flowering 
(spring), fruiting (summer and fall), and senescing (winter). Evaluating all four seasons 
allowed us to focus on different plant parts, including leaves, inflorescences with leaves, 
seed clusters with leaves, and remnant seed clusters without leaves (Figure 2).  

 
Figure 2. Key morphological features and signatures of A. altissima that can be targeted for aerial 
detection using drones and optical sensors: leaves (a), inflorescences (b), and seed clusters in sum-
mer (c) and winter (d). 

2.2.1. Drones and Optical Sensors  

Figure 1. The locations of the two research sites: Morgantown and Kearneysville, West Virginia, USA.

2.2. Aerial Surveys with Drones

Aerial surveys were carried out in 2022 and 2023 to determine the optimal optical
sensors and season(s) for detecting A. altissima. Specifically, aerial surveys were conducted
in spring, summer, fall, and winter, when A. altissima is leafing out and flowering (spring),
fruiting (summer and fall), and senescing (winter). Evaluating all four seasons allowed us
to focus on different plant parts, including leaves, inflorescences with leaves, seed clusters
with leaves, and remnant seed clusters without leaves (Figure 2).
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Figure 2. Key morphological features and signatures of A. altissima that can be targeted for aerial
detection using drones and optical sensors: leaves (a), inflorescences (b), and seed clusters in summer
(c) and winter (d).

2.2.1. Drones and Optical Sensors

We used three different drones that carried three different optical sensors: the DJI
Mavic 2 Enterprise Advanced, carrying RGB and thermal sensors (SZ DJI Technology Co.,
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Ltd., Shenzhen, China); the DJI Mavic 2 Pro, carrying an RGB sensor; and the Phantom
3 Advanced, carrying a normalized difference vegetation index (NDVI) sensor (Sentera, St.
Paul, MN, USA). The RGB sensors took natural color images; the thermal sensor created
images with heat signatures, and NDVI values were calculated from red and near-infrared
wavelengths. All drone flights with all the sensors in this study were conducted between
noon and 3 p.m. on sunny days with a wind speed of <10 kph (see Tables S1 and S2 for
specifications of drones and detailed flight information).

2.2.2. Aerial Survey of A. altissima in Spring

A series of aerial surveys were carried out to detect the leaves and inflorescences of
A. altissima in spring (May–June). A total of 20 individual male A. altissima were selected
randomly to determine the optimal flight height above the tree canopy. Drones equipped
with RGB, thermal, and NDVI sensors were flown at 18 different flight heights ranging
from 5 m to 90 m with 5 m increments to determine the optimal flight height. After the
aerial surveys were completed, the aerial images were downloaded from the drones and
analyzed.

2.2.3. Aerial Survey of A. altissima in Summer and Fall

Ailanthus altissima seed clusters slowly change their colors from green or white at the
beginning of summer, transitioning to a yellow or red color in late summer before finally
shifting to grayish brown at the end of the fall season. The same aerial survey methods
described in Section 2.2.2 were used to detect leaves (Figure 2a) and seed clusters (also
known as samaras of A. altissima) in June–October.

2.2.4. Aerial Survey of A. altissima in Winter

Ailanthus altissima begins to lose its leaves in early-mid fall, with most having fallen
by winter. However, many seed clusters still remain on the branches throughout the winter.
The same aerial surveys described in Section 2.2.2 were used to detect seed clusters on
the A. altissima in November–April. Thermal images were taken during the month of
February on cold sunny days, usually after snowfall was observed because seed clusters
retain cold temperatures for a longer time. A total of 50 images including seed clusters
and branches were taken. In addition, a separate aerial survey was conducted to acquire
aerial images every two hours from 9:30 to 17:30, because winter temperatures can change
dramatically within a day. The temperatures of 15 different seed clusters and branches
on each A. altissima tree were measured using a DJI Mavic 2 Enterprise Advanced drone
carrying both RGB and thermal sensors.

2.3. Data Analysis

Each aerial image was visually examined to determine the detectability of A. altissima
leaves, inflorescences, and seed clusters. The optimal flight height above the canopy was
determined by assessing the relationship between the detectability of A. altissima and flight
altitudes.

The detectability was recorded as detectable (value = 1) at each flight altitude when
our visual inspection of the aerial image could confirm the taxonomical and morphological
features and signatures of A. altissima, including leaf size and shape, seed cluster size and
shape, flower color and texture, and tree shape and size. When we were unable to identify
the features, detectability was recorded as undetectable (value = 0). Pix4DMapper (Pix4D,
Prilly, Switzerland) was used to generate NDVI values, and DJI Thermal Analysis Tool
3 (DJI, Shenzhen, China) was used to analyze the thermal images.

Non-linear regression was used to fit the data using JMP (JMP, Version Pro 17.2.0,
SAS Institute Inc., Cary, NC, USA). Flight heights above the tree canopy were used as the
independent variable, and the detectability at each altitude was recorded as a nominal
variable. The logistic regression fitted the best with the detectability data (i.e., the estimated
probability of detecting the features of A. altissima at different flight altitudes). Chi-square
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values and r2 values were used to evaluate the performance of the regression model for
each sensor in each season.

3. Results

Overall, we found that different optical sensors could be used to detect A. altissima
in different seasons. RGB sensors could be used to detect A. altissima in all seasons, and
thermal sensors only achieved successful detection in winter. However, we found that the
NDVI sensor was not able to detect A. altissima in any season (Figure 3).
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NDVI (c) sensors. NDVI values were calculated with the values of red and near-infrared wavelengths;
a greener color indicates healthier vegetation, and a redder color indicates unhealthy vegetation or
non-vegetation.

3.1. Detection of A. altissima in Spring

The leaves of A. altissima were detectable using drones with an RGB sensor from early
March. The inflorescences of A. altissima were detectable for a short period in May. Male A.
altissima have larger inflorescences than those on female trees and were detectable when
using an RGB sensor (Figure 4). Due to their smaller size, female inflorescences can only be
seen at very low flight altitudes (i.e., <10 m above the canopy). The relationship between
flight height and detectability fitted best with logistic regression (χ2 = 392.4; d.f. = 1;
r2 = 0.79; p < 0.0001). The results of our regression analysis showed that A. altissima male
inflorescences were detectable up to 60 m above the tree canopy and that the probability of
detecting the male inflorescences was 100% at <35 m above the tree canopy (Figure 4). The
thermal and NDVI sensors did not detect A. altissima leaves in spring.
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From the RGB images, pink leaves at the tip of the A. altissima branches were noticeable
and detectable from early spring (Figure 5a,b). A. altissima leaves could be detected at <10 m
above the canopy of the trees. A key distinguishing feature of A. altissima leaves, their tooth
structure, which acts like an extended structure, at the base of the leaf (Figure 5c), could be
seen in the RGB images. A sympodial–modular pattern (resulting in branches appearing to
radiate in a spiral fashion from above) in the A. altissima branches was observed from the
aerial images (Figure 5a). Such features enabled us to detect A. altissima from 35 m to 50 m
above the tree canopy, and the sympodial–modular branch pattern was readily identifiable
at <35 m above the tree canopy.
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3.2. Detection of A. altissima in Summer and Fall

Seed clusters of A. altissima in female trees were detectable with the use of RGB images
(Figure 6). The relationship between flight height and detectability fitted best with logistic
regression (χ2 = 378.5; d.f. = 1; r2 = 0.79; p < 0.0001). The probability of detecting the seed
clusters was 100% at <25 m above the tree canopy (Figure 6). Male trees also could be
detected in early summer and fall based on the radiating branching pattern at 35 m above
the canopy.

3.3. Detection of A. altissima in Winter

Seed clusters of A. altissima were detectable in winter using RGB and thermal sensors
at flight heights of <20 m above the tree canopy (Figure 7). The relationship between flight
height and detectability fit best with logistic regression (χ2 = 324.6; d.f. = 1; r2 = 0.70;
p < 0.0001).
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The thermal sensors detected the heat signatures of A. altissima seed clusters on cold
sunny days. The temperature of the seed clusters was significantly lower than that of the
branches (Figure 8); the average temperature of the seed clusters was 0.37 ± 0.32 ◦C,
with a range of 0–1.0 ◦C, and that of branches was 3.06 ± 0.45 ◦C, with a range of
2.1–4.2 ◦C. The average difference in temperature between the seed clusters and branches
was 2.68 ± 0.58 ◦C, with a range of 1.1–3.6 ◦C.

The temperature of the seed clusters and their associated branches changed throughout
the day (Figure 9). The temperature of the seed clusters and branches increased throughout
the day until 15:30 and decreased afterward. The temperature of the seed clusters was
significantly lower than that of the branches, with the largest difference of 4.41 ± 1.20 ◦C
occurring at 11:30 a.m. The temperature of the seed clusters exceeded that of the branches
after 5:00 p.m., although the difference was minimal.
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4. Discussion

The results of this study showed that various life stages of A. altissima can be detected
from aerial images obtained using a drone equipped with multiple optical sensors (see
Table 1). During the spring season, A. altissima can be located by detecting male inflores-
cences (<40 m above the canopy), sympodial–modular branching patterns (<35 m above the
canopy), and leaves (<10 m above the canopy). In the summer, seed clusters (e.g., female
trees) become distinct when observed from a height of <25 m above the canopy, and in the
winter, this distinction occurs at <20 m above the tree canopy when using an RGB sensor.
Additionally, on cold, sunny winter days, the thermal sensor can detect heat signatures,
with a temperature difference of 3 ◦C between seed clusters and their associated branches
being measured in this study.
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Table 1. Detectability of A. altissima in different seasons using various optical sensors.

Season
Sensors

RGB Thermal NDVI

Spring
Leaf Detectable Undetectable Undetectable
Inflorescences Detectable Undetectable Undetectable
Branching pattern Detectable Undetectable Undetectable

Summer and Fall
Leaf Detectable Undetectable Undetectable
Seed clusters Detectable Undetectable Undetectable
Branching pattern Detectable Undetectable Undetectable

Winter
Seed clusters Detectable Detectable Undetectable

Mapping and conducting regular management operations for A. altissima are crucial to
mitigate its threat [37]. Also, determining the optimal time for aerial surveys using drones
to detect an invasive plant is essential for successful management [38]. Male A. altissima
trees can be identified by their inflorescences in late spring, while female trees are best
identified by their seed clusters in the summer, fall, and winter. To comprehensively detect
both male and female A. altissima, we recommend conducting flights in spring, as well as
summer, fall, or winter. Utilizing multi-seasonal data has proven to be more effective for
identifying and mapping A. altissima [30]. Alternatively, conducting a single-season flight,
such as identifying the sympodial–modular branching in spring or using low-altitude
flights to confirm the female in spring or summer, is also possible. However, only female
trees with seed clusters can be identified during the winter season. Non-flowering/fruiting,
younger trees are likely best detected using the sympodial–modular branching in the
spring.

During the fall season, there may be confusion with the fruits of other trees, such as
ash, when A. altissima seed clusters turn brown. To mitigate this, consider conducting flights
during the summer, when the seed clusters exhibit a yellowish or reddish color. It is worth
noting that the detectability of seed clusters during winter is lower due to the potential for
them to drop because of harsh weather conditions, which are influenced by factors such
as wind speed, direction, and environmental conditions [39]. Complex backgrounds can
pose challenges for image analysis [40], leading to confusion with background disturbances
like brown bushes and seed clusters that resemble branches at higher flight altitudes when
only a few seed clusters are left on the tree. The use of a thermal sensor can improve
detection accuracy in winter, as we found temperature differences between branches and
seed clusters. Seed clusters absorbed and released heat slowly compared to the branches
that were darker in color and absorbed almost all of the light. Notably, the temperature of
seed clusters fluctuates throughout the day, with the most significant difference occurring
around noon, which is also the recommended time for general drone flights.

The thermal sensor we used in this study was unable to detect heat signatures on
cold days when there was still residual snow in the background. The temperature of both
the background and the seed clusters appeared similar, with no temperature distinction
being observed. The NDVI sensor was not able to detect A. altissima in any season of the
year, but it holds potential for evaluating the effectiveness of A. altissima control [41]; after
successful control, causing the death of A. altissima, it should be detectable via the use
of the NDVI sensor, as there should be no healthy vegetation remaining. Drones can be
flown when wind speed is below 27 kph, following the regulations of the Federal Aviation
Administration (FAA) of the USA [42]. However, in high winds, leaves can be turned
upside down, which can lead to confusion with flowers or fruits (see Figure 10).
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Figure 10. High wind speed causes leaves to turn upside down, mimicking flowers and hindering 
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Figure 10. High wind speed causes leaves to turn upside down, mimicking flowers and hindering
the identification of A. altissima leaves.

Small A. altissima saplings can remain hidden under the canopies of larger trees and
may not be visible in an aerial survey. However, small A. altissima saplings growing on the
forest edges can still be detected. We observed the sympodial–modular branching pattern
of A. altissima at <35 m above the tree canopy along forest edges. However, this pattern
resembles that of native trees such as staghorn sumac (Rhus typhina) and black walnut
(Juglans nigra), which are often found together in forests [43]. There should be no confusion
with sumac when the trees are tall, as A. altissima can grow up to 25 m, while staghorn
sumac typically ranges from 1 to 10 m in height [44]. In addition, the seed clusters of these
two trees differ from each other; the color change in the leaves of staghorn sumac occurs
slightly earlier than the color change in A. altissima. Furthermore, there is a distinction in
the leaf texture between black walnut and A. altissima, as black walnut leaves have a lighter
green color and bend more towards the ground from the branch, whereas A. altissima leaves
are parallel to the branch (Figure 11). Our study revealed that flying a drone at <10 m above
the canopy allows for the detection of the tooth structure at the petiole end of A. altissima
leaves. This feature makes it easier to differentiate A. altissima from other visually similar
native trees.
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The removal of A. altissima is recommended for the management of spotted lantern-
flies in specialty crops [45]. Identifying A. altissima can significantly aid in the real-time
monitoring of spotted lanternflies using drones (Figure 12). Spotted lanternflies lay eggs
from October to December, which hatch into nymphs (first instar in May–June, second and
third instars in June–July, and fourth instar in July–September) and turn into adults from
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July to December for mating and egg laying [46]. In winter, both RGB and thermal sensors
can be used together to enhance the detection of A. altissima. The different life stages of
spotted lanternflies can be monitored and managed based on the various life stages of A.
altissima (Figure 12). Eggs can be monitored in the winter season, nymphs in the spring and
early summer, and adults during the summer and fall seasons [47], with the identification
of A. altissima being possible during all of those seasons.
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detection of A. altissima will help detect the different life stages of spotted lanternflies.

Although our study shows that flying drones < 10 m above the tree canopy can
facilitate the complete (100%) detection of A. altissima, there are potential limitations regard-
ing drone flight and operation at such low flight altitudes. However, recent advances in
drones equipped with anti-collision sensor technology and software for autonomous drone
flight that can follow changing terrains and tree canopies make low-altitude aerial surveys
possible. In addition, the analysis of drone images using machine learning techniques
has gained popularity amid these technological advancements [48]. The development of
machine learning capabilities for the automated detection of A. altissima based on aerial
images would be helpful for the management of the species. Currently, mobile applications
for identifying tree species based on ground images are available. These applications
were built by using machine learning [49]; thus, we tested whether commercially available
mobile applications could detect A. altissima based on the aerial images that we obtained
in this study. We found that the applications’ abilities to accurately identify A. altissima
based on aerial images were very poor. Therefore, future studies may develop a tool for the
automated detection of A. altissima using deep learning algorithms with aerial images to
make aerial surveys and invasive pest detection more efficient and precise [50,51].

The results of this study carry three important management implications. Firstly,
using drones to detect A. altissima can be more effective than the currently adopted ground-
based survey methods, which rely on visual detection from roads and involve mapping
known infestations or helicopters [15], which are limited in their detection capabilities, only
detecting mature female trees. Drones are particularly valuable for detecting A. altissima
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within dense forests that are difficult to access. Additionally, drone detection can be used
to map A. altissima, creating a detailed infestation map to better understand its extent and
distribution and aiding in the development of precision management strategies. Secondly,
utilizing different optical sensors can help locate A. altissima during various life stages.
Detecting A. altissima during different seasons contributes to the development of effective
strategies and management options. Lastly, identifying A. altissima aids in identifying the
different life stages of the spotted lanternfly at different times of the year for the real-time
monitoring of this invasive pest, enabling the early detection of this species and a more
rapid response to better prevent its spread into new regions.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/drones8010001/s1, Table S1: The specifications of the drones and sensors
used in the study; Table S2: Detailed drone flight information on sampling dates.
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