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Abstract: Offshore wind turbine (OWT) inspection research is receiving increasing interest as the
sector grows worldwide. Wind farms are far from emergency services and experience extreme
weather and winds. This hazardous environment lends itself to unmanned approaches, reducing
human exposure to risk. Increasing automation in inspections can reduce human effort and financial
costs. Despite the benefits, research on automating inspection is sparse. This work proposes that OWT
inspection can be described as a multi-robot coverage path planning problem. Reviews of multi-robot
coverage exist, but to the best of our knowledge, none captures the domain-specific aspects of an OWT
inspection. In this paper, we present a review on the current state of the art of multi-robot coverage to
identify gaps in research relating to coverage for OWT inspection. To perform a qualitative study, the
PICo (population, intervention, and context) framework was used. The retrieved works are analysed
according to three aspects of coverage approaches: environmental modelling, decision making, and
coordination. Based on the reviewed studies and the conducted analysis, candidate approaches are
proposed for the structural coverage of an OWT. Future research should involve the adaptation of
voxel-based ray-tracing pose generation to UAVs and exploration, applying semantic labels to tasks
to facilitate heterogeneous coverage and semantic online task decomposition to identify the coverage
target during the run time.

Keywords: multi-robot; coverage path planning; UAV; structural inspection; offshore wind

1. Introduction

Offshore wind turbine inspection is an area of increasing interest with the increasing
prevalence of wind power [1]. The relevance of renewable offshore energy sources has
never been greater than at present [2]. Offshore wind has several benefits when compared
to onshore wind turbines [3]. Offshore wind farms experience greater and more predictable
wind speeds with reduced turbulence, ensuring that a single OWT is more productive than
an onshore counterpart. Additionally, offshore farms do not need to compete with other
land uses and are less likely to meet resistance from local communities. While there are
significant benefits to offshore renewable wind energy, so, too, are there serious challenges
to overcome. Dynamic loads from wind and waves, as well as saltwater, damage and
degrade offshore turbines quicker than their onshore counterparts. Installation is signifi-
cantly more expensive than on shore, and operation and maintenance (O&M) operations
are considerably more complicated. Within the already growing offshore wind sector, O&M
is predicted to become the second largest subsector of the offshore renewable market in the
UK by 2030 and potentially the largest in the 2040s [4]. O&M can be broken down into four
subsections [4], details of which are shown in Figure 1.
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Figure 1. Key services that make up offshore wind O&M [4].

Maintenance is a particularly high-risk aspect of O&M, involving highly skilled tech-
nicians out in the field for long periods, undertaking maintenance work on the turbines.
These services can include rappelling to inspect or repair blades and diving to inspect
cabling, all the while being far away from any emergency assistance. The teams under-
taking these operations are composed of disparate highly qualified technicians. Using
traditional methods, a turbine inspection with three technicians takes 3–6 h, allowing time
for only two to three turbines to be inspected in a day [5]. Considering that wind farms
can often house hundreds of turbines, the cumulative labour time required for a single
wind farm’s regular inspections can commonly reach thousands of hours. It is both this
financial cost and the human risk that incentivise the use of robots. Commercial remotely
operated systems are now reasonably commonplace for offshore inspections. Remotely
operated underwater vehicle (ROV) services facilitate inspections of the anchors, as well as
subsea cabling [6–10]. Several companies offer unmanned aerial vehicle (UAV) services for
visual and thermal imaging inspections [11–13], and recently, climbing robots have been
made available for the cleaning [14] and resurfacing of OWTs [15]. Nordin et al. identified
that individual unmanned vehicles have limited capacity to perform unmanned O&M
for offshore wind turbines [16]; instead, the task lends itself to multi-robot systems. Five
motivations for developing multi-robot systems were identified by Parker et al. [17]: (1)
The task complexity is too high for a single robot; (2) the task is inherently distributed;
(3) the use of several less powerful robots is often less resource-intensive than using a
single powerful robot; (4) multiple robots can solve problems faster using parallelism; and
(5) using multiple robots increases robustness through redundancy. Notably, each of these
could apply to offshore wind O&M. Indeed, multi-robot approaches to wind energy O&M
have been researched, albeit overlooking critical factors such as communication challenges
and harsh environmental conditions necessary for real-world implementation [18–20].
Approaches to multi-robot navigation in extreme environments require mechanisms to
minimise interference and spatial conflicts [21], or else the system may perform unreliably.
One interesting commonality in the aforementioned research is the use of robot heterogene-
ity. Parker defines robot heterogeneity as variety in terms of robot behaviour, morphology,
performance quality, size, and cognition [17] within a team. Certain inspections may re-
quire a heterogeneous team, while others may be performed faster with robots specialised
for certain tasks. Considering a comprehensive inspection of an OWT (one covering the
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turbine’s surface, the foundations, local cabling, and the turbine interior), a range of robots
with varying morphologies and locomotion and sensing capabilities would be required.
Variety in terms of performance quality can also affect the quality of the inspection; for
example, a UAV fitted with a high-resolution camera would be able to capture footage of
the same quality as one with a lower-resolution camera at a greater rate. Another possibility
within a heterogeneous team is having robots collaborate in such a way as to complete
tasks impossible for just one robot. Jiang et al. provided an example of just this, with a UAV
being used to transport a BladeBUG to and from a wind turbine blade [22]. The authors
made use of GNSS to position the UAV near the landing target, then made use of LiDAR
data to position the vehicle for landing and deployment of the BladeBUG on the blade.
Reaching the blade with the BladeBUG would have been impossible alone but was made
possible via the UAV. Another example of such behaviour is using an unmanned surface
vehicle (USV) as a mother ship for UAVs, with the USV serving as a “marsupial” robot.
Fan et al. were concerned with the autonomous landing of a UAV on a USV using a fuzzy
self-adaptive PID controller [23]. A marsupial relationship was also detailed by Miškovic
et al., who reported a USV that relies on a UAV to localise itself with respect to a floating
object needing tugging [24]. Zhang et al. described a fully autonomous system for the
recovery of fixed-winged UAVs, making use of an arresting cable and a net to safely land
the UAVs [25].

The use of multi-robot teams for offshore inspection is currently a sparse area of
research. In this work, the focus is on visual inspection of OWTs. It is common for the
operators of OWTs to request an inspection at the end of the warranty and regularly every
three years thereafter [26]. A typical inspection requires the capture of high-quality images
of each side of the OWT blade (suction side, pressure side, leading edge, and trailing
edge). Tower and nacelle inspections are sometimes also required and are concerned
with identifying welding defects, coating issues, and mechanical damage [27]. There
may be areas of particular interest, such as the blades, although this can be seen as a
variation of the problem. Further inspection operations use USVs or ROVs to inspect the
floating substructures of floating OWTs or the underwater cabling [28]. The ORE Catapult
Levenmouth demonstration turbine detailed in Figure 2, built to facilitate OWT research,
provides an example of the structure to be inspected. These operations all involve capturing
images of all of an area of interest; the problem of ensuring the entirety of an area of interest
is covered by a sensor’s footprint is known as the coverage path-planning problem.

Figure 2. Specifications of the Levenmouth 7 MW demonstration OWT [29].
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Coverage path planning, as defined by Choset [30], is the problem of passing over all
points in the target environment. While at the time, coverage was mostly concerned with the
coverage of 2D planes, such as mowing a lawn [31] or vacuuming a floor [32], the definition
of coverage has now expanded to include 3D environments and structural coverage. To
this end, Almadhoun et al. define coverage path planning as “a process of exploring or
exhaustively searching a workspace, whether it a structure of interest or an environment
and determining in the process the set of locations to visit while avoiding all possible
obstacles” [33]. While reviews of the literature surrounding coverage more generally exist,
such as Choset’s inaugural survey of robotics for coverage [30] and Almadhoun et al.’s
survey on multi-robot coverage path planning for model reconstruction and mapping [33],
these surveys did not focus on the domains representing offshore wind inspection, a specific
variation of the problem characterised by its environmental lack of structure and sparseness.
To the best of our knowledge, this work provides the first literature review of coverage
path planning for OWT inspections.

This paper is structured as follows: Section 2 details the methodology used to con-
duct the literature review; Section 3 covers the approach undertaken for analysis of the
works retrieved from the literature search; Section 4 provides an analysis of approaches
to environmental modelling used in the retrieved works; Section 5 covers the approaches
to decision making and their applicability to offshore O&M; Section 6 is concerned with
coordination approaches used in the literature and their applicability; finally, the work is
concluded, and future research directions are discussed. The contributions of this work
include the first systematic literature review of multi-robot coverage, following a strict
systematic procedure novel to robotics. A taxonomy and discussion of current works are
provided, and several gaps in current research and avenues for the future are identified.

2. Methodology

A review was conducted to identify the research gaps in the literature on multi-robot
coverage for offshore wind inspection [34]. To ensure the quality of this review, the PRISMA
2018 checklist for scoping reviews was followed [35]. The review was structured according
to the PICo framework for qualitative reviews, as detailed in Table 1.

Table 1. PICo definitions for environmental representations with search concepts.

P I Co

Population Interest Context

Multi-robot systems Coverage Unknown and
unstructured environments

Search Concepts

Multi-robot Coverage Unknown and unstructured

Alternative Terms

Multi-agent

Unknown
Unstructured

Extreme
Real

Based on this framework, the research question and subquestions were formulated
after a brief review of the literature as shown in Table 2.

An advanced search was conducted in the IEEE Xplore, The ACM Guide to Computing
Literature, Scopus, and Web of Science databases. Details of these libraries are presented in
Table 3. These four databases provide time-efficient access to a wide range of peer-reviewed
publications.
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Table 2. Research questions.

Research Question

What is the most suitable framework for multi-robot coverage in domain applications resembling
offshore wind inspection?
Subquestions:

• What is the most suitable environmental model for multi-robot coverage in terms of suitability
for domain applications resembling offshore wind inspection?

• What is the most suitable multi-robot coverage decision making approach for domain appli-
cations resembling offshore wind inspection?

• What is the most suitable strategy to effectively coordinate a multi-robot system for domain
applications resembling offshore wind inspection?

Table 3. Digital libraries used in the review.

Digital Library Description URL Area of Focus

IEEE Xplore

A digital library provides all
IEEE publications, as well
as those from its publishing
partners.

https://ieeexplore.ieee.
org/ (accessed on 20
September 2023)

Computer
science,
electrical
engineering,
and
electronics.

The ACM Guide
to Computing Lit-
erature

The Association of Comput-
ing Machinery’s digital li-
brary provides all ACM pub-
lications and works from all
major publishers.

https://dl.acm.org/
(accessed on 20 Septem-
ber 2023)

Computing
and
Information
Technology

Scopus

Scopus covers 240 disciplines
to ensure researchers, instruc-
tors, librarians, and students
have confidence that they are
not missing out on the vi-
tal information they need to
advance their research and
scholarship.

https://www.scopus.
com/ (accessed on 20
September 2023)

General

Web of Science

The Web of Science is a paid-
access platform that provides
access to multiple databases
that provide reference and
citation data from academic
journals, conference proceed-
ings, and other documents in
various academic disciplines.

https://www.
webofscience.com/wos/
(accessed on 20 September
2023)

General

Based on the research question, a query was formed, as shown in Table 4. Due to
the nature of offshore wind inspection, a search query making use of the term “offshore”
would have yielded no results due to the lack of current research.

Table 4. Search query.

Search Query

• (multi-robot* OR multi-agent*) AND (coverage) AND ((unstructured AND envi-
ronment*) OR (unknown AND environment*) OR (extreme AND environment*)
OR (real AND environment*))

https://ieeexplore.ieee.org/
https://ieeexplore.ieee.org/
https://dl.acm.org/
https://www.scopus.com/
https://www.scopus.com/
https://www.webofscience.com/wos/
https://www.webofscience.com/wos/
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It is the aim of this paper to identify works relevant to the OWT coverage problem
and to synthesise the knowledge from these works through the lens of the OWT coverage
problem. To identify works relevant—albeit not specific—to OWT coverage, works with
“domain applications resembling offshore wind inspection” were identified. In examining
which domain applications closely mirror offshore wind inspection, it is crucial to under-
stand the unique characteristics of the offshore wind inspection environment. Offshore
wind farms are vast and dispersed and composed of repeated turbines, usually at regular
intervals but not always so. The environment can be considered sparse and unstructured
in that regard. Given the nature of the energy being captured by the turbines, these areas
are also highly exposed and prone to unpredictable weather; hence, we can consider the
environment extreme. To ensure that the reviewed works represented the state of the art,
only works published after 2015 were considered, which was achieved through filtering in
the individual databases.

The exclusion criteria presented in Table 5 were formed to remove works that were
not relevant despite not being excluded in screening.

Table 5. Criteria for article exclusion.

Criteria Type Included Excluded

Coverage control Works considering the coverage
path-planning problem

Works considering the cover-
age control problem

Environmental structure

Works considering environ-
ments resembling OTW in-
spection, namely unstructured,
unknown, extreme, or real
environments

Works considering environ-
ments not fulfilling these cri-
teria

Surveys Any non-survey work Surveys

The PRISMA flow chart in Figure 3 shows the number of records identified by the
search strategy for each database. Initially, works duplicated across the searches were
removed. The screening process was carried out by removing works whose title or ab-
stract made no mention of “Coverage”, “Multi-robot”, or “Multi-agent”. The works were
then sought for retrieval and discarded if unavailable or requiring purchase. Finally, the
literature exclusion criteria were used to remove irrelevant works.

Figure 3. PRISMA flowchart showing the exclusion process.
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3. Analysis

The 16 studies included in the review were then analysed. In this section, the process of
analysis of these studies is detailed. As detailed in the research subquestions in Table 2, three
aspects of the coverage problem are considered: (1) environmental modelling, (2) decision
making, and (3) coordination.

Environmental modelling is concerned with the methods used by robots or a central
planner to represent the environment and tasks within it. A taxonomy was constructed
to systematically categorise and analyse the approaches featured in the studies as shown
in Figure 4. This taxonomy of environmental models includes the following categories:
geometric maps, featured in four studies; topological maps, featured in three studies; grid
maps, featured in six studies; voxel-based maps, featured in three studies; occupancy grids,
featured in three studies; and cost maps, featured in one study.

Figure 4. Environmental representation taxonomy with instances of reviewed surveys.

Some approaches involve the use of multiple methods and therefore appear twice.
Using the taxonomy and the details of the reviewed studies, the approaches judged most
suitable for OWT inspections were identified and discussed.

Decision making, as per our definition, corresponds to the collective choices defined
by specified objectives made by a multi-robot system. The applicable studies were analysed
using the model/non-model distinction proposed by Almadhoun et al. [33] and planning
definitions posited by Yan et al. [36]. Almadhoun et al. identified a classification of
approaches based on their assumed prior knowledge. Model-based approaches involve
prior knowledge of the tasks and environmental structure before the coverage task. Non-
model-based approaches forgo this assumption and require modelling of the environment
during the task. Yan et al. identified three components that compose mobile multi-robot
task-planning approaches: task decomposition, task assignment, and motion planning.
Figure 5 details the analysed aspects of Decision Making. Task decomposition is not always
necessary, depending on the prior knowledge, but refers to the decomposition of a multi-
robot task into a set of single-robot tasks. In the case of coverage, task decomposition takes
the form of decomposing the environmental representation into robot positions or poses as
tasks. A task decomposition taxonomy was formed to analyse the approaches’ suitability
for OWT coverage as shown in Figure 6.

Figure 5. Analysed aspects of decision making including the Yan et al. taxonomy [36] and the
Almadoun et al. taxonomy [33].
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Figure 6. Task decomposition taxonomy with instances of reviewed surveys.

Task allocation assumes a set of single-robot tasks and is concerned with how the set
of tasks can be optimally assigned to the robots. Finally, motion planning is how, given
the task assignments per robot, a path for the robots can be constructed to complete all
tasks optimally. Motion planning could be considered a single-robot problem regarding the
order of completing the tasks but, at a lower level, necessitates collision avoidance between
team members.

Farinelli et al. [37] consider coordination to be a form of cooperation, where team
members consider other team members in their actions to increase system performance.
Yan et al. [36] defined coordination as planning to deal with resource conflicts among team
members. The aspects considered coordination in this work are aspects related to potential
resource and reliability issues that may arise from the use of real robots, communication
approaches, team hierarchies, fault tolerance, and robot heterogeneity. Data relating to
these aspects of the studies were extracted from the works where approaches were specified.
The aspects of Coordination are visualised in Figure 7.

Figure 7. Analysed aspects of coordination.

4. Environmental Models

This section aims to answer the following subquestion: What is the most suitable envi-
ronmental model for multi-robot coverage in terms of suitability for domain applications resembling
offshore wind inspection? Wind farms are sparse, unstructured, and dynamic environments.
There are both the predictable dynamics of the rotation of the blades and unpredictability
in the current yaw orientation of the hubs. The turbines are usually spread over a kilometre
away from one another, resulting in large, sparse areas in an environmental model. There
may be a degree of uncertainty in GPS localisation due to the multi-path error resulting
from signals reflecting off the turbines and the sea itself [38]. Therefore, in approaching
this sub-question, we should view the applicability of the models through the lens of
multi-robot offshore wind inspection. To analyse the approaches used in the literature
and best identify those models most suited to domain applications resembling offshore
wind inspection, a taxonomy of models was constructed, as seen in Table 6. These classes
of approaches were then described concerning the specific implementations, followed
by a discussion of the applicability of the reviewed approaches to domain applications
resembling offshore wind inspection. Burgard et al. [39] identified three main challenges
in constructing or choosing environmental models: (1) such models should be compact;
(2) they should be task/application-dependent; and (3) given that they are constructed
from sensor data, they should account for the uncertainty inherent in sensors and state
estimation. An appropriate model for the offshore inspection task should consider these
three factors.



Drones 2024, 8, 10 9 of 36

Table 6. Environmental models used in the reviewed works.

Environmental Model Work (Authors, Year)

Geometric map

Ball et al., 2015 [40]
Masehian et al., 2017 [41]
Karapetyan et al., 2018 [42]
Tang et al., 2022 [43]

Topological map
Ball et al., 2015 [40]
Karapetyan et al., 2018 [42]
Kim et al., 2022 [44]

Grid map

Kalde et al., 2015 [45]
Song et al., 2015 [46]
Perez-Imaz et al., 2016 [47]
Sharma et al., 2016 [48]
Zhang et al., 2019 [49]
Yu et al., 2023 [50]

2D cost map Ball et al., 2015 [40]

Occupancy grid
Colares and Chaimowicz 2016 [51]
Bramblett et al., 2022 [52]
Kim et al., 2022 [44]

Octomap Dornhege et al. 2016 [53]
Dong et al., 2019 [54]

Euclidean signed distance field (ESDF) map Bartolomei et al., 2023 [55]

4.1. Geometric Map

In some approaches, usually where the environment is known a priori, a geometric
map is used. In such approaches, the environment’s shape and obstacles within the
environment are modelled as polygons, an example of which can be seen in Figure 8.
In both [40,42], the geometric map was known a priori, representing the environment
to be covered, and in both approaches, the authors used boustrophedon cell division to
discretise the area into cells in a topological graph. Another method of discretisation
involves overlaying a grid on the model to form a grid map and a rasterisation process,
which was used by Tang et al. [43].

Figure 8. Geometric map with robot paths [42].
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4.2. Topological Map

Choset et al. [56] defined topological representations to represent environments with
graph-like structures, with the nodes representing “something distinct” and the edges
representing the spatial relationship between nodes. The focus of topological maps is
how different nodes, representing points of interest in the environment, are connected
to each other rather than the detailed geometric properties of the space. As such, these
representations are usually in the form of graphs composed of nodes with edges repre-
senting the interconnectivity of nodes, an example of which is given in Figure 9. The
edges in a topological representation can be assigned semantic properties, such as a cost of
traversal or directionality [57]. Topological maps are often contrasted with geometric maps,
although geometric maps can be and often are decomposed into topological representa-
tions. This was the case in [40,42], the authors of which considered an initial geometric
map representation and used boustrophedon cell division, which is described in greater
detail in Section 5.2.1. The result of boustrophedon cell divisions is a set of connected
cells in the environment that takes the form of a topological representation. An occupancy
grid (discussed in Section 4.4) was used by Kim et al. [44] to generate “waypoints” to
ensure sensor coverage of the environment. These tasks can then be viewed as nodes in
a graph connected by edges. Topological maps are rarely considered a priori knowledge;
instead, another representation is decomposed into a topological map, as in [44]. Due to
their simplified and abstract nature, they are better-suited to global path planning, with the
specifics of path planning abstracted to an edge cost value.

Figure 9. Topological representation [56].

4.3. Grid Map

A grid map is a grid of specified dimensions composed of squares of a certain
size. Sometimes, the size of the grid cells represents the size of the robot’s footprint
or a sensor’s footprint such that visiting each cell would provide full coverage of the
environment [45,48,49]. Other times, the grid cell is used to discretise the possible posi-
tions [50] or to facilitate allocation of the environment to team members while still requiring
a coverage path inside the cell [47]. In contrast to topological maps, with known dimensions
and directional relations between cells, grid maps provide an abstracted yet accurate mod-
elling of the environment’s geometry. However, assuming that each cell represents a task, a
grid map can be considered both a metric map and a topological graph. Kalde et al. [45]
provided an example of encapsulating semantics in their grid map through the use of cell
states. This can be seen in Figure 10a. In their work, the cells were in one of four states:
unknown cells, denoted by question marks, represent those that have yet to be explored;
occupied cells, denoted as black cells, represent static obstacles; animated cells represent
robots, e.g., R1, and humans, e.g., H1; and free cells represent explored empty cells, denoted
in white. Sharma et al. [48] used a similar representation. The model used in [49] can
also be described as a grid map. Perez-imaz et al. [47] made use of a hexagonal grid map
rather than a square one. Hexagonal grids facilitate diagonal movement with uniform
distance between cells, as well as better approximation of a circular sensor radius than a
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square, allowing an environment to be represented with fewer cells. A visualisation of the
hexagonal grid map used by Perez-imaz et al. is shown in Figure 10b. Song et al. [46] made
use of a multi-resolution grid-based environmental model. At the smallest resolution, the
cells are the size of the sensor radius, and above that is a map of supercells composed of
four cells. This multi-resolution grid is used to facilitate vehicles escaping local minima.
While these simple multi-state grids are sufficient for the authors’ uses, they do not take
into account sensor uncertainty as per the aforementioned three main challenges [39] and
are therefore unsuitable for real-world applications alone. However, such representations
are compact and therefore particularly useful for high-level planning.

(a) (b)
Figure 10. Comparison of grid maps. (a) Four-state grid map [45]; (b) Hexagonal grid map [47].

4.4. Occupancy Grid

Occupancy grids are common models used to tackle the uncertainty inherent in
sensors. First proposed by Moravec and Elfes [58], the grid is composed of cells with
values representing the probability of their occupancy by an obstacle. These cell occupancy
probabilities were estimated as independent random variables which, while rarely—if
ever—the case in the real world, simplify computation. Numerous approaches now exist
to relax the assumption of cell independence [59]. Colares and Chaimowicz [51] mad
use of an occupancy map in their approach to exploration. The occupancy map was
generated based on their SLAM approach. In their approach, the occupancy grid is used
to compute the costs of frontiers for the team members. Bramblett et al. [52] also mad
use of an occupancy grid representation, using recursive Bayesian estimation to update
the cells given sensor measurements. In this case, the occupancy is once again used to
identify frontier cells, and exploration tasks are generated in areas of high uncertainty,
facilitating complete sensor coverage of the environment. Occupancy grid representations
are particularly useful in unknown environments, as they require no prior knowledge for
their formation. In regard to OWT inspection, occupancy grids have three main areas of use.
By forgoing the assumption of prior knowledge, occupancy grids can account for sensor
uncertainty while facilitating the mapping of an unknown environment. Occupancy values
can act as a component in an objective function to drive the team to explore uncertain
areas. Occupancy grids can also be used to construct a cost map (see Section 4.6) for motion
planning, providing a tradeoff between traversing unknown areas and distance. The effect
of the aforementioned cost map is that a robot would have a degree of reluctance to traverse
unknown areas due to potential of encountering obstacles or dead ends.

4.5. Voxel-Based Mapping

A voxel is a cell in a 3D grid, the term voxel being “an analogy to pixel” [60]. Voxel-
based mapping represents the environment as a 3D grid composed of voxels. The simplest
voxel representation is a 3D binary array, with 1 representing occupancy and 0 repre-
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senting free space [61]. Two implementations of voxel-based mapping were reviewed:
Octomap [53,54] and a Euclidean signed distance field (ESDF) map [55]. Octomap is a prob-
abilistic framework for environmental modelling of 3D cell occupancy based on hierarchical
octrees [62]. The hierarchical nature of the approach can reduce memory usage and facili-
tate varying levels of environmental detail to be captured. Areas with fewer features or in
which mapping is less critical can be mapped at a lower resolution, conserving memory and
reducing the computational cost of future environmental decomposition. Conversely, those
areas of particular interest can benefit from a higher resolution, allowing for more detailed
and accurate mapping and better-informed environmental decomposition. Dong et al. [54]
made use of an Octomap for their exploratory scanning before decomposing it into a 2D
occupancy grid to plan tasks. Dornhege et al. [53] provided a task-planning algorithm
working directly with an Octomap. The use of Octomaps is a very powerful approach
to modelling 3D environments, and its availability as an ROS library has added to its
popularity. An ESDF was used by Bartolomei et al. [55] and described initially in [63].
This is a highly semantic voxel model in which each voxel is linked to a data structure
composed of the voxel’s coordinates, the occupancy probability, the Euclidean distance
to the nearest obstacle, whether the voxel has been observed, the voxels closest to itself,
and information on the area surrounding its closest obstacle. The authors described the
approach’s usefulness in UAV navigation, as “what is truly useful is the information of
free space, instead of obstacles”. The difference between the occupancy grid and ESDF
model is shown visually in Figure 11. Voxel-based mapping approaches are, in their regular
dimensions and regular directional relations (each voxel shares the same spatial relation-
ship with their six neighbouring voxels), similar to the 2D grid-based representations
discussed previously. However, unlike a 2D grid map, they have little use outside of 3D
coverage. While 2D coverage often involves visiting each cell in the environment once, as
in [49], this is rarely the case in 3D coverage. Rather, 3D coverage tasks tend to involve
sensor coverage of either the whole environment [55] or subsections of the environment
of particular interest [53]. Arguably, these tasks are particularly representative of offshore
wind inspection, especially in the case of covering specific areas of interest within a 3D
environment, which can represent turbines themselves or areas of the turbine of special
interest, such as the blades.

Figure 11. An occupancy grid model (left) and an ESDF model (right) [63].

4.6. Cost Maps

Cost maps are grid-based representations in which the value of each cell expresses a
cost of traversal. The cost of a cell, specified as a numerical value, can represent a number
of different attributes of traversing a given cell. In the work of Ball et al. [40], the attribute
in question was a deviation from a high-level planned path to avoid obstacles. They then
made use of a search-based lattice planner (SBLP) to generate paths that minimise the
cost of traversal with respect to the high-level path and detected obstacles. Although not
expressed explicitly, the ROS navigation stack uses a 2D cost map, so other works making
use of ROS are very likely to make use of them also [64]. The ROS cost map builds an
occupancy grid and, based on the occupancy value of a cell, increases the cost of traversal
within a user-specified radius around the suspected obstacles. The effect of this is that the



Drones 2024, 8, 10 13 of 36

path-planning algorithms account for the cost map and select paths based on a tradeoff
between distance and proximity to suspected obstacles. Regarding the coverage path-
planning problem, cost maps find their greatest utility in motion planning, facilitating the
generation of paths between tasks while trading off between the potential of encountering
obstacles and the distance to travel.

4.7. Discussion

A wind farm can be considered an extreme, sparse, and unstructured environment.
The environmental model relates to the task being undertaken, i.e., OWT inspection, but
there are variations in this task. The environmental modelling approaches one should select
depend on a variety of aspects. These aspects can include whether a model is known a priori,
if the team is homogeneous, and whether the blades are moving. This discussion attempts
to map the suitability of the environmental model taxonomic classes to the inspection
problem, keeping in mind the aforementioned characteristics of the environment (extreme,
sparse, and unstructured). The inspection of a turbine involves acquiring sensor data across
the entire turbine or in specific areas of interest such as the blades. Figure 2 provides a
basic description of the components of an OWT. This variant of an OWT inspection is
a 3D structural inspection, a variation of coverage in which the aim is to ensure sensor
coverage of either the entirety of a structure of interest or specific areas of said structure.
The 3D nature of this task excludes the use of 2D environmental models, lending itself to a
voxel-based model.

Considering inspection as the coverage of the structure, in a standard, single-resolution
voxel-based model, the rest of the environment is modelled in the same detail as the turbine.
The result of this single-resolution voxel-based model is inefficient memory use and slower
computation of task decomposition and motion planning (Task decomposition and motion
planning are discussed in Section 5.2.1 and Section 5.2.2, respectively). Therefore, there is an
incentive to make use of an adaptive resolution like that provided by an Octomap [62]. In
doing so, the turbine can be captured in a detailed and accurate voxel-based representation
without also requiring a detailed model of the empty space around it. An additional benefit
of an adaptive resolution for OWT inspection is that it allows for varying levels of coverage
detail based on the specific turbine component being inspected.

One aspect of OWT inspection that may require a novel solution not seen in the
reviewed works is the inspection of moving blades. Blade inspection generally requires
the turbine to stop, but there is a financial incentive to keep the turbine running during
inspection. While an Octomap is updatable and can represent dynamic environments, there
are not any semantic labels attached to voxels to represent which blade is which—just a
value to specify the probability that the voxel is occupied. To ensure coverage of all the
blades, the environmental model needs to keep track of which blade is which. This could
be achieved by applying a semantic label to the moving cluster of voxels that represents an
individual blade; however, this presents challenges such as keeping track of which blade
is which when not in view. In the reviewed literature, no modelling approach accounts
for these moving tasks, representing an avenue for future research. An unaddressed area
is representing heterogeneous tasks, as inspection tasks may require more than one class
of robot. Different types of tasks or motion capabilities in a heterogeneous team need to
be represented in the environmental model. These requirements of certain capabilities
could be represented semantically in topological models by labelling edges based on
traversal requirements or task nodes with information on the necessary capabilities. In
order to semantically label the edges with these traversability requirements, a novel form
of heterogeneous traversability analysis needs to be implemented, which is an open area of
research.

5. Decision Making

This section aims to provide an answer to subquestion 2 from Table 2: What is the
most suitable multi-robot coverage decision making approach for domain applications resembling
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offshore wind inspection? In this work, as mentioned previously, decision making, as defined
by the authors of this paper, is the mechanism by which collective choices are defined by
centralised or decentralised objectives. In order to systematically analyse the approaches’
suitability for the domain, two taxonomies were applied. The first taxonomy relates to the
amount of knowledge available to a system a priori. Almadhoun et al. [33], in their survey
on coverage path planning, classified approaches assuming prior knowledge as being
“model-based” and those without prior knowledge as being “non-model-based”. Model-
based approaches assume a prior environmental model, i.e., a “known environment”,
whereas non-model-based approaches lack this initial knowledge. Knowledge of one’s
environment is a significant advantage, and as one would expect, model-based approaches
usually achieve better performance. Prior knowledge of one’s environment is a strong
assumption, and this prior knowledge is not always available or accurate. The second
taxonomy uses the planning definition proposed by Yan et al. to analyse the works included
in this review [36]. Yan et al. consider planning to be composed of two aspects: task
planning and motion planning. Task planning can be further divided into two subaspects:
task decomposition and task allocation, which are concerned with turning a multi-robot
task into a set of single-robot tasks and then allocating these tasks to the team. Motion
planning involves the generation of paths and trajectories for the team members to travel
to and complete all the tasks.

5.1. A Priori Knowledge

Almadhoun et al. [33] identified a dichotomy in approaches to coverage. Approaches
can either have or not have an a priori environmental model. The authors defined these
groups of approaches as either non-model-based or model-based.

5.1.1. Non-Model-Based Approaches

In the simplest sense, a non-model approach to coverage assumes nothing about
the structural environment, facilitating coverage without requiring a prior environmental
representation. Therefore, these approaches are often used when the environment is
unknown or uncertain. Non-model-based approaches can be described using the terms
“exploration” [50] and “coverage of an unknown environment” [46]. There is a degree of
ambiguity in the terms “coverage” and “exploration”. Yamauchi [65] defined exploration
as a problem of, “Given what you know about the world, where should you move to gain
as much new information as possible?”. A commonality among papers concentrating on
the exploration problem is that the approaches attempt to maximise knowledge of an a
priori unknown environment, that is to say, exploration aims to model the environment
and work to maximise the completeness of the model. On the other hand, coverage can be
roughly split into two distinct problems: (1) covering an environment with the footprint
of a team of sensors in an optimal manner and (2) assigning spatially distributed tasks to
a team of robots in an optimal manner. The former is often decomposed into the latter,
and the latter is an instance of the multi-robot task allocation problem [66]. Coverage can
be considered in an unknown environment without exploration. In [52], a team of robots
with a limited communication range were tasked with exploring an unknown environment.
The authors considered an unknown environment with tasks; hence, the problem required
both optimal full exploration and task allocation coverage. “Exploring an environment by
repeatedly applying path planning algorithm at each instance of time” is a highly specific
definition of exploration proposed by Sharma et al. [48], characterising the online (Online
in the sense of planning for a robot indicates that the plan is generated during run time,
whereas offline plans are generated before the execution) nature of the exploration problem.
The quality of sensor coverage was taken into account in the work of Dong et al. [54],
who stated their problem was collaboratively exploring and mapping a scene such that
scanning coverage and reconstruction quality were maximised, while the scanning effort
was minimised. Among the reviewed works, eight involved non-model-based approaches .
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5.1.2. Model-Based Approaches

An approach can be said to be model-based if it assumes a prior environmental model,
an assumption that simplifies task decomposition [33]. Ball et al. assumed a known ge-
ometric map using multiple modified John Deere TE Gators for crop spraying [40]. This
geometric map was then decomposed into multiple subregions through boustrophedon cel-
lular decomposition. An approach that initially assumes environmental bounds provided
by a set of vertices representing the bounds of an area of interest, which is then decomposed
into a hexagonal grid was proposed by Perez-imaz et al. [47]. Karapetyan et al. considered
a known geometric model that is then decomposed into task areas via boustrophedon
cellular decomposition [42]. Kim et al. [44] also assumed a search region of an arbitrary
shape. Zhang et al. assumed a prior model of the environment in the form of a simple
binary grid map of free cells and obstacles, which is a very common representation in
offline coverage problems [49]. Finally, Tang et al. considered a known geometric model of
the environment. However, due to random dynamic interference, their approach cannot
be computed offline [43]. A prior model of the environment can facilitate prior planning
and optimal solutions to task decomposition and path-planning problems. However, solu-
tions that rely too heavily on prior knowledge of the environment may struggle with the
uncertainty of a real-world implementation, especially in areas with high uncertainty, like
offshore wind farms. Eight of the reviewed works involved model-based approaches.

5.2. Planning

Planning is defined as “the task of coming up with a sequence of actions that will
achieve a goal” by Yan et al. [36]. Planning for a mobile multi-robot system can be divided
into task planning and motion planning. Task planning is a problem of how tasks should
be divided among the team, while motion planning is concerned with devising paths in
order to facilitate locomotion to and completion of said tasks.

5.2.1. Task Planning

Yan et al. [36] defined Task planning as the problem of “which robot should execute
which task”. They then proposed splitting task planning into two further categories:
task decomposition and task allocation. Task decomposition concerns how a multi-robot
problem can be split into single-robot tasks, and task allocation involves how best to assign
these single-robot tasks to the team of robots. The works reviewed in this study are grouped
according to the task decomposition method as detailed in Table 7.

Table 7. Task-planning approaches.

Paper Task Decomposition Task Allocation

Ball et al. (2015) [40] Boustrophedon cell division Not described

Kalde et al. (2015) [45] Frontiers and humans identified as
potential tasks Greedy allocation on a cost matrix

Song et al. (2015) [46] Pre-decomposed Pre-allocated

Colares and Chaimowicz
(2016) [51] All frontier cells as tasks Optimal frontier based on a cost

function

Dornhege et al. (2016) [53] Set of optimal views Greedy allocation or set the coverage
solution with TFD solver

Perez-Imaz et al. (2016) [47] Hexagonal grid K-means clustering

Sharma et al. (2016) [48] Pre-decomposed Pre-allocated

Masehian et al. (2017) [41] Hierarchy of decompositions Allocated based on other classes of
robots identifying tasks

Karapetyan et al. (2018) [42] Boustrophedon cell division or DCS
path splitting Not described

Dong et al. (2019) [54] Set of optimal frontier views K-means clustering
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Table 7. Cont.

Paper Task Decomposition Task Allocation

Zhang et al. (2019) [49] DARP DARP

Bramblett et al. (2022) [52]
All frontier cells as tasks for explo-
ration; tasks discovered in explo-
ration

K-means clustering, auctioning, and
optimal frontier based on a cost func-
tion

Kim et al. (2022) [44] Frontier cells based on the uncer-
tainty of neighbours Heterogeneous k-means clustering

Tang et al. (2022) [43] N/A N/A

Bartolomei et al. (2023) [55] Exploration: clustered frontiers [67];
Collection: uncovered trails

Exploration: optimal frontier-based
with minimal cost;
Optimal trail-based with minimal
cost

Yu et al. (2023) [50] N/A N/A

5.2.1.1. Area Decomposition

The works discussed in this section share in common the decomposition of a 2D plain
into a set of geometric shapes representing coverage areas to be assigned.

In [40], the initial representation was in the form of a geometric map. The task
was decomposed using boustrophedon cell decomposition, as first described in Choset’s
work [68]. The boustrophedon cell decomposition algorithm takes a known geometric
model and decomposes it into a topological representation composed of uneven cells
based on the model’s geometry. This approach works by running a vertical line along the
geometric model, and when an obstacle bisects line two, the current cell is closed, and two
new cells are created as shown in Figure 12. The result of this is several cells that can be
covered in a boustrophedon motion (back and forth). The resulting cells are allocated to
the team of robots, but the details of this were not provided.

Figure 12. Boustrophedon cell decomposition [68].

UAV coverage for first-response rescue and recovery with UAVs was implemented
by Perez-imaz et al. [47]. Hexagonal decomposition was used to decompose the task,
which worked by overlaying the hexagon over the known geometric environment, with
the hexagon’s size representing the sensor range. The tasks are allocated using K-means
clustering, and each hexagon within a Graph is formed. While the approach considers a
multi-robot team, the conducted real-world experiments carried only used a single UAV.

A purely offline approach was considered by Karapetyan et al. [42] in their approach
to autonomous surface vehicle coverage. Their method adopts two approaches to environ-
mental decomposition: boustrophedon cell division, as used by Ball et al. [40], and a Dubins
coverage solver (DCS). The DCS splits the environment into several passes to form a graph,
outputting a Hamiltonian path. In Dubins coverage with route clustering, this Hamiltonian
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path is then split among the team. Another approach known as Dubins coverage with
area clustering segments the environment with Boustrophedon cell division, clusters cells
together, then uses the DSC to create the tasks. Task allocation was not discussed.

All the works reviewed in this section consider the coverage footprint and the sensing
platform to be inseparable, i.e., an individual robot has a sensing footprint of a specified
size centred on itself. In a 3D structural inspection, this is not the case; rather, the sensor
footprint is always separate from the sensing platform. While the relevance of decomposing
a 2D space into several regions to be covered does not have an obvious application in OWT
inspection, it is worth considering the extendability of the reviewed approaches to the 3D
structural inspection problem. One possible avenue for this is the decomposition of 3D
space into a set of assignable regions. Both DARP and boustrophedon cell divisions rely
on 2D geometry to decompose the environment, so extending them may not be simple.
As the problem we are considering involves sensor coverage of a structure, segmenting
the environment without consideration of the structure to be sensed would likely result
in suboptimal solutions. An alternative approach is to use these task decompositions as
a component of a larger task decomposition approach. In the case of OWTs this could
involve the use of an area segmentation method to decompose the structure’s surface
into continuous sections that can be assigned to the robots within the team. Following
this, the coverage problem can be seen as a set of single-robot coverage problems in the
assigned regions.

5.2.1.2. Frontier-Based Decomposition

The concept of frontier-based exploration was first introduced by Yamauchi [65] in
1997. These approaches harness environmental uncertainty to generate tasks or viewpoints
iteratively, allowing for exploration or coverage with limited knowledge of the environment.
Viewpoints are usually selected based on a cost function aiming to maximise the reduction
in uncertainty upon moving to them.

Kalde et al. [45] considered the problem of exploring an unknown environment with
wheeled robots. The authors’ approach to this problem is frontier-based iterative planning
with human guidance. At each planning interval, the environment is first decomposed
by identifying tasks as either frontier tasks or human tasks. In this work, humans can
assist robots in navigation by leading them. The approach makes use of a parametric
heuristic to equilibrate the frontier tasks and the human tasks. This parametric heuristic
takes the form of a “mixed cost model”, where a cost value is computed for each agent–task
assignment in a cost matrix. The cost function is formed from two components. The
distance component is simply the distance for the robot to traverse to a task. The penalty
component is composed of a time penalty and an orientation penalty, the time penalty
being the time elapsed since the frontier’s discovery and the orientation being the smallest
angle between the robot’s orientation and the direction of the frontier or orientation of the
human. Given the cost matrix, two greedy approaches were used—one fully decentralised
and one locally coordinated.

Colares and Chaimowicz [51] considered an instance of the exploration problem using
a frontier-based approach. The task was decomposed by considering all known frontier
cells’ potential targets. For task allocation, a three-component cost factor was used in
a distributed fashion. The first component is an “information factor”, which quantifies
the potential information gained by visiting a cell based on its neighbours. A distance
component was used, with two variables to change the behaviour by favouring close or
distant frontiers. Finally, a coordination factor penalises selecting a frontier close to a
known neighbouring robot. A visualisation of this frontier method is given in Figure 13.
Therefore, the optimal frontier is selected for each robot. The approach was successfully
implemented with two Pioneer 3AT wheeled robots to explore an indoor environment.
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Figure 13. Colares & Chaimowicz’s frontier detection [51].

Another exploration approach was considered by Dong et al. [54]. This was im-
plemented in an indoor environment with a team of up to six Turtlebots. The authors
considered an Octomap representation projected on the floor plane and used the uncertainty
to decompose the task. The approach also uses a validity map, which provides the possible
poses of a sensor. The voxels positioned on frontiers are sorted according to uncertainty
in a priority queue; then, the validity maps are considered to find poses that rays pass
through the voxel. The pose with optimal validity is selected, where validity is composed
of the deviation from 0 degrees and a function of the optimal distance. For the view being
selected, all voxels within its view are removed from the queue. This process repeats until
a specified number of views is generated. As for task assignment, the problem is viewed as
an optimal mass transport problem. This problem is formulated and then discretised to
an objective function with three components to be minimised. A compactness component
penalises spatial scattering of assigned tasks, a distance component minimises travelling
cost, and a capacity component ensures robots can complete only some tasks within their
capacity for a given interval. This was then optimised using a modified k-means clustering
algorithm. Zhang et al. [49] considered area coverage using UAVs with mobile charging
stations. The continuous area was initially split into tasks through gridmap decomposition.
They then made use of a modified version of the DARP (Divide Areas based on Robot’s
Initial Positions) algorithm to avoid discontinuities via edge detection. This effectively
allocates areas of the grid for coverage. The authors made use of Crazyflie UAVs adapted
for mobile charging and wheeled mobile charging stations.

As discussed previously, Bramblett et al. [52] were concerned with the problem of
coverage of tasks in an unknown environment; as such, planning has to occur for both tasks.
For exploration, a Sobel operator is used on the occupancy grid to identify frontiers based
on the gradient between known and unknown space. Those frontiers representing obstacles
are discarded. Naive to and in tandem with edge detection, the unknown environment is
clustered using K-means clustering for each robot. Tasks are then auctioned to the robots
in a centralised manner. The robots then act in a greedy manner using a cost function
that favours closer tasks, but tasks outside of the robot’s assigned task area are penalised
according to their distance from the task area. Regarding the coverage aspect, the tasks
are “decomposed” from the environment in the sense that they are discovered during
exploration. The decision logic for coverage is shown in Figure 14. This search involves
seeking a robot that does not have a rendezvous, which indicates that it is likely to have
found a task. Exploitation is the act of working on a task. The authors implemented the
approaches using three Husarion ROSbot 2.0 UGVs.
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Figure 14. Bramblett decision logic [52].

Kim et al. started with a geometric representation of the environment [44]. Their
approach considers the degree of heterogeneity in the sense that team members have
different sensor ranges. The tasks are generated based on the smallest sensor range while
grouping unknown frontier cells. Task assignment is treated as a clustering problem. The
authors extended K-means clustering to their Heterogeneous clustering algorithm. This
clustering algorithm considers both the spatial proximity of two agents and the weighted
distance based on the sensing ability of the specific robot.

Finally, Bartolomei et al. discussed the exploration of forests with a team of UAVs [55].
This method involves two modes for the robots in the team: exploration and collection.
Exploration is, as expected, focused on obtaining new knowledge of the environment,
while collection is concerned with cleaning up the “trails” of unexplored areas left by
exploration. Exploration tasks are decomposed from clustered frontiers. The authors did
not specify the clustering algorithm they used. Given the cluster centroid, candidate views
in a cylinder focused on the centroid are considered. The view with the highest coverage
of the cluster is then selected as the optimal view for that cluster. A set of optimal views
among the clusters from the decomposed tasks is used for task allocation. These clusters
also undergo classification, with those representing trails being semantically classified
as such based on their isolation. A mechanism for declaring areas of interest for a team
member takes place between two robots if they are inside the communication range. This
area of interest is used by the robot to select tasks from the previously discussed set of tasks.
The exploration assignment is based on a cost function with four components: distance and
change-of-direction components, a label component to penalise trails, and a component to
valorise views near the area of interest. As for those team members assigned as collectors,
they cover trails through a cost function only considering distance and proximity to the
area of interest.

The value of frontier-based approaches is their coverage application when knowledge
of the environment is limited and there are uncertainties in regions of the map. When con-
sidering the applicability of these methods to the OWT inspection problem, it is important
to take into account prior assumptions. If the entire environment is considered known a
priori, frontier-based approaches have few clear benefits. Frontier-based approaches can
work in a decentralised manner, potentially performing better where communication may
be limited. In situations where the turbine’s location may be uncertain, such as in cases
involving floating turbines in areas with large currents, there could be value in using a
frontier-based approach, ideally while still accounting for the known general geometry of
the OWTs.
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5.2.1.3. View Decomposition

While there is only one example of this decomposition approach, it proves to be one
of the most applicable. View decomposition attempts to, for a known structure in a known
location, find a set of views that optimally cover the surface of the said structure with the
sensor footprint

Dornhege et al. [53] tackled a coverage search problem with a team of wheeled robots.
The authors considered an Octomap environmental representation with a known search
set of voxels. For each voxel in the search set, several random vectors are generated; then,
ray tracing is used to find a set of grid cells that represent possible sensor states along the
vector. The corresponding grid cells from the ray tracing are used to increment a utility
function for the grid cells, which is done for all cells in the search set to create a utility
map across all accessible sensor states. States over a given utility threshold are added to a
set of useful sensor states. For task allocation, the problem can then be considered a set
cover problem, given a search set and a set of sets representing those observers’ cells for
a sensor position, finding the minimal set of sensor positions that cover the environment.
Dornhege et al. used a variant of the temporal fast downward planner to solve this set
cover problem as a planning problem. Alternatively, the authors used a greedy approach
in which the views were selected for each robot iteratively based on the cost. The cost in
the greedy approach can either balance the view utility and the travel time or be the travel
time. This task allocation method also ensures a high-level path plan.

While this approach may be the most readily applicable to the OWT inspection prob-
lem, it would need modification for this use case. The authors considered only wheeled
robots and chose the possible sensor states based on this assumption; for OWT inspection,
USVs and UAVs would be necessary. USV sensor positions have specifications similar
to those of wheeled robots, as they are limited to the surface level, whereas UAVs are
not bound to the surface. The capability of UAVs to reach almost any position in space
would possibly make the approach proposed by Dornhege et al. [53] infeasible owing
to computational complexity. The authors also did not account for camera orientation
and distance concerning the surface of the structure to be inspected. The application of a
method similar to theirs to OWT inspection would need to account for sensing quality by
ensuring that the sensor is positioned to capture useful information, which can be achieved
by requiring a certain proximity and orientation relative to the surface being captured.
Applying these requirements would benefit the computational complexity of the solution
by reducing the number of possible sensor states to those that fulfil the requirements. This
approach also does not account for uncertainty in the environment, requiring a full a priori
model with no dynamics.

5.2.1.4. Hierarchical Decomposition

Masehian et al. [41] proposed an interesting hierarchical, heterogeneous approach to
coverage of an environment with limited sensing capabilities. In their approach, there are
three classes of robots, each with a different sensing capability and differing behaviours. A
quadridirectional robot with four quadridirectional sensors is not assigned tasks as such;
rather, it initially starts a boustrophedon motion across the environment. The quadridirec-
tional robot identifies obstacle and wall boundaries, which represents task decomposition
for the second robot class, i.e., a boundary-following robot equipped with a radial sensor.
The assignment for a boundary-following robot class is the robot with minimal distance.
This robot follows the boundary, and if a sensed point does not align with the last two
points, a task is created for the last robot in the hierarchy. The gap robot can identify gaps
between obstacles within a radius and is therefore assigned the potential gaps identified by
the boundary follower.

While this work addresses a very specific case, it touches on an interesting aspect
of the OWT inspection problem. When addressing OWT inspection, there is potential to
utilise the heterogeneity of capabilities to increase the quality of inspection. While this
is not necessary for the problem as defined by us, it could be of practical use in industry,
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acting as a variant of the inspection problem. In other words, identifying areas of interest
would involve identifying a damaged area from a distance with a suitable sensor, and
then using a team member with a different sensor to elaborate on the identified damage
by moving closer. This behaviour, while not identical, resembles the approach used by
Masehian et al. [41] in the generation of a hierarchy of tasks based on the sensing capabilities
of other team members.

5.2.1.5. Pre-Decomposed and Non-Decomposing Approaches

Some works reviewed is this study did not consider the decomposition of the environ-
ment, and others, such as those involving reinforcement learning approaches, did not view
task decomposition as a problem separate from motion planning; as such, the specifics of
these works are discussed in greater detail in the motion planning section.

Song et al. [46] focused on the use of AUVs for full sensor coverage. In their ap-
proach, the environment is assumed to be pre-decomposed into subregions, and initial
task allocation is not considered. Instead, their approach focuses on motion planning and
fault tolerance, the former of which is discussed in Section 5.2.2 and the latter of which is
discussed in Section 6.

Sharma et al. proposed an approach in which both the environment is pre-decomposed
and task areas are pre-assigned [48].

Tang et al. [43] proposed a worker station approach to coverage. In this approach,
the environment is decomposed into a grid, but the resulting cells cannot be viewed as
tasks. The authors used a reinforcement learning approach, so tasks were not allocated
as such. The reinforcement learning approach’s action space is concerned with the linear
and angular velocity of a single robot, as discussed in Section 5.2.2. The approach was
implemented using a skid-steer wheeled robot as a station and two differential-driven
wheeled robots as workers.

5.2.2. Motion Planning

As previously described, motion planning is concerned with devising paths to facilitate
locomotion to and completion of the previously planned tasks. In some cases, motion
planning alone is used without task allocation; for example, greedily covering a geometric
map may not involve discrete tasks but only motion planning. Path planning is defined by
Kavraki and LeValle [69] as finding a collision-free path from an initial pose to a goal pose.
The problem being considered here more closely resembles the multi-goal path-planning
problem proposed by Wurll et al. [70], i.e., finding a collision-free path connecting a set of
goal poses while minimising a cost function. Solutions often consist of two tiers: a global tier
and a local planning tier. Global planning approaches solve the multi-goal path-planning
problem at a higher level, sometimes forgoing consideration of collision altogether, while
local planning more closely resembles the traditional path-planning problem, concerned
with a path from an origin to a goal while avoiding collision and minimising cost. The
approaches in the reviewed works are summarised in Table 8.

Table 8. Summary of motion planning approaches.

Paper Motion Planning Approach

Ball et al. (2015) [40] Search-based lattice planner with a local pure pursuit
controller

Kalde et al. (2015) [45] Potential field on a grid map

Song et al. (2015) [46] Generalised Ising model with local and global navigation
mechanisms

Colares and Chaimowicz (2016) [51] Not specified beyond iterative task selection
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Table 8. Cont.

Paper Motion Planning Approach

Dornhege et al. (2016) [53]
Single TSP problem solved with Temporal Fast
Downward planner or Lin–Kernighan heuristic or a single
greedy approach split according to the number of robots

Perez-Imaz et al. (2016) [47] Dijkstra’s algorithm on a hexagonal graph with a
lawnmower pattern

Sharma et al. (2016) [48] Directional motion and nature-inspired algorithms

Masehian et al. (2017) [41]
Different policies for different classes of robot:
boustrophedon motion, boundary following, and
guide-path following with obstacle avoidance

Karapetyan et al. (2018) [42] Dubins coverage solver with TSP problem solving

Dong et al. (2019) [54] Christofides’ algorithm for TSP approximation with path
smoothing

Zhang et al. (2019) [49] Spanning tree coverage algorithm

Bramblett et al. (2022) [52] A* path-planning algorithm with iterative frontier-based
tasks

Kim et al. (2022) [44] Genetic algorithm for TSP problem with A* algorithm and
B-spline for path computation

Tang et al. (2022) [43]
Reinforcement learning with a multi-layer perception for
the policy network, with the action space comprising
angular and linear velocity

Bartolomei et al. (2023) [55] Trajectory generation integrated with task allocation

Yu et al. (2023) [50]

Reinforcement learning with a decentralised multi-tower
CNN-based policy. The action space represents a global
goal, and local navigation is achieved with the A*
algorithm.

An example of this distinction between global and local path planning was provided
by Ball et al. [40]. In this approach, the global planner makes use of a search-based lattice
planner to find the best path, both considering the cost of motion primitives and minimising
the cost of traversing a cost map while avoiding obstacles. A local pure pursuit controller is
used for the global planner path if followed optimally, using two PI controllers to minimise
the error in the robot position and the global planner path. If a collision is detected in the
global path, the local pure pursuit controller can reject it and ensure that the global planner
recomputes a new path. Kalde et al. [45] described motion planning using a potential
field propagated on the grid map. Another two-level approach to motion planning was
considered by Song et al. [46]. As discussed earlier, the authors considered a multi-layer
grid representation, and their local navigation works on the lowest level of this grid. They
described their navigation as being based on a generalised Ising model. The cells within
the Ising model can be categorised as one of three states: obstacle, explored, or unknown.
Local potential energy is formed based on the state of the cell and its neighbours. A
component of the local potential energy is a constant potential energy field that encourages
back-and-forth motion for coverage. For each robot, the target is therefore the cell with
the highest energy potential. But it may be the case that a robot could get caught in
a local minimum. The authors accounted for this eventuality with a global navigation
mechanism. Global navigation works on a coarser grid than local navigation, using a
low-dimensional probability vector to restore environmental information for the coarser
grid. Then, much as with local navigation, a target is selected and navigated towards until
local navigation is possible. Colares and Chaimowicz’s work does not discuss the specific
motion planning approach implemented beyond the iterative task selection previously
described [51]. Dornhege et al. approach path planning by treating it as a set of single
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travelling salesman problems (TSPs) (The travelling salesman problem is a well-known
mathematical and computer science problem that can be summarised as, “Given a list of
cities and the distances between each pair of cities, what is the shortest possible route that
visits each city exactly once and returns to the origin city?”), given the result of their set
cover problem. The authors solved the TSP problem for each subset using either a Temporal
Fast Downward planner [71] or a Lin–Kernighan heuristic [72]. An alternative method
the authors used involves extending the single-robot greedy allocation by taking a single
greedy plan for the environment and splitting this path according to the number of robots.
These approaches provide a global path plan for traversing a topological graph, but details
on path planning to account for the structure of the environment itself are sparse. Given the
topological graphs decomposed and clustered from the hexagonal graph presented by Perez
Imaz et al. [47], the authors ensured a lawnmower pattern within the hexagons by using
parallel lines intersecting with the hexagon to create nodes, then using Dijkstra’s algorithm
to generate the path. An optimal angle of the path for each hexagon is found to minimise
the complete coverage distance. Sharma et al. [48] split the environment into several task
areas to be covered. Until the entire areas for a robot are covered, an iterative path-planning
approach is adopted. At any given iteration, the robot randomly chooses one of two motion
policies: directional motion or a nature-inspired algorithm. Directional motion has two
variations: a directional scattering effect moves in the direction of a “cluster head” selected
randomly to encourage exploration or, under a zigzag search effect, the cluster head is
chosen dynamically, ensuring more random and less directional motion. The authors
modified particle swarm optimisation, bacteria foraging, and bat algorithms for multi-robot
exploration. The particle swarm optimisation algorithms were found to perform optimally
for exploration. The motion planning described by Masehian et al. [41] takes into account
the heterogeneous nature of the team involved. Each of the three classes of robot has a
different motion planning policy. The quadridirectional robots use boustrophedon motion
to cover the task area. During boustrophedon motion, the robot may become trapped in a
corner, which is resolved by referring to its observation history and finding any gaps it may
have passed since its last row, backtracking to this point and continuing in the direction
of that gap. The boundary-following robot follows the boundary of an obstacle or wall.
This is done by considering a band representing an optimal distance from the obstacle
around the edge of said obstacle that the robot should stay within. The gap robot’s motion
planning can be considered a classical path-planning problem; given a task, the aim is to
find the optimal path from the current location to the path. The robot considers a guide
path, which is the direct line from the robot’s position to the task. Upon the gap robot
sensing an obstacle along the guide path, it randomly decides whether to go left or right
around the obstacle. Karapetyan et al. [42] used the Dubins coverage solver proposed
by Lewis et al. [73], an approach that involves solving the TSP problem for generated
rows while accounting for Dubins constraints. A TSP problem was also considered by
Dong et al. [54] after selecting some tasks for a given robot. For this purpose, the authors
used the Christofides algorithm to calculate a TSP approximation, the path of which was
then smoothed. Examples of paths over an iteration are shown in Figure 15.

Zhang et al. [49], previously having decomposed the environment into a set of task
areas, produced a coverage path common to offline coverage of gridmap environments a
spanning tree coverage algorithm. Spanning tree coverage capitalises on the grid structure
by grouping sets of four cells together and considering these supercells to find a spanning
tree. This spanning tree can then be traversed by the robots in the team, forming a cycle
across the entire environment. Bramblett et al. [52] considered the iterative frontier-based
task as discussed earlier. To navigate to these tasks, they used the A* path-planning
algorithm. Kim et al. [44] used a topological graph, as discussed earlier, and considered
the TSP problem. Their approach to the TSP problem is a genetic algorithm [74]. The path
between the points in the TSP solution is then computed using an A* algorithm, and a
spline function of that using a B spline is implemented. Tang et al. [43] were concerned
with the use of reinforcement learning coverage; as stated earlier, this doesn’t involve task
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planning as such. The authors described their multi-agent reinforcement learning problem
as a “Decentralized Partially Observable Markov Decision Process”. They followed a
centralised training and decentralised execution paradigm. The observation space consists
of the robot’s information, information from its sensors, and information from robots within
communication range. The action space consists of linear and angular velocities. Their
reward function is composed of four components. A completion reward is awarded for
finishing coverage, and the second component approximates worker capacity, providing
a negative reward if the energy capacity of a robot is beneath a threshold value. During
the training phase, robots can continue coverage with depleted capacity. The third reward
is a negative reward for collisions, and the final component is a constant negative reward
to encourage an optimal time. The authors used a multi-layer perception for their policy
network. Path planning was computed by Bartolomei et al. [55] through task allocation,
and the trajectories were then generated using the approach proposed by Zhou et al. [75].
Another reinforcement learning approach was considered by Yu et al. [50]. For this purpose,
the authors made use of an asynchronous variation of the multi-agent proximal policy
optimisation algorithm [76]. The task is modelled as a decentralised, partially observable
semi-Markov decision process. A multi-tower CNN-based policy is used for each agent.
The action space is a global goal, but atomic actions enact this goal using the A* algorithm. A
three-component reward function is used: a coverage reward proportional to the discovered
area, a success reward when a threshold value of coverage is achieved, and an overlap
penalty for repeating coverage. The team members communicate extracted features from a
CNN local feature extractor to one another.

Figure 15. Paths over an iteration in the work of Dong et al. [54]. (a) The decomposed viewpoints
and the robot starting positions. (b) The multiple TSP paths from the robots. (c) The smoothed paths
for the robots.
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5.3. Discussion

When discussing the applicability of decision making approaches to domain applica-
tions resembling OWT inspection, an initial question is whether model-based or model-free
approaches are better suited to the task. In an OWT inspection, the orientation of the
turbine is not tracked; multi-path error makes GPS positioning unreliable [38]; and in the
case of floating OWTs, the entire structure can excur up to 35% of the depth of the mooring
system [28]. A case could be made that a model-free approach would better account for
the uncertainty of the turbines’ poses. As previously proposed in Section 4.7, the OWT
inspection task lends itself to 3D environmental models, with semantics labels for a search
set representing the structure to be inspected.

Given a 3D voxel-based environmental model with a subset of voxels representing the
search set, what planning approaches should be used to provide sensor coverage of the
search set with a team of robots? The answer to this question depends on the assumed prior
knowledge. Given the full environmental model a priori, a task decomposition approach
such as that proposed by Dornhege et al. can be used [53]. However, Dornhege et al. were
concerned with wheeled robots and the set of reachable voxels along the ground; applying
the same approach to UAV OWT inspections would require a much larger set of reachable
voxels, considerably increasing the computational cost of the set cover solution. One
solution to reduce this problem is to apply bounds within which voxels are considered—
not based on voxel reachability but on proximity to the search set. As for task allocation, the
approaches reported in the literature are quite limited; approaches like greedy allocation or
K-means clustering would work but may not provide near-optimal solutions. As for motion
planning, given the assigned tasks for the team members, an open TSP approximation
should be computed over the assigned task, generating a high-level path plan [53]. To
follow this plan, a 3D cost map in the form of an ESDF should be used to prevent collisions
with obstacles [55], and the path considers a tradeoff between the length and the cost.
None of the task allocations take into account the dynamics of the OWT environment;
for example, strong winds may increase the time to reach a given task, and this could be
accounted for in terms of task cost. Additionally, none of the approaches considers the
disruption of task performances itself, such as a strong gust of wind or a wave disrupting
the image capture process for a given robot, which would require dynamic reassignment of
the task to the team.

As previously discussed, an accurate model of the environment can be unrealistic in an
OWT inspection due to the mobility of floating OWTs and the dynamic nature of the nacelle
yaw and blade rotation. It may be necessary to treat the task as an exploration problem,
following a similar approach to task decomposition as proposed by Dong et al. [54]. As
with the approach of Dornhege et al., the issue with the approach of Dong et al. is its
assumption of wheeled robots. Another issue is the approach’s focus on exploring an
entire environment rather than a search set of interests. This represents an area for future
research. If the search set is not known a priori (as in the work of Dornhege et al. [53]),
task decomposition requires the inference of the search set from sensor information (which
requires the team to identify the OWT as the search set in an online manner). Assuming such
an approach to identify the search set at each iteration, a frontier-based approach can be
applied to generate tasks at the frontier of the known search set to identify more OWTs. Task
allocation and motion planning can be achieved in much the same way as for model-based
approaches. The predictable general geometry of the turbine could be utilised to allow
these tasks to be generated. Such coverage of an unknown environment with significant
prior knowledge, i.e., a structure-informed coverage of an unknown environment, is an
interesting area of research that, as far as the authors are aware, has not received attention
so far.

6. Coordination

This section aims to provide an answer to subquestion 3 from Table 2: What is the
most suitable strategy to effectively coordinate a multi-robot system for domain applications resem-
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bling offshore wind turbine inspection? Coordination has many definitions in the literature.
Farinelli et al. [37] consider coordination to be cooperation according to which team mem-
bers take actions in consideration of other team members “in such a way that the whole
ends up being a coherent and high-performance operation“. Yan et al. [36] defined it as
multi-robot planning to deal with resource conflicts, be they conflicts in terms of space,
tasks, or communication media. Cao et al. [77] defined coordination as follows: “Given
some task specified by a designer, a the multiple-robot system displays cooperative be-
haviour if, due to some underlying mechanism (i.e., the “mechanism of cooperation”), there
is an increase in the total utility of the system”. While it is true that in all the approaches
discussed, the team members coordinate to increase the utility of the system, this section
focuses on coordination mechanisms necessary to resolve issues brought about by the
dynamics of a task environment or the online nature of an approach. The decision making,
even if aware of and, therefore, coordinating with other team members, is discussed in the
previous section. Here, we discuss the necessary communication mechanisms required
to facilitate this coordinated decision making. To succinctly evaluate the coordination
mechanism in the reviewed works, they were charted as shown in Table 9, which shows
whether the works take an online or offline approach to planning, as well as details of
communication, whether the teams are heterogeneous or have an inter-team hierarchy, and
whether fault tolerance is considered. These categories provide context concerning how
the team members coordinate to complete their tasks.

Table 9. Table of data extracted for the coordination research question.

Literature Online/Offline Communication Hierarchy Heterogeneity Fault Tolerance

Ball et al. (2015) [40] Online Extrinsic No Homogeneous Not discussed

Kalde et al.
(2015) [45] Online Extrinsic No Homogeneous Not discussed

Song et al.
(2015) [46] Online Extrinsic Dynamic hierarchy Homogeneous Not discussed

Colares and
Chaimowicz
(2016) [51]

Online Extrinsic No Homogeneous Not discussed

Dornhege et al.
(2016) [53] Offline Extrinsic No Homogeneous Not discussed

Perez-Imaz et al.
(2016) [47] Online None No Homogeneous Yes

Sharma et al.
(2016) [48] Online None No Homogeneous Not discussed

Masehian et al.
(2017) [41] Online Extrinsic Yes Heterogeneous Not discussed

Karapetyan et al.
(2018) [42] Offline None No Homogeneous Not discussed

Dong et al.
(2019) [54] Online Extrinsic No Homogeneous Not discussed

Zhang et al.
(2019) [49] Online Extrinsic No Heterogeneous Not discussed

Bramblett et al.
(2022) [52] Online Extrinsic No Homogeneous Not discussed

Kim et al.
(2022) [44] Online Extrinsic No Heterogeneous Yes
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Table 9. Cont.

Literature Online/Offline Communication Hierarchy Heterogeneity Fault Tolerance

Tang et al.
(2022) [43] Online Extrinsic No Heterogeneous Not discussed

Bartolomei et al.
(2023) [55] Online Extrinsic No Homogeneous Not discussed

Yu et al. (2023) [50] Online Extrinsic No Homogeneous Yes

6.1. Collaboration in Decentralised Planning

In centralised approaches, a central planner assumes knowledge of the state of the
environment and dictates tasks based on this global view. Such an approach is powerful and
can find optimal solutions if feasible, but this is very rarely feasible. Communication issues
or failure of the planner have a catastrophic effect on online coverage with a centralised
planner. Hence, many approaches attempting to perform coverage with communication
restraints implement distributed approaches to the problem. Additionally, decentralised
approaches can handle a larger number of robots by distributing the computation among
robots. In our review, eight works were identified using decentralised planning. As
discussed earlier, Kalde et al. [45] considered a decentralised frontier-based approach. The
robots share a map and their locations. With the locations of the robots shared, a task robot
cost matrix is formed by each robot using the map; however, the matrix only considers
robots local to the computing robot to optimise the assignment. While centralised task
allocation was considered by Song et al. [46], a decentralised approach was adopted to
handle unequal task sizes. In this approach, once a robot completes its initially assigned
task, it starts a cooperative game with robots local to it in need of help. Cooperative games
are one of the state-based potential games described by Marden [78]. In their case, the
cooperative game is said to be made up of coalitions of two robots, each with a payment
balancing the distance to the task of the receiving robot and the remaining uncovered cells
in the task. Given this, the optimal coalition is selected by the initiating robot, which assists
in the completion of the receiving robot’s task. This process is shown in Figure 16.

In Colares and Chaimowicz’s work, a single utility function taking into account robot
positions was used to coordinate decision making [51]. The robots communicate implicitly
through a camera identifying their positions and poses in the locale. After this implicit
identification, the robots share their maps and pose information, and the initial robot com-
municates an estimated pose for the spotted robot relative to itself. Using this information,
map stitching is used to combine the map information for both robots. The cost function
used to assign tasks for a given robot is implemented in a decentralised manner, with a
cost function composed of the value of a task based on its neighbours; the distance to the
task; and—most relevant to this section—a coordination factor disincentivizing allocation
of tasks close to the identified neighbouring robots. Bramblett et al. [52] considered explo-
ration and task coverage in an unknown environment under the constraint of a limited
communication range. Therefore, the team is required to rendezvous intermittently to share
environmental and task information. For the exploration phase, K-means clustering is used
to assign task areas to robots whenever they can communicate. The clusters are auctioned in
a centralised manner. A rendezvous mechanism is used whenever all robots are connected,
which finds a valid navigable point with minimal distance to the centroids of the robots’
partitions. After some time, the robots navigate back to this rendezvous point to share
information. If a task is discovered during exploration, a rendezvous policy representing
the cost of rendezvousing is formed from the potential path to the rendezvous and the
unknown space it passes through balanced with the subtraction of the global expected
path length from the length of the explored path and the task length. The approach used
by Tang et al. [43] for coordination takes the form of the use of two classes of robot for
the coverage problem. The authors adopted worker station approach to coverage where
the workers have limited energy, while the stations have unlimited energy and the ability



Drones 2024, 8, 10 28 of 36

to replenish the workers. They considered this problem as a multi-agent reinforcement
learning problem. The robots can communicate and use this communication to form their
observations of the environment. The observation space is composed of three components:
zero-range observations are the position velocity and energy of the agent; perception-range
observations provide information about obstacles and agents within the perception range;
and communication-range observations include information about the agents within the
communication range. The authors made use of centralised training–decentralised execu-
tion (CTDE), in which their critic network has full knowledge of the environmental state
but the actions of an individual agent are based on local observations. Additionally, a
two-stage curriculum is used for training, with a simple environment of one actor and one
station used initially until convergence, followed by an environment with two stations and
four workers [79]. Multi-layer perception policy networks are shared between robots of
the same class but differ between the worker and the stations to account for their differing
abilities. A visualisation of their deep reinforcement learning pipeline is shown in Figure 17.

Figure 16. Kalde et al.’s cooperative collaboration game: (a) The robots start coverage (b) Several
robots finish coverage and move to assist others (c) The areas are split between the collaborating
robots (d) Coverage is completed [45].
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Figure 17. Tang et al.’s deep reinforcement learning pipeline [43].

In the work of Bartolomei et al. [55], a team of robots completed exploration with
roles, exploration, and collection. The members of the team can vary roles based on the
needs of the team. Exploration involves seeking large patches of unexplored frontier, while
collection prioritises small, unexplored sections of the map surrounded by covered areas.
The robots, by standard, take on the role of an explorer, but given a threshold number
of disjointed unexplored regions close to the robot, switch to collector mode. Another
approach that considers the problem of multi-robot reinforcement learning for exploration
was considered by Yu et al. [50]). The authors noticed that the existing literature primarily
focused on agents acting in a fully synchronous manner, which is a problematic assumption
for real-world adoption. As such, they adopted an asynchronous multi-agent proximal
policy optimisation approach to training. Each robot has its policy network; therefore,
behaviour varies between members. To better facilitate communication between the robots,
a CNN was used for feature extraction from the local environmental map, and these features
were then shared between members of the team. To further facilitate collaboration, the
reward function takes into account the overlap between the coverage of the robot and the
rest of the team, discouraging repeated coverage of the same area.

6.2. Communication

Nordin et al. [16] identified several issues with communication in offshore wind
turbine environments. For example, there is likely to be no cellular network coverage
due to the distance from land. Furthermore, normal satellite communication has a high
latency that would hinder online planning, and although there now exists real-time satellite
communication in the form of the Inmarsat SwiftBroadband satellite service, it may be
hindered due to proximity to the towers [80]. The authors’ proposal is the use of USVs to
connect to a satellite service positioned away from the towers, enabling communication
with the UAVs through an ad hoc Wi-Fi network. Communication was classified into two
categories by Matric [81]. Direct communication is purely communicative, transmitting
data from one agent to another or to a central planner. Indirect communication is based on
observation; a robot could, for example, sense the tracks of another robot, communicating
the fact that an area has been visited. While all online cooperative approaches considered
in this review make use of explicit communication, some additionally make use of implicit
communication. In the approach of Ball et al. [40] for broadacre agriculture, the real-world
implementation uses a 3G mobile data connection to the Internet for communication be-
tween the robots and a central planner using ROS middleware. A map is shared between
the robots in the approach proposed by Kalde et al., although the communication mecha-
nism was not described [45]. Song et al. [46] made use of a player/stage simulator, which
allows modules to communicate through TCP. Colares and Chaimowicz [51] used ROS
as middleware for their real-world experiments. Communication was not discussed by
Dornhege et al. [53]. The approach of Perez-imaz et al. [47] involves robots communicating
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their position with a central planner as an approach to fault tolerance; this communi-
cation is achieved again through ROS. Masehian et al. [41] considered communication
between the robots and the central planner to be of unlimited bandwidth, assuming ideal
conditions. Karapetyan et al. [42] assumed no communication capabilities, with a purely
offline approach. Dong et al. [54] considered communication between robots and a central
planner. Zhang et al. [49] also considered a centralised planner, although details of the
implementation are sparse. Bramblett et al. [52] made use of a disk constraint to simulate
communication-range constraints. Kim et al. [44] made use of a robofleet for communica-
tion [82], with communication used for fault detection among the team. Tang et al. [43] also
considered the communication range.

6.3. Fault Tolerance

Fault tolerance is a crucial aspect of building robust multi-robot systems. Multi-robot
systems provide inherent redundancy by allowing other robots to complete the tasks
previously assigned to faulty robots. A reality of working outside of simulation is that
eventually, failure occurs. Robot failure was explicitly discussed in two of the reviewed
works: that of Perez-imaz et al. [47] and that of Kim et al. [44]. Other approaches, such
as frontier-based exploration approaches, might offer inherent robustness to failure as a
result of iterative planning. In Perez-imaz et al.’s work [47], when a robot failure occurred,
hexagon cells were reallocated to members of the team. Similarly, in the work of Kim et al.,
when a robot failure was detected, the system recomputed the coverage task decomposition
with a smaller team size [44]. However, this still results in repeated coverage of areas
already covered by the failed robot. The reallocation mechanism used by Kim et al. is
shown in Figure 18. Both these works focus on recomputing offline task allocations.

(a) (b) (c)

Figure 18. Kim et al.’s fault tolerance reallocation [44]. (a) The robot with the cyan path experiences
failure. (b) The waypoints are reassigned to neighbouring robots. (c) The TSP paths for the new
allocations are computed, ensuring coverage.

6.4. Discussion

It is difficult to imagine a robust real-world coordination framework using only the
approaches discussed in this work. Such a coordination framework would need to account
for communication downtime, robot failures, and possibly heterogeneous capabilities. One
noticeable trend, albeit with a small sample size, is a focus on reinforcement learning ap-
proaches in recent years. Yu et al. [50] note that reinforcement learning approaches, when
compared to traditional planning approaches, can effectively produce complex strategies
and, after training, prove computationally inexpensive. Regardless, the majority of the liter-
ature considers planning-based approaches. There seems to be potential for future research
on both classes of algorithms. Fault tolerance and dealing with communication constraints
are open avenues for research, with only two of the reviewed works explicitly considering
faults [44,50]. Coordination for heterogeneity has received very little focus from the research
community, with current works concentrating on worker–station relationships [43,49] or
sensing range and locomotion speed [44]. Masehian provided a highly specific case of
robot mapping with different forms of sensors [41], but beyond that, there has been no
work focusing on robots’ semantic capability regarding completing tasks or traversing the
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environment. Coverage of tasks with semantic requirements for both completion and area
traversal by heterogeneous teams is still an open area of research. Dynamic environments
were rarely the focus of the reviewed works, with only Kalde et al. [45] considering such,
with mobile obstacles. Dynamic environments are a potentially interesting area of research
for OWT inspection due to the mobile nature of wind turbines, even more so for floating
offshore wind turbines. Another area of interest that has not been considered is dynamic
tasks. Considering the problem of covering a single OWT, the task of visually covering the
blades may not be localised at one static coordinate. If the wind turbine is in operation, the
coverage task will be constantly and predictably moving. Such a dynamic coverage task is
another potential direction for future research.

7. Future Work

None of the works reviewed in this paper can enable coverage for OWT inspections
alone. A comprehensive multi-robot coverage system would require the combination
and extension of existing techniques. Several potentially useful aspects of the reviewed
approaches have been identified in the previous sections. In this section, we attempt to
synthesise the identified approaches and their limitations with respect to several areas of
future OWT inspection research.

7.1. Task Decomposition with Areas of Interest

One aspect of OWT inspection coverage that has not been addressed in existing
research is coverage with varying required degrees of quality. In OWT inspection, certain
sections of the turbine may require greater focus than other sections. Usually, the tower is of
less interest than the turbine blades. To address this, it is necessary to select and extend an
existing environmental representation to account for varying coverage requirements across
the structure. One method for achieving this would be through a bespoke semantic label
applied to sections of the environment. Assuming a voxel-based representation, this may
be a property for each voxel that specifies, for example, a required proximity for coverage.
This semantic label would then need to be accounted for when decomposing the task into a
set of views, only considering a voxel covered if a view fulfils the requirement encapsulated
within it. An alternative approach is the use of multiple resolutions depending on the
degree of interest in a section. This would not inherently apply proximity requirements,
but it would ensure more thorough coverage within a specified region. This could be
achieved through an Octomap [62] and would allow for the use of the approach proposed
by Dornhege et al. [53] without modification. Combining these two approaches may prove
even more efficient in ensuring both thorough and high-quality sensor coverage. However,
this all assumes the area of interest is known a priori. To identify areas of interest in an
unknown environment, some form of semantic area detection would be necessary, maybe
through object detection techniques.

7.2. Limited Knowledge Approach

An interesting area of research is the possibility of using the known geometry of the
turbines in an otherwise unknown environment. The geometry of a turbine is always
available before an inspection, and intuitively, an approach should be able to exploit this
knowledge. None of the reviewed works considered the case of geometric structural
knowledge in an otherwise unknown environment. The most obvious use case for this
is in floating OWT inspection, where the turbines have drifted from the centre of the
moorings; however, just because the turbine has moved a certain amount does not mean
that the environment is now completely uncertain. This could be achieved by considering
a problem of two layers: exploration within a small subarea of the environment to localise
the turbine followed by model-based coverage of the now-known structure.
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7.3. Dynamic Tasks

In all the reviewed works, the area or structure to be covered was static. Given a
moving structure such as OWT blades, task planning and motion planning would be
significantly complicated, and a novel environmental representation would be necessary to
represent the moving tasks. One possible solution for the blades is to use one team member
to constantly observe and track the blades’ positions, then use other team members to
complete the coverage of the required proximity and quality. This problem identifies one
key issue with using a voxel-based representation alone, in that voxels tend not to represent
semantic objects but just occupancy, so when the physical object moves, some mechanism
would be necessary to ensure that any label is transferred to the new voxel representing
that physical object.

7.4. Limited Communication

As discussed by Nordin et al. [16], communication is an issue in the OWT environment.
While most of this work has been focused on UAV coverage of turbines, it is the case that
UAV batteries are currently limited, and any feasible implementation would require the use
of USVs for UAV deployment. As Nordin et al. suggested, the use of a USV may also play
a role in solving the communication problem for OWT coverage. This slightly resembles
the worker–station approach of Tang et al. [43]. An approach that strategically places a
USV distant enough from the turbines for satellite communication interference from the
turbines while providing a temporary wireless network for the UAVs in the team may
solve this problem. This would require a new approach to planning, accounting for USV
placement and possibly requiring a rendevous mechanism with UAVs working outside of
the network, then returning.

7.5. Heterogeneous Sensing/Locomotion Capabilities

Heterogeneity among robots was lightly touched upon in the reviewed work, but
to fully harness the capabilities of a diverse team, new planning approaches would be
necessary. Sensing heterogeneity can be implemented in the sense of team members
with different sensor specifications, such as some members with cameras specialised for
closeup photography or carrying thermal cameras. Alternatively, there is homogeneity
in locomotion capabilities, as some robots may fly, like UAVs, and some cannot and
are limited to the surface, such as USVs. If tasks are going to be shared between these
members, the capabilities should be taken into account. The capabilities of the team
members should be considered through all aspects of the OWT coverage problem. The
environmental representations should encapsulate the requirements of both tasks and the
traversal between them. Task decomposition should derive the requirements for a task from
the information at hand. Tasks should only be allocated to robots able to complete them,
and the capabilities of the robots should be accounted for when grouping tasks. Finally,
motion planning should plan paths and trajectories taking into account the capabilities and
the kinematics of the robot being planned for.

7.6. UAV Structural Coverage

None of the approaches reviewed herein consider 3D sensor coverage with UAVs,
which is a necessity for the OWT coverage task. The approaches that do consider 3D struc-
tural inspection assume a prior model and use offline planning. None of the approaches
consider heterogeneous tasks or locomotion capabilities, which would be essential for
heterogeneous structural coverage. If blade coverage is to be performed while the OWT
is in use, it would be necessary to represent the blade as a moving task and track the
blade’s position; however, none of the studies reviewed herein considered this issue. To
tackle the problem of 3D sensor coverage with UAVs assuming prior knowledge of the
environment, one may use the ray-tracing voxel-based task generation as in the work of
Dornhege et al. [53]. Rather than the reachable voxels being located along the ground,
it would be necessary to ensure that the sensor is a certain distance from the turbine
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surface; without this, the set of reachable voxels would be very large and, therefore, inef-
ficient for computation. This same approach could be extended to perform in an online
exploratory manner; however, 3D structural exploration was not considered in any of the
reviewed works.

8. Conclusions

In this work, a review of the literature on multi-robot coverage concerning OWT
inspection was carried out. The PRISMA 2018 Scoping review methodology was followed
to standardise the review process, along with the PICo framework to form and model
the research questions. These approaches for standardizing the review process are rarely
used in computer science and even less so in robotics literature. However, such systematic
processes are essential for providing a scientific review that the reader can repeat themselves
and obtain the same or representative data. The retrieved works were then systematically
analysed with respect to the formed research questions and discussed. This work applies
not only to OWT inspection scenarios but also to scenarios resembling offshore wind
inspection. It is important to note that coverage planning algorithms are far from the only
hurdle in putting autonomous offshore inspections into practice; coverage path planning
structural inspection should be considered one component of a larger system. As of the time
of writing, drone battery durations would not be sufficient to enable their use alone from
shore. To enable the long-term autonomy required for wind farm inspections, an approach
to charging drones in the field would be necessary, such as that proposed by Han et al. [83],
in which drones are launched from a USV with the capability of charging the drones
when necessary. Several areas for future research were suggested herein. Decomposing
the coverage task concerning areas of particular interest would facilitate more detailed
coverage, allowing for focus on areas of the turbine most prone to failure or where failure
is most critical. The use of existing knowledge of the turbine geometry without further
knowledge of placement or pose is particularly applicable to floating OWTs. Dynamic
tasks, where tasks might move within the environment, and the importance of keeping
track of covered and uncovered moving structures were also discussed. We also addressed
the limitations of communication around large OWT structures that may affect satellite
communication. Furthermore, we considered heterogeneous capabilities in the team, in
terms of both sensing and locomotion, facilitating complex planning for teams aware of
capabilities. Finally, we extended existing surface robot voxel-based approaches to UAVs
while minimising the computational complexity due to the large size of the accessible space.
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