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Abstract: Drones equipped with visible and infrared sensors play a vital role in urban road supervi-
sion. However, conventional methods using RGB-IR image pairs often struggle to extract effective
features. These methods treat these spectra independently, missing the potential benefits of their inter-
action and complementary information. To address these challenges, we designed the Multispectral
Feature Mutual Guidance Network (MFMG-Net). To prevent learning bias between spectra, we have
developed a Data Augmentation (DA) technique based on the mask strategy. The MFMG module is
embedded between two backbone networks, promoting the exchange of feature information between
spectra to enhance extraction. We also designed a Dual-Branch Feature Fusion (DBFF) module based
on attention mechanisms, enabling deep feature fusion by emphasizing correlations between the two
spectra in both the feature channel and space dimensions. Finally, the fused features feed into the
neck network and detection head, yielding ultimate inference results. Our experiments, conducted
on the Aerial Imagery (VEDAI) dataset and two other public datasets (M3FD and LLVIP), showcase
the superior performance of our method and the effectiveness of MFMG in enhancing multispectral
feature extraction for drone ground detection.

Keywords: RGB-IR image pair; multispectral feature; object detection; attention mechanism

1. Introduction

Drones equipped with advanced imaging technology have become indispensable tools
in aerial photography. Through the application of computer imaging techniques, these
platforms empower ground personnel to gain valuable information into surface activities.
One of the most prominent applications is drone ground detection, which plays a pivotal
role in diverse fields including land monitoring, urban management, and mountain search
and rescue. In recent years, the field of drone ground detection has witnessed significant
advancements, largely driven by the evolution of artificial intelligence algorithms. Cur-
rently, deep learning methods [1,2] are the leading approach in object detection. A typical
deep object detection system comprises three components: the backbone network, neck
network, and detection head. The backbone network, using architectures like VGG16 [3],
ResNet50 [4], or DarkNet53 [2], extracts image features. The neck network, typically
employing techniques like Feature Pyramid Network (FPN) [5], enhances these features.
The detection head uses these enhanced features for category and location determination,
finalizing the detection.

In drone ground detection, single-modality data, such as RGB images [6–8], infrared
images [9–11], and other spectral or radar data [12,13], are predominantly used. Multi-
modal data for target detection has received limited research [14,15]. Multi-modal methods
are classified into traditional and deep learning approaches. Traditional methods rely
on manually engineered features, like Histogram of Gradient (HOG) features, extracted
from visible and infrared images, combined using a support vector machine (SVM) [14].
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Hwang et al. [15] extracted three types of features, the channel feature (ACF), thermal
(T), and thermal histogram of gradients (THOG), from visible light images for target
detection. In target detection, deep learning has gained prominence for its exceptional
feature representation capabilities, especially in multi-modal detection. Zhang et al. [16]
found that image-level cascading outperforms feature-level cascading. However, merely
stacking multi-spectral data does not enable precise feature learning from each spectrum.
Fang et al. [17] introduced the Cross-Modal Attention Feature Fusion (CMAFF) module
using the attention mechanism, selectively enhancing specific features and choosing shared
ones across modalities. Konig et al. [18] achieved feature fusion across modalities with the
Region Proposal Network (RPN). Moreover, several studies have taken a unique approach
by emphasizing illumination-related information across modalities for joint detection. Li
et al. [19] introduced confidence parameters associated with illumination information,
which were tackled through the design of a dedicated light sensing network. Subsequently,
a gate function predicated on the illumination value was employed to harmoniously
fuse features from distinct modalities. Alongside these efforts, there has been a surge in
similar research endeavors [20–22]. These include endeavors such as the integration of
photophysical information into Convolutional Neural Networks (CNNs) to facilitate the
learning of target features, drawing inspiration from neural networks that incorporate
physical information.

Recent advancements in multi-modal drone ground detection have led to notable
progress. However, current methods in this field often follow a conventional approach.
They use established image feature extraction networks and then employ complex fusion
strategies to combine features from different modalities (as shown in Figure 1a). While
effective in straightforward scenarios, these methods struggle in complex environments
and varying lighting conditions. Importantly, they do not consider the interaction between
modalities during feature extraction.
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Figure 1. Comparison of network structure: (a) represents the conventional RGB-IR joint target
detection methods; (b) depicts the RGB-IR joint target detection method designed by our team.

To tackle these challenges, we have designed a network architecture shown in
Figure 1b. Unlike traditional multi-modal drone ground detection methods, our ap-
proach integrates inter-modal information interaction at the feature extraction stage,
followed by deep feature fusion. This is realized through our Multispectral Feature
Mutual Guidance Network (MFMGF-Net). To address learning bias among modalities,
we have created a mask-based data augmentation method, which employs a constraint
network to improve multi-modal feature learning. Initially, we extract multi-modal
features with two CSPDarkNet53 networks. We embed a Multispectral Feature Mutual
Guidance Network between them, enhancing their feature extraction capabilities. Next,
we fuse these features using an attention mechanism in both channel and spatial di-
mensions. These fused features are then fed into the network, resulting in improved
multi-modal drone ground detection performance.

The contributions of this article can be succinctly summarized as follows:
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• We present MFMG-Net, a novel architecture for multispectral drone ground detec-
tion. We combat potential feature bias across spectral data using a mask-based data
enhancement method.

• We develop MFMG to boost feature extraction in spectral backbone networks. It
enables cross-spectral information exchange during feature extraction, harnessing the
power of complementary spectral data for enhanced feature fusion and detection.

• We propose efficient feature fusion using an attention mechanism. This technique
discerns spectral feature correlations in feature channels and space, effectively fusing
multispectral features, and improving multispectral drone ground detection.

The rest of this article is organized as follows. In Section 2, we review related work.
In Section 3, we describe our proposed method in detail. In Section 4, we present the
experimental setup and extensive experimental results. The conclusion of the article is
drawn in Section 5.

2. Related Work

In this section, we will conduct a comprehensive review of contemporary object
detection algorithms categorized by data type. Our specific emphasis will be on algorithms
tailored for visible, infrared, and multispectral data.

2.1. Visible Object Detection

Object detection stands as a focal point in the realm of computer vision, captivating
numerous researchers who dedicate their efforts to enhancing the precision, speed, and
practicality of detectors. Over the course of the development of target detection algo-
rithms, these detectors have evolved from two-stage detection to single-stage detection,
and presently, they are advancing towards end-to-end detection grounded in Transformer
architecture. The two-stage detector paradigm segregates the target detection process into
two distinct steps. The first stage focuses on localizing the target, while the second stage
engages in the classification and fine-tuning of the identified target’s position. Prominent
two-stage detectors encompass R-CNN [23], Faster R-CNN [1], and R-FCN [24]. Neverthe-
less, they exhibit noticeable drawbacks, particularly in terms of computational efficiency
due to extended network pipelines, necessitating robust computational hardware for opti-
mal performance. In response to these limitations, single-stage detectors emerged. They
concurrently handle target positioning and classification, thereby enhancing inference
speed. Well-known single-stage detectors include SSD [4], YOLO v4 [25], and others.
Among them, the YOLO series of detectors have seen continuous development and refine-
ment, culminating in the YOLO v4, which offers a clear network structure and strikes an
excellent balance between accuracy and speed. This paper introduces a joint visible and
infrared target detection network based on the YOLO v4 algorithm framework.

Although research on visible light target detection has greatly promoted the develop-
ment of the field of target detection, in practical applications, visible light has limited its
application level due to its sensitivity to illumination.

2.2. Infrared Object Detection

The advancement of visible light target detection algorithms has significantly pro-
pelled the progress of infrared target detection algorithms. In contrast to visible light,
infrared sensors find widespread use in various specialized environments, such as night-
time and foggy conditions, owing to their insensitivity to lighting conditions. Ghose
et al. [26] pioneered the development of an infrared pedestrian target detector founded on
Faster R-CNN. However, this model’s complexity hampers its computational efficiency.
Jhong et al. [22] introduced a lightweight infrared detector based on the single-stage
YOLO detector, achieving the detection of both vehicles and pedestrians. Li et al. [27]
implemented infrared image data detection using the YOLO v5 network, incorporating
numerous techniques from visible light networks, including attention mechanisms and
multi-size detection heads. Further details can be found in their research papers. Mar-
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nissi et al. [28] devised a domain-adaptive infrared detection algorithm based on Faster
R-CNN, incorporating a multi-domain classifier that yielded significant performance
enhancements. This domain adaptation method has since been widely adopted in sub-
sequent research to bolster infrared detection capabilities and attain superior infrared
detection performance.

Despite their resilience to lighting conditions, infrared sensors possess inherent lim-
itations, including low resolution and the absence of color information. Furthermore,
infrared imaging relies on thermal radiation, resulting in poor edge quality for objects and
subsequently leading to elevated false detection and missed detection rates.

2.3. Visible–Infrared Fusion Object Detection

As previously mentioned, both visible light sensors and infrared sensors have in-
herent limitations. Therefore, the effective extraction and fusion of data from these
two modalities for improved detection have become a focal point in current research.
Deng et al. [29] utilized RGB and IR features to design a feature fusion network aimed at
enabling target detection in low-light conditions. Konig et al. [18] achieved feature fusion
through the integration of a region proposal network. The above-mentioned studies are
centered on feature fusion, often involving pixel-level fusion followed by detection. Pixel-
level fusion, which preserves both infrared and available light intensity, has garnered
attention, as seen in the work by Chen et al. [30]. Attention mechanisms are also widely
employed in joint target detection. For instance, Zhang et al. [31] accomplished valuable
feature extraction by devising a modal-level attention module, facilitating the deep fusion
of different spectral features. Fang et al. [17] introduced a lightweight fusion method
using attention maps to strike a balance between accuracy and computational efficiency.
The utilization of Transformer, a pivotal tool in computer vision [32], has extended to
the realm of joint target detection. Zhu et al. [33] harnessed Transformer’s capacity for
learning contextual information to achieve feature integration and, consequently, enhance
detection outcomes. However, due to the substantial computational demands of Trans-
formers, these models exhibit high complexity, reduced computational efficiency, and
challenging deployment.

3. Proposed Method
3.1. Overview Architecture

This section offers an in-depth elucidation of the architecture and processes of the
proposed MFMG-Net. Figure 2 presents an overview of the network’s architecture. In this
design, we have developed a backbone network based on CSPDarknet53, a component of
YOLOv4 [25]. Specifically, we employ two CSPDarknet53 networks for extracting features
from RGB and IR images separately. Between these two networks, we have incorporated
the MFMG module, facilitating intercommunication of multispectral feature information.
This module harnesses the correlations and complementarities present in multispectral
data, thereby enhancing the efficacy of feature extraction within the backbone network.
Subsequently, the multispectral image features are directed to our feature fusion module,
referred to as Fusion, for comprehensive feature fusion. Within this module, we fuse
features from two dimensions: the channel dimension and the spatial dimension. Finally,
we transmit the resulting three fused features (F3

f , F4
f , and F5

f ) into the neck network to
generate the feature pyramid. This feature pyramid is then subjected to inference through
the detection head, ultimately yielding the final detection results. The specifics of each
module are delineated in the subsequent sections.
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Figure 2. The network framework of the proposed MFMG-Net.

3.2. Data Augmentation

In general, RGB images tend to contain more information than IR images. This
assertion is supported using performance comparisons of single-modal detectors, where
RGB detection models typically outperform IR detection models. Consequently, when
training models with RGB-IR image pairs, there is a risk of biasing the model towards
learning RGB features and potentially neglecting IR image features. Conversely, when
deploying RGB-IR image pairs for inference, not all modal features prove to be useful, as
illustrated in Figure 3. Therefore, in cases where one mode fails to contribute effectively,
the network can adapt by focusing on the more informative mode, mitigating potential
shortcomings and enhancing overall detection effectiveness. This adaptability inherent in
the network allows for the optimal utilization of effective modal features in target detection
and can help reduce training-related losses.
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Figure 3. Example of RGB-IR image pair. (a) In this scenario, the RGB image is affected by the intense
light from car headlights, which can obscure details of traffic conditions. (b) In this scenario, the
RGB image is advantageous due to their rich texture and color information. The red box indicates
potential targets.
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To prevent the model from developing modality dependencies during training, which
could introduce bias in feature learning and inference, we have implemented a dedicated
data augmentation strategy. As depicted in Figure 4, this strategy is based on a masking
method. Here is how it works: We divide the image into a grid of 3 × 3 squares, and then
randomly select one square from each of the two rows to serve as the masking occlusion
area for both the RGB and IR images, respectively. Within these selected areas, we set all
pixel values to zero. The implementation process is as follows:

2Randommask = RGBmask + Irmask (1)

RGBmask|IRmask = 0 (2)
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block the IR image. The purpose of making the model learn only RGB detection, only IR detection
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After applying the data augmentation process, the network is intentionally deprived
of useful information within the masked occlusion areas during training. Instead, it is
compelled to rely on information from the corresponding regions of the opposite modality,
as illustrated in Figure 4. For instance, when detecting occluded regions in RGB images, the
model must utilize the infrared features from the corresponding positions for detection. This
enforced constraint ensures that the model fully learns and reasons about each modality’s
features during the training process, mitigating bias. A similar process occurs for occlusions
in IR images. Additionally, the manually designed failure features enable the model
to concentrate on learning features from other modalities in cases where one modality
fails. Importantly, our data augmentation technique, compared to full-image occlusion
of one modality in RGB-IR pairs, retains more RGB-IR feature pairs. Thus, our approach
encourages the model to utilize fused features for detection effectively. It is worth noting
that in our implementation, data augmentation is only introduced after 50 epochs to allow
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the network to converge quickly. Furthermore, the probability of using data augmentation
is set to 30%. Importantly, data augmentation is not employed during the inference phase.

3.3. Multispectral Feature Mutual Guidance Module

In the preceding section, we conducted a comprehensive review of existing research on
multi-modal joint target detection. A prevalent observation was that the current methods
perform feature extraction independently for each modality. Specifically, they tend to
extract features from different modalities separately and then engage in feature fusion,
as depicted in Figure 1a. However, it is apparent that different modal information is
interrelated and complementary. The primary goal of joint detection is to fully leverage
the correlation and complementarity between modal information to enhance detector
performance. Motivated by this analysis, we made a strategic decision to incorporate
an information exchange mechanism within the feature extraction processes of different
modalities. The objective is to guide feature extraction based on the characteristics of each
modality, thereby enhancing the quality of feature extraction within the backbone network.
We have coined this information exchange mechanism the Multispectral Feature Mutual
Guidance (MFMG) module. This module is embedded multiple times throughout the
feature extraction process, as illustrated in Figure 3.

As depicted in Figure 5, the MFMG module takes in feature data from the two modali-
ties and concatenates them. This process can be expressed formally as follows:

Fc =

[
Fv

Fi

]
(3)

where Fv and Fi respectively represent the RGB image features and IR image features
extracted by the backbone network, and Fc represents the features after the dual-mode
features are cascaded.
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Then, two parallel convolutional layers and sigmoid activation functions are connected
to the cascaded feature data to obtain the guidance weights of the two modal features,
which are formalized as follows:

Wv = Sigmoid(F1(Fc))
Wi = Sigmoid(F2(Fc))

(4)

where F1 and F2 represent the 1 × 1 convolution operation, Sigmoid is the activation function,
Wv and Wi are the RGB feature guidance weight and IR feature guidance weight, respectively.

Finally, the two calculated guidance weights are multiplied with the feature data
received by the module to obtain the guided RGB features and IR features, which are
formalized as follows:

Fv
g = Wv ⊙ Fv

Fi
g = Wi ⊙ Fi (5)
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where Fv
g represents the RGB guidance feature after the RGB image features are guided, Fi

g
represents the IR guidance feature after the IR image features are guided, and ⊙ represents
the element-wise multiplication operation between matrices.

After obtaining guided features based on multi-modal feature data, we feed back the
guided RGB features and IR features to the original feature extraction backbone, respectively.
This will prompt the key feature information that the feature extraction network should
pay attention to, which is formalized as follows:

Fv
r = Fv + Fv

g
Fi

r = Fi + Fi
g

(6)

where Fv
r represents the rectified RGB image features, and Fi

r represents the rectified IR
image features.

3.4. Dual-Branch Feature Fusion Module

Currently, the attention mechanism finds widespread use in deep neural networks and
has garnered significant attention and adoption in the domain of target detection. However,
attention-based target detection methods often struggle to strike a proper balance between
model complexity and inference efficiency. Typically, in a bid to reduce model complexity,
feature data are heavily compressed, leading to substantial loss of image information. Nev-
ertheless, this challenge is effectively addressed by the technique described in [34], building
upon the technology presented in [35]. Drawing inspiration from these advancements, we
have devised the attention-based Dual-Branch Feature Fusion (DBFF) module. In contrast
to its intended purpose of feature enhancement [34], this study employs the DBFF module
for deep feature fusion using the attention mechanism.

Notably, the DBFF module facilitates the fusion of multi-modal features both in the
spatial and channel dimensions without substantial data compression. Instead, we ensure
the network remains sufficiently lightweight through dimensionality reduction operations.
Figure 6 illustrates the intricate network structure of the DBFF module, which accepts
pairs of two-modal features (Fv

r and Fi
r). These feature pairs traverse through the channel-

level fusion branch and the spatial-level fusion branch, resulting in fused features of two
distinct dimensions. The fused features from the last two dimensions are concatenated and
subsequently subjected to convolution to produce the ultimate fused feature, denoted as FF.
In our specific implementation, we carried out feature fusion across three different feature
scales, culminating in three fused features of varying scales: F3

f , F4
f , and F5

f .
(1) Channel-level fusion branch. This branch receives the features Fv

r and Fi
r of the

two modalities, and then performs the attention branch operations, respectively. One of
the attention branches compresses the feature Fv

r in one direction, and the other attention
branch maintains high-resolution features in the corresponding orthogonal direction. The
operation for Fi

r is the same. The output in both directions (q and v) is formalized as follows:

Wv|ch
q = σ1(F1(Fv

r ))

Wv|ch
v = σ2(F2(Fv

r ))
(7)

where σ1 and σ2 represent the reshape of the tensor, F1(·) and F2(·) are 1 × 1 convolutional
layers, and Wv|ch

q ∈ RHW×1×1 and Wv|ch
v ∈ RC/2×HW . The IR branch is the same.

Then, the obtained weights Wv|ch
q and Wi|ch

q are concatenated and sent to the softmax
function to obtain the fused weight distribution. The calculation process is as follows:[

Wv|ch
k

Wi|ch
k

]
= So f tmax(

[
Wv|ch

q

Wi|ch
q

]
) (8)

We multiply the weights with the fused weight keys and then connect a 1 × 1 convo-
lution, LayerNorm (LN) and sigmoid function. Among them, LN increases the number
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of channels to C, and the sigmoid function keeps the result in the range of 0–1, which is
formalized as follows:

Wv|ch
z = Sigmoid(σ3(F3(W

v|ch
v × Wv|ch

k ))) (9)

where × is the matrix dotproduct operation and Wv|ch
z ∈ RC×1×1. And Wi|ch

z ∈ RC×1×1.
Then, we perform channel-level multiplication of Fv

r and Wv|ch
z to obtain low-noise

feature representation, as follows:

Wv|ch = Fv
r ∗ Wv|ch

z (10)

where Wv|ch ∈ RC×H×W . Similarly, Wi|ch ∈ RC×H×W .
Finally, the two modal features are cross-added, and then the addition results are

cascaded again and convolved to obtain the final channel-level fusion feature F f |ch, which
is formalized as follows:

Fv|ch = Wi|ch + Fv
r (11)

Fi|ch = Wv|ch + Fi
r (12)

F f |ch = F4(

[
Fv|ch

Fi|ch

]
) (13)

(2) Spatial level fusion branch. In order to make full use of the complementarity of
information between modalities, similar to the channel-level fusion branch, this branch
also performs calculations from two directions, and is formalized as follows:

Wv|sp
q = σ4(FGP(F5(Fv

r ))) (14)

Wv|sp
v = σ5(FGP(F6(Fv

r ))) (15)

where F5 and F6 are 1 × 1 convolutional layers, FGP(·) is a global pooling operator, σ4 and σ5

represent the reshape of the tensor. Wv|sp
q ∈ R1×2/C and Wv|sp

v ∈ RC/2×HW . The IR branch
is the same.

Then, similarly to the channel-level fusion branch, the concatenated features are
fed into the softmax function. Therefore, we obtain Wv|sp

k and Wi|sp
k . Then, we perform

multiplication, reshape, and sigmoid in sequence, formalized as follows:

Wv|sp
z = Sigmoid(σ6(W

v|sp
v × Wv|sp

k )) (16)

where Wv|sp
z ∈ R1×HW . Similarly, Wi|sp

z ∈ R1×HW .
The spatially fused feature map can be obtained by multiplying Fv

r and Wv|sp
z :

Wv|sp = Fv
r ∗ Wv|sp

z (17)

where Wv|sp ∈ RC×H×W . Similarly, Wi|sp ∈ RC×H×W

We cross-add the features of the two modalities again, and then cascade the addition
results again and perform a convolution operation to obtain the final spatial-level fusion
feature F f |sp, which is formalized as follows:

Fv|sp = Wi|sp + Fv
r (18)

Fi|sp = Wv|sp + Fi
r (19)

F f |sp = F7(

[
Fv|sp

Fi|sp

]
) (20)
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Finally, we cascade the channel-level fusion feature F f |ch obtained in (1) and the spatial-
level fusion feature F f |sp obtained in (2) and perform a convolution operation to obtain the
deep fusion feature F f , which is formalized as follows:

F f = F8

[
F f |ch

F f |sp

]
(21)

After the above operations, we obtained the deep fusion feature F f . More specifically,
we obtain three fused features of different scales, denoted as F3

f , F4
f , and F5

f , and then we
send them into the neck network and detection head for detection. In the implementation,
we directly used the neck network and detection head of YOLO v4. For details, please refer
to the literature [25].
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4. Experiments

This section encompasses five comprehensive summaries that elucidate the experi-
mental design and implementation. Initially, we introduce the datasets employed in our
experiments. Subsequently, we delve into crucial aspects of algorithm implementation. Fol-
lowing this, we undertake ablation experiments and benchmark our performance against
state-of-the-art related methods. Finally, we execute real-world tests of the algorithm using
laboratory shooting equipment to substantiate the efficacy of our approach.

4.1. Datasets

To evaluate the proposed multispectral combined target detection methods, we utilized
four public datasets: VEDAI [36], M3FD [37], LLVIP [38], and FLIR [39], for conducting our
experiments. These datasets consist of RGB-IR image pairs, with specific details outlined in
Table 1.

Table 1. Dataset overview.

Item VEDAI M3FD LLVIP FLIR

Classes 9 6 1 3
Data RGB-IR RGB-IR RGB-IR RGB-IR
Size 1024 × 1024 1024 × 768 1280 × 1024 640 × 512
Format png png jpg jpg
Amount 1250 pairs 4200 pairs 15,488 pairs 5142 pairs
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(1) VEDAI: The VEDAI dataset comprises aerial imagery data with pixel-level annota-
tions. It categorizes targets into nine classes, presenting challenges like small target scales,
single perspectives, and varying lighting conditions. This dataset primarily focuses on the
detection and study of vehicle targets, encompassing various vehicle types such as cars,
RVs, and pickup trucks. It provides two image resolutions, 515 × 512 and 1024 × 1024. In
our experiments, we selected the higher resolution version, 1024 × 1024.

(2) M3FD: The M3FD dataset covers a range of challenging scenarios, including
daytime, evening, and nighttime conditions, as well as scenarios with smoke obscuration.
This diverse dataset offers six target categories and comprises 4200 RGB-IR image pairs
with an image resolution of 1024 × 768. The dataset is variable in lighting conditions,
which provides an excellent platform for testing algorithm performance.

(3) LLVIP: The LLVIP dataset is a comprehensive RGB-IR dataset specifically designed
for visible light and infrared joint inspection research under low-light conditions, with most
data collected at night. This dataset is characterized by a high resolution of 1024 × 1024
and focuses on a single detection category, namely pedestrians.

(4) FLIR: The FLIR dataset captures data from traffic road scenarios and includes
three object categories for detection: people, bicycles, and cars. It encompasses both day
and night scenes and is frequently employed for testing multi-modal combined target
detection algorithms. While this dataset is publicly accessible, official RGB-IR images were
not provided. To ensure consistent comparison data, we used the data provided in [40],
using 4129 images for training and reserving the remainder for testing.

4.2. Experiment Details

We conducted a comprehensive array of experiments, including comparative studies
and external tests, to thoroughly evaluate the performance of our algorithms. Notably, we
designed a baseline network rooted in the YOLOv4 algorithm framework. Specifically, we
augmented YOLOv4 with an infrared branch dedicated to the extraction of infrared image
features. These features were then combined with visible light image features using a
simple fusion approach, as illustrated in Figure 7. To assess the individual contributions of
each component within our method, we carried out ablation experiments using the LLVIP
dataset. For performance comparisons with state-of-the-art methods, we conducted tests
on the VEDAI, M3FD, and LLVIP datasets. To ensure equitable comparisons, all detectors
employed the same data splits. Additionally, we evaluated the inference speed of our
model through tests conducted on the FLIR dataset. All training and testing processes were
executed on an NVIDIA RTX 3090 desktop. The training process spanned 300 epochs, with
an initial learning rate of 0.001. At the fiftieth epoch, the learning rate was reduced by a
factor of 0.1. The training batch size was set to 4, and we employed the ADAM optimizer.
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Figure 7. The baseline detector and the detector network implementation plan. (a) Base-line detector,
the feature extraction process is independent, and the characteristics of the features are added with
elements. (b) The proposed MFMG-Net, the feature extraction under mutual guidance and the
characteristic fusion of the characteristic fusion module of the two-point branches.
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4.3. Experiment Results
4.3.1. Ablation Experiment

This section is dedicated to ablation experiments aimed at assessing the impact of the
various proposed modules on the network and evaluating the overall performance of our
network solution. These experiments are conducted using the LLVIP dataset. We initiated
the testing by evaluating the effect of the proposed Data Augmentation (DA) method on
detection performance, thereby confirming the effectiveness of this augmentation tech-
nique. Subsequently, we delved into the contribution of the Multispectral Feature Mutual
Guidance (MFMG) module and the Dual-Branch Feature Fusion (DBFF) module to network
performance. To carry this out, we conducted experiments using real-world images, both
with and without DA. Moreover, we assessed the individual contributions of MFMG and
DBFF by enabling or disabling these modules. In the following sections, we provide a
detailed analysis of the results obtained from these experiments, shedding light on the
significance of each module and its impact on the overall performance of our multispectral
target detection network.

(1) Effectiveness of DA: To assess the impact of the proposed Data Augmentation (DA)
method on detector training, we conducted a comparative analysis by training detectors
both with and without DA. This assessment was performed on both the baseline detector
and our proposed detector. Initially, we evaluated the influence of DA on the training
performance of the baseline detector. We introduced a probability parameter for applying
DA during algorithm implementation. This probability parameter was adjusted during
training to produce detection models with varying DA probabilities, and we observed their
respective performance differences. The results are presented in Table 2. As shown in the
table, we applied DA with probability parameters of 0.1, 0.3, 0.5, 0.7, and 0.9 to the baseline
detector. Subsequent testing on the LLVIP dataset revealed that the proposed DA method
improved the mean Average Precision (mAP) evaluation metric for the baseline detector
by 0.2%, 0.9%, 0.8%, 0.6%, and 0.3%, respectively. Furthermore, other evaluation metrics
for the baseline detector also demonstrated improvements when influenced by the DA
method. This comprehensive improvement underscores the effectiveness of the proposed
DA method. The results indicate that the baseline detector performed optimally when
DA was applied with a probability of 0.3. The underlying principle of the DA method
is to introduce noise while retaining the original data. When the noise level becomes
excessive and overshadows the original data, it can lead to a degradation in training results.
Consequently, we selected a DA probability of 0.3 for testing the effects of the MFMG and
DBFF modules.

Table 2. Comparison of AP among the proposed method, the base-line detector, and ablation
experiment on the LLVIP dataset.

√
indicates that data augmentation has been performed.

Method DA MFMG DBFF PR RE mAP50 mAP

Baseline - - - 0.958 0.883 0.921 0.615
Baseline

√
(0.1) - - 0.960 0.887 0.927 0.617

Baseline
√

(0.3) - - 0.970 0.908 0.948 0.624
Baseline

√
(0.5) - - 0.967 0.901 0.942 0.623

Baseline
√

(0.7) - - 0.963 0.897 0.937 0.621
Baseline

√
(0.9) - - 0.961 0.891 0.933 0.618

Baseline
√

(0.3)
√

- 0.982 0.913 0.960 0.652
Baseline

√
(0.3) -

√
0.981 0.912 0.957 0.647

MFMGF-Net -
√ √

0.983 0.925 0.962 0.659
MFMGF-Net

√
(0.3)

√ √
0.985 0.941 0.981 0.665

(2) Effectiveness of the MFMG module: In Figure 7, we integrated an MFMG module
between the two backbone networks to facilitate the exchange of information during the
feature extraction process. This module’s bidirectional design ensures seamless information
interchange without affecting the output dimensions of the two backbone networks. The
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primary function of the MFMG module is to enhance the feature extraction capabilities
of both backbone networks. It achieves this by facilitating the exchange of information
between modalities, thereby promoting superior feature learning through the exploitation
of associated complementary information. To validate the efficacy of this module, we
conducted an ablation experiment. Specifically, we set the DA probability to 0.3 and
evaluated the impact of the presence or absence of the MFMG module on the baseline
detector’s performance. As shown in Table 2, the MFMG module significantly improved
the baseline detector’s mAP performance by 2.8%. This result provides empirical evidence
of the MFMG module’s effectiveness.

(3) Effectiveness of the DBFF module: In contrast to the MFMG module, the DBFF
module is designed to facilitate the fusion of information from two modalities. This module
combines features from both modalities in the channel and spatial dimensions using the
attention mechanism. Subsequently, it performs a deep fusion of the two fused features
through data-driven learning. The fusion in the channel dimension primarily focuses on
merging different semantic layers, which is advantageous for classification tasks. On the
other hand, spatial dimension fusion emphasizes combining location information and
is particularly relevant for localization tasks. Similar to the MFMG ablation experiment,
we set the DA probability to 0.3 and tested the real effectiveness of the DBFF module
by enabling or disabling it on the baseline detector. As shown in Table 2, this module
improved the mAP performance of the baseline detector by 2.3%, unequivocally confirming
its effectiveness.

In summary, we conducted ablation experiments on the three designed components,
and the test results demonstrated the independent effectiveness of the designed compo-
nents. Additionally, the test results of the joint use of these components also highlighted
their compatibility. As indicated in Table 2, using MFMG and DBFF together with the
baseline detector improved the mAP performance by 4.4%. When all three components
were combined, the performance of the baseline detector improved by 5%.

4.3.2. Comparison with State-of-the-Art Methods

In order to further validate the performance of the proposed method, this section
will compare it with current state-of-the-art methods on four datasets, demonstrating the
advancement of our proposed method from both qualitative and quantitative perspectives.
Specifically, we will compare test accuracy on three public datasets: VEDAI, M3FD, and
LLVIP, and finally, we will compare algorithm inference efficiency on the FLIR dataset.

(1) Comparative experiments on the VEDAI dataset: In this comparison, we selected
advanced single-modal detection methods and multi-modal detection methods to assess
the performance of the proposed method. The single-modal methods considered included
YOLOv5, YOLOv8, EfficientDet [41], SSSDET [42], among others, while the multi-modal
methods encompassed LRAF-Net, YOLO Fusion, CFT, and similar approaches. The de-
tection test results of these advanced methods, along with those of the proposed method
on the VEDAI dataset, are summarized in Table 3. The findings clearly demonstrate the
superiority of the proposed method. Specifically, in comparison to the best single-modal
method, the proposed method improved the mAP evaluation metric by an impressive
13.2%. When compared with the best-performing multi-modal method, the proposed
method enhanced the mAP evaluation index by 0.3%.

The qualitative detection results are depicted in Figure 8. In comparison to the baseline
detectors, our proposed method significantly mitigates both missed detections and false
detections. In Figure 8, missed detections are indicated by red arrows, while false detections
are denoted by green arrows. As evident in Figure 8a,d, the baseline detector employs
a simple addition for feature fusion, leading to a higher occurrence of missed detections
and false detections. Conversely, all methods, including the proposed one, have been
augmented in their feature extraction capabilities and depth of feature fusion, resulting in a
substantial improvement in detection and classification accuracy. As seen in Figure 8b,c,
although the baseline detector can locate the target, it faces challenges in accurately classify-



Drones 2024, 8, 112 14 of 21

ing it. In contrast, the proposed detection method capitalizes on its robust feature learning
capability and feature channel-level fusion, enhancing its ability to discern small objects.
Since this dataset encompasses complex backgrounds and poses difficulties in detecting
small targets, the qualitative comparison reaffirms the remarkable detection capabilities of
the proposed method.

Table 3. Comparison of AP among the proposed method, the state-of-the-art methods, and compari-
son experiment on the VEDAI dataset.

Model Dataset Type Backbone mAP50 mAP

Retina [43] RGB ResNet-50 - 0.435
Faster R-CNN RGB ResNet-101 - 0.348

SSSDET RGB shallow network - 0.460
EfficientDet(D1) RGB EfficientNet(B1) 0.740 -
EfficientDet(D1) IR EfficientNet(B1) 0.712 -

YOLO-fine RGB Darknet53 0.760 -
YOLO-fine IR Darknet53 0.752 -
YOLO v5 RGB CSPDarknet53 0.743 0.462
YOLO v5 IR CSPDarknet53 0.740 0.462

YOLOv3 e fusion [44] RGB + IR Darknet53 - 0.440
YOLOv3 m fusion [44] RGB + IR two-stream Darknet53 - 0.446

YOLO Fusion RGB + IR two-stream CSPDarknet53 0.786 0.491
CFT RGB + IR CFB 0.853 0.560

LRAF-Net RGB + IR two-stream CSPDarknet53 0.859 0.591

Baseline RGB + IR two-stream CSPDarknet53 0.792 0.453
MFMGF-Net RGB + IR two-stream CSPDarknet53 0.868 0.594

Drones 2024, 8, x FOR PEER REVIEW 16 of 23 
 

 

Figure 8. Detection results for four representative scenarios in the VEDAI dataset. Note that red 
inverted triangles indicate FNs, and green inverted triangles show FPs. Zoomed in to see details. 

(2) Comparative experiments on the M3FD dataset: In a manner akin to the compar-
ison experiment conducted on the VEDAI dataset, we selected advanced single-modal 
target detection methods and multi-modal target detection methods for comparison with 
the proposed method on the M3FD dataset. The quantitative comparison results are pre-
sented in Table 4. As observed in the table, the proposed method enhances the mAP eval-
uation metric by 2.7% compared to the best single-modal method and improves it by 1.7% 
compared to the best multi-modal method. 

Table 4. Comparison of AP among the proposed method, the state-of-the-art methods, and compar-
ison experiment on the M3FD dataset. 

Model Dataset Type Backbone mAP50 mAP 
Faster R-CNN RGB ResNet-50 0.871 0.562 
Faster R-CNN IR ResNet-101 0.803 0.558 
YOLOv7 [45] RGB ELAN-Net 0.916 0.631 
YOLOv7 [45] IR ELAN-Net 0.891 0.573 
YOLO Fusion RGB + IR two-stream CSPDarknet53 0.928 0.641 

GAFF RGB + IR ResNet18 0.891 0.576 
CFT RGB + IR CFB 0.765 0.492 

Baseline RGB + IR two-stream CSPDarknet53 0.927 0.635 

Figure 8. Detection results for four representative scenarios in the VEDAI dataset. Note that red
inverted triangles indicate FNs, and green inverted triangles show FPs. Zoomed in to see details.
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(2) Comparative experiments on the M3FD dataset: In a manner akin to the compar-
ison experiment conducted on the VEDAI dataset, we selected advanced single-modal
target detection methods and multi-modal target detection methods for comparison with
the proposed method on the M3FD dataset. The quantitative comparison results are pre-
sented in Table 4. As observed in the table, the proposed method enhances the mAP
evaluation metric by 2.7% compared to the best single-modal method and improves it by
1.7% compared to the best multi-modal method.

Table 4. Comparison of AP among the proposed method, the state-of-the-art methods, and compari-
son experiment on the M3FD dataset.

Model Dataset Type Backbone mAP50 mAP

Faster R-CNN RGB ResNet-50 0.871 0.562
Faster R-CNN IR ResNet-101 0.803 0.558
YOLOv7 [45] RGB ELAN-Net 0.916 0.631
YOLOv7 [45] IR ELAN-Net 0.891 0.573

YOLO Fusion RGB + IR two-stream CSPDarknet53 0.928 0.641
GAFF RGB + IR ResNet18 0.891 0.576
CFT RGB + IR CFB 0.765 0.492

Baseline RGB + IR two-stream CSPDarknet53 0.927 0.635
MFMGF-Net RGB + IR two-stream CSPDarknet53 0.930 0.658

In addition, the qualitative comparison results are shown in Figure 9. As shown in
Figure 9a,b, in low-light challenging environments, the baseline detector cannot detect
small or blurred targets. The proposed method successfully detects them with its pow-
erful representation learning and feature fusion capabilities. Furthermore, as shown in
Figure 9c,d, both the baseline detector and the proposed method can effectively detect
objects; however, the classification performance of the baseline method still lags slightly
behind the proposed method, that is, misidentifications occur.
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(3) Comparative experiments on the LLVIP dataset: The quantitative comparison
results between the proposed method and advanced target detection methods on the LLVIP
dataset are presented in Table 5. As evident from the table, the proposed method once again
excelled in target detection performance. Specifically, when compared to the best single-
modal method, the proposed method enhances the mAP evaluation metric by 4.6%, and
when compared to the best multi-modal method, it improves the mAP evaluation metric
by 0.2%. Additionally, the qualitative comparison results are depicted in Figure 10. As
observed in Figure 10, the detection scenes in LLVIP are exclusively nocturnal street scenes
where visible light information is limited. Therefore, treating visible light and infrared
information equally would unlikely yield better detection results. As shown in Figure 10a–c,
the baseline detector struggles to weight the information from the two modalities effectively,
due to independent feature extraction and simple feature addition, resulting in numerous
false positives. In Figure 10d, the baseline detector struggles to accurately identify targets
with overlap and occlusion, while the proposed method achieves precise detection by
effectively fusing the complementary information from the two modalities.

Table 5. Comparison of AP among the proposed method, the state-of-the-art methods, and compari-
son experiment on the LLVIP dataset.

Model Dataset Type Backbone mAP50 mAP

YOLO v3 RGB DarkNet53 0.859 0.433
YOLO v3 IR DarkNet53 0.897 0.534
YOLO v5 RGB CSPDarkNet53 0.908 0.500
YOLO v5 IR CSPDarkNet53 0.946 0.619
YOLO v8 RGB - 0.925 0.541
YOLO v8 IR - 0.966 0.632

CFT RGB + IR CFB 0.975 0.636
LRAF-Net RGB + IR two-stream CSPDarkNet53 0.979 0.663

Baseline RGB + IR two-stream CSPDarkNet53 0.943 0.638
MFMGF-Net RGB + IR two-stream CSPDarkNet53 0.981 0.665
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In summary, the proposed method does not extract features independently and treat
the two modalities equally, as the baseline detector does. Instead, it interactively extracts
features and deeply fuses the features from both modalities. Consequently, the proposed
method is exceptionally well-suited to various challenging detection scenarios.

(4) Computational efficiency analysis: To compare the computational efficiency of the
proposed method with other advanced object detection methods, we conducted inference
efficiency comparison experiments. Specifically, we used the same computing platform
(1080Ti) and dataset (FLIR) as in previous research for a fair comparison. The results,
including network parameters, floating-point operations (FLOPs), and inference time for
the proposed method and related comparison methods, are presented in Table 6. As
observed in the table, the proposed method achieves real-time inference speed, with an
inference time of 23.4 ms. While the computational efficiency of this method is slightly
lower than that of several comparison methods, it maintains higher accuracy.

Table 6. Comparison of parameters, FLOPs, and runtime on the FLIR dataset.

Model Data Type Param. FLOPs Runtime/ms

YOLOv5s RGB 7.1 M 15.9 10.7
YOLOv5s IR 7.1 M 15.9 10.7
GAFF R RGB + IR 23.8 M - 10.9
GAFF V RGB + IR 31.4 M - 9.3

CFT RGB + IR 73.7 M 154.7 91.2
LRAF-Net RGB + IR 18.8 40.5 21.4
Baseline RGB + IR 11.6 M 26.4 17.2

MFMGF-Net RGB + IR 21.8 M 45.5 23.4

In summary, our proposed method has demonstrated superior detection performance
on three public datasets: VEDAI, M3FD, and LLVIP, while also showcasing its adaptability
to different environmental conditions. Furthermore, inference experiments on the FLIR
dataset have confirmed its real-time inference capabilities.

4.4. Algorithm Testing in Real Scenarios

The previously mentioned experiments were all conducted on public datasets. To
validate the effectiveness of the proposed algorithm using custom hardware, we conducted
field experiments using in-house camera hardware in the laboratory.

(1) Experimental setup: The camera equipment used is homemade laboratory equip-
ment, mounted on a tripod. This custom device is equipped with both visible light and
infrared sensors capable of capturing visible light images and infrared pictures. The
camera device is connected to the computer via a USB cable. Prior to detection, the
dual-modal images have been registered to ensure that they have the same resolution
and are pixel-aligned, as depicted in Figure 11. The image resolution after registration
is 1024 × 768. The shooting locations were chosen from various spots and times on the
campus, encompassing teaching buildings, roads, and squares during daytime, dusk,
and nighttime, as presented in Figure 12. After framing, we utilize the model on the
server to detect the framed image.

(2) Experimental results: Some qualitative test results from this field location experi-
ment are displayed in Figure 13. The figures demonstrate that the detection method we
have designed can achieve excellent detection results under various lighting conditions
and in various scenes, showcasing the remarkable detection robustness of the proposed
algorithm. Furthermore, it is worth noting that there are significant disparities in back-
ground and spatial resolution between the experimental scene and the public dataset.
Additionally, imaging is compromised due to high sensor noise in non-commercial devices.
However, the detector’s final performance remains unaffected. This underscores the en-
hancement of target features through the attention mechanism, and despite poor imaging
quality from non-commercial equipment, our proposed algorithm can still effectively
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detect targets. This indirectly illustrates the strong hardware adaptability of the algorithm
presented in this paper.
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5. Conclusions

In this research, we introduced the MFMG-Net, an algorithm for joint target detection
using visible and infrared data. To mitigate learning bias between modalities during train-
ing, we developed an effective data augmentation method based on the mask technique.
To enhance feature extraction from different modalities, we introduced the MFMG module,
facilitating information exchange during the feature extraction process. Additionally, we
designed the DBFF module for deep feature fusion, considering feature channel and spatial
dimensions, making the algorithm adaptable to complex scenarios. Our experiments,
conducted on four public datasets and real-world data, consistently demonstrate the al-
gorithm’s high performance in terms of detection accuracy and computational efficiency.
Although this study has made some progress in dual-modal fusion target detection, the
limitations of the model during deployment were not fully considered. That is to say, due
to the limited computing power of UAV airborne equipment, we need to focus on model
deployment methods in subsequent research.

At the same time, it should be pointed out that due to the public availability of dual-
modal datasets, except for the VEDAI data set, the other data are not aerial image data,
which is also a regret of this study. Therefore, we hope that more dual-modal aerial image
data will be open sourced in the future.
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