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Abstract: Aerial images record the dynamic Earth terrain, reflecting changes in land cover patterns
caused by natural processes and human activities. Nonetheless, prevailing aerial image classification
methodologies predominantly function within a closed-set framework, thereby encountering chal-
lenges when confronted with the identification of newly emerging scenes. To address this, this paper
explores an aerial image recognition scenario in which a dataset comprises both labeled and unla-
beled aerial images, intending to classify all images within the unlabeled subset, termed Generalized
Category Discovery (GCD). It is noteworthy that the unlabeled images may pertain to labeled classes
or represent novel classes. Specifically, we first develop a contrastive learning framework drawing
upon the cutting-edge algorithms in GCD. Based on the multi-object characteristics of aerial images,
we then propose a slot attention-based GCD training process (Slot-GCD) that contrasts learning at
both the object and image levels. It decouples multiple local object features from feature maps using
slots and then reconstructs the overall semantic feature of the image based on slot confidence scores
and the feature map. Finally, these object-level and image-level features are input into the contrastive
learning module to enable the model to learn more precise image semantic features. Comprehensive
evaluations across three public aerial image datasets highlight the superiority of our approach over
state-of-the-art methods. Particularly, Slot-GCD achieves a recognition accuracy of 91.5% for known
old classes and 81.9% for unknown novel class data on the AID dataset.

Keywords: aerial image classification; generalized category discovery; contrastive learning;
slot attention

1. Introduction

Deep neural networks have demonstrated excellent performance in aerial image
classification [1–5]. However, existing methodologies rely on the closed-set assumption,
meaning that the image categories in the test set must be a subset of the categories in the
training set. This assumption often proves invalid in open-world scenarios, where the
model encounters unlabeled aerial images that may include categories unseen during the
training phase. This constitutes the core issue addressed in this paper: given a dataset
of aerial images, where only a portion of the images are labeled, the remaining aerial
images require the model to predict their categories (see Figure 1, left). Importantly,
these categories for prediction may encompass some novel classes not present in the
labeled dataset. This task, known as Generalized Category Discovery (GCD) [6], holds
considerable potential applications in the field of Unmanned Aerial Vehicles (UAVs). For
instance, it could facilitate autonomous scene comprehension by drones operating in
unfamiliar environments.

In the GCD task, the model is designed to learn known old category data as well as pre-
viously unseen novel category data in the absence of labels. In response, some researchers
advocate for discarding the classification head and directly training the feature extractor
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using labeled and unlabeled data within a contrastive learning framework [6]. Others
propose sharpening the model’s category probability outputs to generate high-quality
pseudo-labels for unlabeled data, thereby enhancing the classification performance of such
data [7]. DCCL [8] decomposes the model’s learning process into two levels: the conception
level and the instance level. Then the model separately learns the feature representations of
these levels through contrastive learning to obtain more precise features. PromptCAL [9]
suggests storing historical features during the training process and comparing the cur-
rent feature set with historical features. By adopting a KNN approach, pseudo-labels
are assigned to each feature pair, thereby improving the accuracy of contrastive learning.
Although the aforementioned methods have demonstrated promising outcomes in the
GCD task, their application to aerial image recognition encounters significant challenges.
Since models are required to learn novel category data without labels, the resulting image
feature encoding inherently lacks precision. Furthermore, since most aerial images are
scene images, they have multi-object characteristics. An object in a scene can be understood
as a semantic abstraction, while an aerial image is composed of one or multiple semantics.
Therefore, encoding aerial images solely from a global perspective would further amplify
the noise in the final features. Additionally, the phenomenon of inter-class object sharing in
aerial images can introduce substantial biases in the learned image features by the model.

Setting: Generalized Category Discovery
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Figure 1. An overview of the task setting and our proposed pipeline. (Left): Illustration of GCD
setting. The question mark and the red dashed box denote unlabeled samples, while the green solid line
box denotes labeled samples. It is noteworthy that unlabeled data may also contain categories of labeled
data. (Right): The previous GCD learning framework versus the proposed method in this paper.

To address the aforementioned issues, this paper introduces a learning framework
tailored for the GCD task in aerial images, designed from both image-level and object-level
perspectives. We design a slot-attention-based learning pipeline to learn both image-level
and object-level features, termed Slot-GCD. The learning pipeline is shown in Figure 1. In
contrast to the former approach, our method no longer performs average pooling on the
feature maps. Instead, it decouples the feature maps into multiple semantic features using
the slot attention mechanism, where each feature represents a specific object. Subsequently,
contrastive learning is employed to learn these semantic features. Additionally, our method
reconstructs the overall image feature by linearly combining the confidence weights of
the feature map and the slot features. These reconstructed features are input into the
contrastive learning module to learn the overall semantics. By these approaches, the model
can learn more accurate features for aerial images.

The contributions of this paper are as follows:

(1) We develop a learning framework based on contrastive learning to address the GCD
problem in aerial image classification.

(2) We introduce the slot attention mechanism within the framework of contrastive
learning, allowing the model to explicitly learn local semantic features. This en-
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hancement leads to an improvement in the precision of the features learned through
contrastive learning.

(3) We conduct extensive experiments on three aerial image datasets to demonstrate
the effectiveness of the proposed method. Slot-GCD achieves superior performance
compared to the existing state-of-the-art methods.

The remainder of this paper is organized as follows: Section 2 is devoted to related
work. Section 3 elaborates on our proposed method. Section 4 reports the experimental
results compared with other methods and ablation studies. Section 5 provides a discussion
of the advantages of the proposed method and possible directions for further improvement
in the future. Finally, Section 6 concludes the paper.

2. Related Work

In this section, we will first summarize the progress of the aerial image classification
task. Following this, we will discuss techniques related to the open-set classification method
proposed in this paper, including open-set recognition, Generalized Category Discovery,
contrastive learning, and slot attention.

2.1. Aerial Image Classification

Aerial image classification is a crucial research topic in the field of UAVs, opening up
new possibilities in environmental monitoring. For example, techniques such as the extrac-
tion of the canopy shadow fraction using UAV images highlight the potential of leveraging
bidirectional reflectance characteristics for a better understanding of vegetation structure.
The primary objective of this task entails the accurate prediction of classes attributed to
given aerial images. The early literature predominantly relies on manually crafted features
encompassing texture, contour, color, and spatial information [10–13]. However, these
conventional methods often falter in scenarios where the context of aerial images becomes
intricate. Subsequently, middle-level feature approaches employ encoding methodologies
to derive high-level representations from local features, exemplified by methods like Bag
of Visual Words (BoVW) [14] and the Fisher kernel [15]. While these techniques have
demonstrated effectiveness in aerial image classification, they are limited in their capacity
to encapsulate global semantic information, owing to the reliance on handcrafted local
features for representing images. With the recent advancements in convolutional neural
networks (CNNs), a plethora of methodologies have emerged within the domain of aerial
image classification [1–5]. CNNs exhibit commendable prowess in capturing both global
and local representations of complex aerial images without necessitating additional manual
intervention, thus significantly augmenting the efficacy of aerial image classification. How-
ever, these methodologies are typically trained on closed-set datasets utilizing supervised
learning paradigms, rendering them ill-suited for open-world scenarios. In this study, we
delve into the task of GCD for aerial image classification, aiming to empower models to
autonomously acquire robust representations of novel class data in open-world settings.

2.2. Open-Set Recognition

The issue of open-set recognition (OSR), as outlined in [16], involves the classification
of unlabeled instances from known semantic classes while identifying test instances from
previously unseen categories. OpenMax [17] represents the pioneering deep learning ap-
proach to tackle this challenge using Extreme Value Theory. GANs are frequently leveraged
to generate adversarial samples for training open-set classifiers, as observed in works such
as [18,19]. Various methodologies have been proposed to train models to consider images
with substantial reconstruction errors as indicative of open-set samples, as seen in [20]. Ad-
ditionally, some techniques involve learning prototypes for labeled categories and utilizing
their distances to identify images from unknown categories, as demonstrated in works
like [21,22]. Furthermore, some researchers propose a joint training approach integrating a
flow-based density estimator and a classification-based encoder for OSR [23].
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2.3. Generalized Category Discovery

Similar to the OSR task, the Generalized Category Discovery (GCD) task also involves
encountering unlabeled data from novel classes. However, unlike OSR, which solely
requires the identification of novel class data from unlabeled samples, GCD additionally
necessitates the classification of these novel class data. GCD is a branch of Novel Category
Discovery (NCD). In the NCD task, the model encounters unlabeled data consisting only
of novel class data [24–29]. With the deepening research into the NCD task, researchers
have discovered that in practice, unlabeled data may contain both novel class and old
class data, leading to the emergence of the GCD task. Initially, researchers attempted
to simultaneously learn novel class and old class data through contrastive learning [6].
However, experimental results revealed that the learning effect of new class data was not
satisfactory. SimGCD [7] improves upon contrastive learning by sharpening probability
distributions to generate high-quality pseudo-labels, thereby enhancing the precision of
the model’s learned features. DCCL [8] proposes to conduct contrastive learning separately
at two levels, the conception level and the instance level, to further improve the model’s
representational capacity. In addition, PromptCAL [9] continuously corrects pseudo-labels
for feature pairs in contrastive learning based on historical features using a KNN approach,
thereby mitigating errors caused by label absence. Unlike the aforementioned methods,
this paper designs a slot-attention-based semantic disentanglement module tailored to
the characteristics of aerial images, enabling the model to learn the semantics of multiple
objects within these images.

2.4. Contrastive Learning

Contrastive learning represents a pivotal paradigm within the domain of self-supervised
learning, striving to facilitate models in acquiring comprehensive and interpretable repre-
sentations from unannotated data. In the absence of labels, a common approach involves
the generation of diverse renditions of individual inputs through transformations that
preserve semantic information [30,31], such as geometric transformations. These modi-
fied inputs, termed positive pairs, are contrasted against samples from distinct categories,
termed negative pairs, to discern similarities. Through this mechanism, the features of
positive pairs are drawn closer together, while those of negative pairs are pushed further
apart. Other methodologies utilize triplet loss with active triplet selection to extract hard
positive and hard negative pairs. These pairs can be derived either online from the current
mini-batch or retrieved from a prior checkpoint, resembling the mechanisms observed
in momentum networks [32,33]. Extensive research in contrastive learning suggests that
feature extractors trained through this paradigm exhibit adaptability across various down-
stream tasks [34–36], thereby instigating exploration into learning from both historically
labeled data and novel unlabeled data. In this study, we adhere to the tenets of contrastive
learning, endeavoring to enhance the generalizability of our model to novel unlabeled data.

2.5. Slot Attention

Slot attention is a convolutional autoencoder module that employs a revised attention
mechanism on latent vectors iteratively, aiming to derive a permutation-invariant collection
of object-specific representations termed “slots”. The concept of slot attention was initially
introduced to address object-centric learning objectives [37], which pertains to a machine
learning paradigm focused on objects and their interrelations within specific tasks. Slot
attention utilizes a variant of dot-product attention where slots act as queries in a competi-
tive process to interpret the encoder output. Initially, the efficacy of slot attention was only
validated on a few simplistic handcrafted datasets. However, as research progressed, it
has also been applied to numerous large-scale datasets [38], demonstrating its capability
to enhance the generalization ability of pre-trained models on downstream tasks such
as object detection, instance segmentation, and scene comprehension. Moreover, some
researchers propose a classifier based on slot attention designed to offer transparent and
accurate classification [39], providing intuitive interpretations and positive or negative
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explanations for each category regulated by a custom loss function. In this paper, we
leverage slot attention to enable the model to automatically learn the semantic features of
multiple objects within an aerial image.

3. Method

In this section, we elaborate on the proposed method. First, we define the problem
and notations in Section 3.1. Then, we give an overview of our framework in Section 3.2.
We introduce contrastive learning and slot attention in Sections 3.3 and 3.4, respectively.
Finally, we introduce the total objective function in Section 3.5.

3.1. Problem Definition and Notations

In the setting of GCD, the model M will be trained on the dataset D, which comprises
two parts, Dl = {(xi, yi) ∼ P(X |Yl)} and Du = {(xi) ∼ P(X |Yu)}. During training, labels
of Du are unavailable. Since Yl ∈ Yu, we refer to the data belonging to Yl as the old class
data, and the data belonging to Yu \ Yl as the novel class data.

3.2. The Overall Framework

The overall framework is shown in Figure 2. In this paper, we augment the contrastive
learning framework of GCD with object-level contrastive learning based on slot attention.
For a given aerial image, two different perspective samples, x and x′, are obtained through
geometric transformations such as cropping, rotation, and scaling. Subsequently, they are
separately fed into the feature extractor to obtain corresponding feature maps, f and f′. In
conventional methods [6,7], a single feature vector is directly obtained by averaging pooling
operations on the feature maps, followed by contrastive learning. However, in our learning
framework, multiple slots are utilized to semantically disentangle the feature maps, akin to
the mechanism found in cross attention in Transformer [40], which will be elaborated in
Section 3.4. After semantic disentanglement, each pixel position on the feature map offers
confidence scores for all corresponding slots. The slot with the highest confidence is then
activated at that pixel position, thereby generating the corresponding semantic feature. All
activated slots on this feature map constitute the fundamental semantics of the aerial image
sample. In object-level contrastive learning, for two samples from the same image, semantic
features from the same slot are pulled closer together in the feature space, while those from
different slots are pushed further apart. For different images, their corresponding semantic
features are all pushed apart. Additionally, based on the activation confidence and slot
features, we reconstruct the image-level features of the aerial image via linear combinations
and then learn these features through contrastive learning.
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Figure 2. The overall workflow of Slot-GCD. (Left): Illustration of semantic decoupling and
reconstruction based on slot attention. x and x′are two different views from a single aerial image after
geometric transformations. On thefeature map, different colors represent distinct semantic regions.
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(Right): Image-level and object-level contrastive learning. f represents image-level features, while
S represents a set of object-level features for an aerial image. The “+” sign indicates an increase in the
Euclidean distance between two features, while the “−” sign indicates a decrease in the distance.

3.3. Contrastive Learning

When learning from unlabeled data, there are generally two learning methods. One
involves assigning pseudo-labels to unlabeled data, followed by supervised learning. This
can be achieved by either adding a classification head for novel classes [27] or employing
an assignment algorithm like the Sinkhorn–Knopp algorithm [24,41]. Another method
leverages the powerful representation capability of contrastive learning to directly learn
from these unlabeled data in a self-supervised learning manner. Nevertheless, as de-
picted in Figure 3, aerial image datasets demonstrate intra-class diversity and inter-class
similarity [42,43], leading to significant noise in the generated pseudo-labels. This noise
can pose challenges in effectively learning from unlabeled data, particularly due to the
susceptibility of the classification head to erroneous labels [44]. In contrast, contrastive
learning possesses two pivotal characteristics that can effectively address the challenges
above: (1) the extensive application of contrastive learning as a pre-training technique to
yield resilient representations across diverse datasets [45–47]; and (2) its capacity to train
the feature extractor directly without relying on labels, yet enabling the model to acquire
features characterized by strong class discrimination [48–51]. Consequently, we opt to
fine-tune the feature extractor directly using contrastive learning.

Church ForestPark School

Center RiverPark School

Intra-class diversity Inter-class similarity

Figure 3. The properties of aerial image datasets. The figures on the left of the dotted line show
images of intra-class diversity, and the figures on the right show inter-class similarity.

In detail, we perform a geometric transformation of Du to the input image first, so
the unlabeled data will be Du = {(x, x′)}. For a batch of unlabeled training data, we use
infoNCE loss to enable the feature extractor Φ to learn good semantic representation [30].
This loss is given by

LinfoNCE
u = − 1

M ∑
i∈B

log
exp

(
p(Φ(xi)) · p(Φ(x′i))/τ

)
∑n 1[n ̸=i] exp(p(Φ(xi)) · p(Φ(xn))/τ)

, xi ∈ Du, (1)

where B is the mini-batch during training and M is the batch size for unlabeled data.
1[n ̸=i] is an indicator determining whether these two features come from the same image,
and τ is the temperature coefficient. It is noteworthy that the present study employs a
conventional approach prevalent in contrastive learning methodologies. Before engaging
in contrastive learning, features undergo projection into a higher-dimensional space with a
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projector p. This procedure serves to expedite convergence and bolster the representational
efficacy of features [47]. The fundamental idea revolves around generating positive pairs via
geometric transformations and contrasting them with different images within a mini-batch
to serve as negative pairs. Subsequently, the model is compelled to minimize the distance
between features belonging to positive pairs while maximizing the distance between
features belonging to negative pairs within the feature space. Upon completion of training,
clustering algorithms such as K-means can be employed to partition the resultant features
and derive the ultimate classification outcomes.

As for labeled data Dl, we can also train it with infoNCE loss. However, since the
labels are available, they can be used to generate positive and negative pairs. Thus, the loss
for learning labeled data is given by

LinfoNCE
l = − 1

N ∑
i∈B

∑
j∈I(i)

log
exp

(
p(Φ(xi)) · p(Φ(xj))/τ

)
∑n 1[n ̸=i] exp(p(Φ(xi)) · p(Φ(xn))/τ)

, xi ∈ Dl, (2)

where N is the batch size for labeled data and I(i) is the set of images under the same
mini-batch that belong to the same category as xi.

3.4. Slot Attention

To enhance the precision of feature encoding for aerial images, this study proposes
employing slot attention for contrastive learning at the object level. In aerial image datasets,
many images comprise multiple types of objects, with certain objects appearing across
various class categories, as depicted in Figure 4. Leveraging the characteristics of multi-
object scenarios and inter-class object sharing, we advocate utilizing slot attention to
disentangle semantic information in aerial images, enabling the model to learn semantic
feature encodings for each object through contrastive learning. This approach facilitates a
finer-grained understanding of aerial images. After obtaining semantic feature encodings
for the objects constituting an aerial image, the entire image’s features are reconstructed
based on the confidence scores of these features on the feature map, thereby mitigating
model bias towards individual objects.

church baseball field commercial area

apartment

Figure 4. The multi-object nature and inter-class object sharing characteristics of aerial images.
From these three different category images, it can be observed that each image contains multiple
objects, and there are cases where the same object appears in aerial images of different categories,
such as the presence of house objects in both the church and baseball field.

3.4.1. Semantic Decoupling

For a feature map of an aerial image, there may exist multiple objects. Drawing in-
spiration from the implementation mechanism of cross attention in Transformer [40], we
introduce K slot vectors, representing potential objects (semantics) in the image. Subse-
quently, we calculate the attention of each pixel in the feature map on the slot vectors and
compute confidence using softmax. The specific formula is given by
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A = softmax
K

(
z · S⊤

/τ
)
∈ RH×W×K, (3)

where z ∈ RH×W×D is the feature map, and S ∈ RK×D are the slot vectors. Since each slot
represents a specific semantic feature or object, the slot vectors should be kept orthogonal to
ensure non-overlapping semantics among slots. In the confidence matrix A, the confidence
scores in the pixel dimension represent the weights of the slots on each pixel. Combining
these weights with the corresponding pixel features linearly yields the slot features based
on this feature map. The calculation formula is given by

S =
1

∑i,j A[i, j] ∑
i,j

A[i, j]⊙ z[i, j] ∈ RK×D =
[
s1, s2, . . . , sK

]
, (4)

where ⊙ denotes the Hadamard product and [i, j] represents the position index of the
feature map. Since not all slots represent semantics present in the current aerial image, it is
necessary to filter out slot features irrelevant to this aerial image. This can be achieved by
retaining only the slot features with the highest confidence in the slot dimensions of the
confidence matrix. The calculation method is given by

1k = ∃i,j such that argmax
K

(A[i, j]) = k, 1 =
[
11, 12, . . . , 1K

]
, (5)

where 1k is a binary indicator representing whether the slot with index k is activated on the
feature map. In this way, the feature map z can be decomposed into multiple local semantic
features S .

This paper enhances the model’s representation capability of local semantic features
through contrastive learning. The basic idea is that, within a batch, for different image
samples from the same image, the activated slot features with the same index are pulled
closer together in space, while those with different indices are pushed farther apart. The
slot features from different images are also pushed farther apart in space. The specific
calculation method is given by

LInfoNCE
slot = − 1

M

M

∑
i

∑
k

log
exp

(
ps(sk

i ) · ps(sk
i′)/τ

)
∑j ∑k′ exp

(
ps(sk

i ) · ps(sk′
j )/τ

) , 1k
i = 1k

i′ = 1k′
j = 1, (6)

where ps refers to the projector mapping the slot features into a high-dimensional space.

3.4.2. Semantic Reconstruction

In aerial image classification tasks, the model ultimately needs to output a vector
representing the entire aerial image. Directly average pooling the feature map would result
in significant information loss. In this paper, the feature map is decomposed into multiple
slot features. We can then utilize these features along with their confidence scores on
the feature map to reconstruct the feature vector of the entire aerial image. The specific
calculation is given by

f =
1

∑i,j A[i, j] ∑
i,j

A[i, j]sk, k = argmax
K

A[i, j]. (7)

Since we use f to represent the semantics of the entire image, the image-level contrastive
learning loss function (1) can be rewritten as

LinfoNCE
u = − 1

M ∑
i∈B

log
exp

(
p(fi) · p(f′i)/τ

)
∑n 1[n ̸=i] exp(p(fi) · p(fn)/τ)

, (8)

where f′i represents the global features of the image sample from another perspective.
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3.5. Learning Objectives

In this section, we present the objective loss function employed in the proposed
methodology. The overall loss function is given by

L = LinfoNCE
l + (1 − λ)LinfoNCE

u + λLinfoNCE
slot , (9)

where λ represents the loss balancing weight controlling the learning at the object and
image levels. The specific training procedure is illustrated in Algorithm 1.

Algorithm 1 The process of the proposed Slot-GCD

Input: The labeled dataset Dl , the unlabeled dataset Du, the feature extractor Φ, the slot
vectors S ∈ RK×D, the feature projector p, the slot projector ps, and the optimizer O.

Output: optimal Φ and S .
1: Initialize Φ, S , p and ps; Perform geometric transformations on Dl and Du.
2: repeat
3: Input Dl and Du into Φ to obtain corresponding feature maps.
4: Calculate the slot confidence matrix A using Equation (3).
5: Use Equation (4) to obtain slot features S .
6: Filter out irrelevant slot features by Equation (5).
7: Compute the object-level contrastive learning loss by Equation (6).
8: Reconstruct the overall image semantic features by Equation (7).
9: Compute the image-level contrastive learning loss by Equation (8).

10: Calculate the overall loss by Equation (9).
11: Train the corresponding parameters with O.
12: until a preset number of training iterations is satisfied.

4. Experiment

In this section, we conduct experiments on three public aerial image datasets to
validate the efficacy of the proposed method. Subsequently, we perform ablation studies to
assess the effectiveness of each component of the method.

4.1. Experimental Setup
4.1.1. Datasets

This paper conducts experiments on three publicly available aerial image datasets:
AID [52], Million-AID [53], and NWPU-RESISC45 [13]. The AID dataset, established by
Wuhan University in 2017, comprises 30 distinct aerial image categories such as bridges,
rivers, forests, grasslands, schools, factories, and other types. Each category contains
200–400 aerial images, totaling 10,000 images, with a resolution of 600 × 600. The Million-
AID dataset, created by Wuhan University in 2021, consists of 51 categories, with images
per category ranging from approximately 2000 to 45,000, totaling 1,000,848 images. The
NWPU-RESISC45 dataset, provided by Northwestern Polytechnical University (NWPU),
is widely employed in aerial image recognition. It comprises 45 distinct categories, each
containing 700 images, resulting in a total of 31,500 images. Each image has a resolution
of 256 × 256.

4.1.2. Evaluation Metrics

Upon the completion of model training, we obtain features corresponding to each
image, which are then clustered using the K-means algorithm to derive the center prototype
for each category. As the number of novel classes in the unlabeled data is unknown, we
employ the classical elbow method [54] in unsupervised clustering to estimate the number
of novel classes. The test set is inputted into the model during the testing phase to extract
respective features. Following this, the Euclidean distances between these features and the
category center prototypes in the training set are calculated, and subsequently, the category
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of the nearest centroid is allocated to the test set sample. The classification accuracy is
measured by

ACC = max
p∈P(Y)

1
T

T

∑
i=1

1{yi = p(ŷi)}, (10)

where T is the size of the test set and P(Y) is the set of all permutations of the class labels
in the test set. y and ŷ are the ground truth labels and the model’s predictions, respectively.
We use the Hungarian optimal assignment algorithm to compute the maximum over the
set of permutations [55].

In this paper, ACC is computed from three perspectives, denoted as “All”, “Old”,
and “Novel”, respectively. “All” represents all samples in the test set. “Old” represents
the samples in the test set whose labels belong to Yl, reflecting the model’s classification
performance on unlabeled old class data. “Novel” represents the samples in the test
set whose labels belong to Yu \ Yl, reflecting the model’s classification performance on
unlabeled novel class data.

4.1.3. Implementation Details

This paper employs the first four layers of ResNet-50 [56] as the feature extractor,
initialized with parameters pretrained on ImageNet. In slot attention, we configure the
number of trainable slots differently for each dataset: 128 for AID, 256 for NWPU-RESISC45,
and 1024 for Million-AID. Throughout training, these slots maintain orthogonality to each
other. The projector used in contrastive learning follows the methodology outlined in
DINO [51], utilizing three-layer Multi-Layer Perceptrons (MLPs). We initialize the learning
rate to 0.1 and dynamically adjust it during training using the CosineAnnealingLR strategy
from PyTorch. We employ the Layer-wise Adaptive Rate Scaling (LARS) optimizer [51].
Training is conducted with a batch size of 128 over 300 epochs. The weighting factor λ for
the loss functions at the image and object levels is set to 0.5.

4.2. Main Results

Given the absence of methodologies specifically designed to address the GCD task
within the context of aerial image classification, this paper applies several effective methods
from both the NCD and GCD domains to aerial image classification, to compare them
with the proposed method. These methods include RankStats+ [27], UNO+ [24], GCD [6],
SimGCD [7] and DCCL [8]. RankStats+ and UNO+ are NCD algorithms adapted for the
GCD task. GCD, DCCL, and SimGCD represent the state-of-the-art algorithms for the GCD
task. The experimental datasets in this study are split into training and testing sets in a 4:1
ratio. Next, this paper will analyze the effectiveness of the proposed method from both
quantitative and qualitative perspectives.

4.2.1. Quantitative Analysis

The study randomly selects a subset of classes from the training set, consisting of 1
3 and

2
3 of the total class proportion, to serve as unlabeled novel class data, while the remaining
classes are designated as old class data. This is done to assess the model’s sensitivity to the
proportion of novel and old classes. During the training phase, 50% of the samples from
the old class data are randomly selected, their labels are removed, and they are combined
with the unlabeled novel class data to form the unlabeled data.

The quantitative analysis results of this study are shown in Tables 1 and 2. We
conducted experiments using six algorithms, including the proposed method, on three
aerial image datasets. Table 1 presents the experimental results under the setting where
the ratio of old to novel categories is 2:1. RankStats+ [27] and UNO+ [24] denote NCD
algorithms adapted for the GCD task. This adaptation was necessary as NCD algorithms
initially do not possess the capability to handle GCD tasks, where all unlabeled data are
assumed to belong to novel categories. Experimental results reveal that RankStats+ and
UNO+ can learn meaningful representations from unlabeled data, especially UNO+, which
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exhibits the best classification performance on old category data among the six methods.
This is attributed to its parametric classifiers. However, a corresponding drawback is
its suboptimal performance on novel category data. The proposed method Slot-GCD
outperforms UNO+ by 8%, 6.3%, and 8.1% in classification performance on AID, NWPU-
RESISC45, and Million-AID, respectively. This performance gap is even more pronounced
in novel category data. GCD [6], DCCL [8], and SimGCD [7] represent current state-of-the-
art GCD algorithms with good representation capabilities for both novel and old category
data. However, they still generate the image feature encodings from a holistic perspective
during contrastive learning, without fully exploiting the multi-object nature of partial
aerial images. By utilizing slot attention for semantic disentanglement of aerial images and
conducting contrastive learning at both the object and image levels, our proposed method
Slot-GCD achieves better image feature representation, as evidenced by experimental
results outperforming GCD, DCCL, and SimGCD on all three aerial image datasets. Table 2
presents the experimental results under the setting where the ratio of old to novel categories
is 1:2. Under this setting, our method still achieves relatively good classification results. It
is worth noting that, compared to Table 1, when the number of labeled categories decreases,
the model’s classification performance on unlabeled novel category data decreases, and
the performance on labeled category data increases. This may be because the model’s
ability to classify unknown novel category data to some extent relies on the knowledge
learned from labeled data. When the quantity of old class categories is limited, the model
becomes susceptible to overfitting, thereby attenuating its capacity for generalizing to novel
class data.

Table 1. Classification accuracy results (in %) on three aerial image datasets with 2:1 class partitioning.
“Old” represents the classification results on the old class data; “Novel” represents the classification
results on the novel class data; “All” represents the classification results on the entire test set.

Methods
AID NWPU-RESISC45 Million-AID

Old Novel All Old Novel All Old Novel All

RankStats+ [27] 61.5 32.8 45.5 58.7 30.2 43.9 48.6 21.5 32.6
UNO+ [24] 94.6 63.7 75.2 93.2 60.4 74.3 82.1 51.3 64.7

GCD [6] 88.3 72.2 76.9 86.9 69.5 75.1 76.3 59.9 65.8
DCCL [8] 88.7 79.4 80.5 87.5 76.2 78.5 77.3 65.4 69.2

SimGCD [7] 91.0 81.2 82.6 88.4 77.9 79.5 78.6 68.3 70.5

Slot-GCD 91.5 81.9 83.2 89.3 79.2 80.6 79.9 71.2 72.8

Table 2. Classification accuracy results (in %) on three aerial image datasets with 1:2 class partitioning.
“Old” represents the classification results on the old class data; “Novel” represents the classification
results on the novel class data; “All” represents the classification results on the entire test set.

Methods
AID NWPU-RESISC45 Million-AID

Old Novel All Old Novel All Old Novel All

RankStats+ [27] 62.2 27.8 34.2 59.1 26.9 34.9 53.2 20.6 27.4
UNO+ [24] 94.8 60.5 67.3 94.1 56.9 64.3 82.9 48.4 54.2

GCD [6] 89.7 70.3 71.6 87.2 65.9 68.1 79.6 54.2 57.5
DCCL [8] 89.1 76.5 78.5 88.4 72.5 74.5 80.2 62.9 63.6

SimGCD [7] 93.4 77.8 80.4 90.3 73.2 76.1 82.3 65.1 66.4

Slot-GCD 92.9 80.7 81.6 91.4 75.4 78.3 82.6 68.5 68.1

4.2.2. Qualitative Analysis

To better validate the effectiveness of the proposed method in aerial images, we
compare the classification results of GCD [6], DCCL [8], SimGCD [7], and the proposed
method Slot-GCD on four aerial images labeled as “apartment”, “church”, “parking_lot”
and “commercial_area”. The specific details are shown in Figure 5. Observing the first and
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second images, it can be noted that although their categories are different, they share many
common local objects such as cars and apartments. This characteristic may lead to the
inability of the model’s image feature encoding to effectively express the overall semantics
in the absence of labels, even leaning towards a specific local object. For instance, GCD and
DCCL both misclassify the second aerial image, possibly due to their failure to adequately
learn the key local object: the church. Alternatively, they may have leaned too much
towards features similar to apartments during image feature encoding. In contrast, Slot-
GCD correctly identifies the first and second images. It is noteworthy that SimGCD also
correctly classifies these two aerial images, possibly because its well-designed high-quality
pseudo-label generation mechanism accurately distinguishes the differences between the
two images. The last two aerial images also exhibit the characteristics of multi-object and
inter-class object sharing, such as a large number of cars appearing in both images. GCD,
DCCL, and SimGCD fail to output entirely correct results for these two images, while
Slot-GCD correctly identifies them.

apartment

Methods Pred GT Pred GT Pred GT Pred

Images

GCD

DCCL

GT

parking_
lot
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golf-
course

church
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detached_
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Figure 5. Visualization of classification results for 4 aerial image samples. “GT” represents the
ground truth label, while “Pred” denotes the model’s predicted label.

Furthermore, because the classification performance of GCD heavily relies on the
discriminative nature of the features outputted by the model’s feature extractor in the
spatial domain, the quality of the learned features can be assessed by observing the intra-
cluster aggregation and inter-cluster discrimination of the feature clusters in space. Given
the high-dimensional nature of the model’s output features, visualizing them directly is
impractical, necessitating their projection into a lower-dimensional space for analysis. In
this study, we employ the t-SNE method [57] for dimensionality reduction to visualize the
features extracted by models trained on the AID dataset using various methods, including
GCD, DCCL, SimGCD, and Slot-GCD.

Figure 6 presents the visualization results of the features outputted by models trained
on the AID dataset using the aforementioned methods. From this figure, it can be observed
that the features in the right half of the four feature clusters exhibit good intra-cluster
aggregation and inter-cluster discrimination. This is because the unlabeled data includes
some old class data, and these class features have been well learned by the model during
the training phase using labeled old class data. Conversely, upon observing the left half
of the feature clusters, it is evident that all four feature clusters exhibit varying degrees of
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intra-cluster feature dispersion and inter-cluster feature intersection. This phenomenon
reflects the aggregation effect of features from unlabeled new class data. Notably, GCD
demonstrates the poorest aggregation effect, with the feature points in the left half nearly co-
alescing, resulting in low inter-cluster discrimination. Conversely, the left half of the feature
clusters from DCCL and SimGCD exhibit some distinct boundaries of class feature clusters,
albeit with considerable overlap. In comparison, the feature clusters generated by Slot-GCD
demonstrate higher inter-cluster discrimination, indicating that the proposed method can
yield a feature extractor with notably superior category representation performance.

GCD DCCL

SimGCD Slot-GCD

Figure 6. Feature visualization of different methods. t-SNE visualization of unlabeled instances
in the AID dataset for features generated by GCD [6], DCCL [8], SimGCD [7], and Slot-GCD
(our approach). Feature points of different colors represent they belong to different categories.

4.3. Ablation Study
4.3.1. Effectiveness of Each Component

To validate the effectiveness of each module in Slot-GCD, this paper conducted ab-
lation experiments and analysis. The specific classification accuracy results (in %) are
shown in Table 3. We conducted experiments on the AID dataset with a ratio of old to
new categories set at 2:1. Here, “Backbone” denotes the feature extractor used by the
model, “Unsup-CL” represents contrastive learning on unlabeled data, “Sup-CL” denotes
contrastive learning with label correction on labeled data, and “Slot-CL” indicates con-
trastive learning using extracted slot features. The first row of Table 3 presents the results
obtained by directly clustering the feature outputs of the pre-trained model using K-means,
which showed poor performance and failed to capture meaningful features. Rows two and
three reflect the impact of the two image-level contrastive learning modules on the model’s
performance, demonstrating a significant improvement in classification performance upon
their inclusion. The comparison between these two rows reveals that the introduction of
module “Unsup-CL” enhances the model’s classification ability for novel class data, while
module “Sup-CL” substantially improves the model’s representational capacity for old
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class data. The fourth row illustrates the classification performance of the model after
removing the slot, essentially reverting to a conventional GCD algorithm. Comparing the
results of the last row with those of the previous rows, it is evident that the introduction of
slot attention significantly improves the model’s classification ability for novel class data,
with a minor gain in recognizing old class data.

Table 3. Ablation study on the different components of our approach.

Backbone Unsup-CL Sup-CL Slot-CL
AID

Old Novel All

✓ ✗ ✗ ✗ 37.1 30.4 32.9
✓ ✓ ✗ ✗ 65.8 51.9 56.2
✓ ✗ ✓ ✗ 82.2 49.7 66.4
✓ ✓ ✓ ✗ 88.3 72.2 76.9
✓ ✓ ✓ ✓ 91.5 81.9 83.2

4.3.2. Effectiveness of the Number of Slots and the Loss Balancing Weight

Table 4 illustrates the impact of the number of slots, denoted as K, on the model’s
classification performance across the entire test set. It can be observed from the table that
the effect of K varies across different datasets. The classification performance of the model
on the AID dataset decreases as K increases, which could be attributed to the relatively
limited number of objects in the AID dataset. On the NWPU-RESISC45 dataset, the model
achieves the best classification performance when K is set to 256. This is likely because
NWPU-RESISC45 is a relatively large dataset with a greater variety of objects. Meanwhile,
on the Million-AID dataset, the model exhibits optimal classification performance when
K is set to 1024. This is attributed to the large scale of the Million-AID dataset, which
encompasses a vast array of objects.

Table 4. Effectiveness of the number of slots.

K AID NWPU-RESISC45 Million-AID

128 83.2 79.5 71.9
256 82.9 80.6 72.4
512 82.9 79.7 72.1

1024 82.7 79.7 72.8
2048 82.1 78.6 72.6

Table 5 illustrates the impact of parameter λ on model learning. λ is the loss balancing
weight controlling the learning at the object and image levels. When λ is set to 0, Slot-GCD
degenerates into the general GCD algorithm. As λ increases, the emphasis on object-level
contrastive learning gradually intensifies, leading to improved model classification accuracy.
However, when λ reaches a certain value, the model’s performance begins to decline. This
is because the model becomes overly focused on local semantics at this point, neglecting
global semantics, which consequently leads to inaccurate image feature encoding.

Table 5. Effectiveness of the loss balancing weight.

λ AID NWPU-RESISC45 Million-AID

0 76.9 75.1 65.8
0.3 81.5 79.3 73.4
0.5 83.2 80.6 72.8
0.7 81.7 80.1 70.4
0.9 78.8 77.6 70.1
1 78.4 76.9 69.5
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5. Discussion

The GCD task endeavors to equip models with the capability to autonomously learn
from unlabeled data within an open-world context. In contrast to the NCD task, the
unlabeled data in GCD encompasses categories previously encountered by the model.
This bears considerable potential for applications in UAVs, wherein GCD algorithms can
facilitate the automatic acquisition of knowledge concerning known and unknown scenes
and environmental conditions. In this paper, we introduce a learning approach tailored to
address the GCD task using aerial image data, taking into account the unique characteristics
of aerial images.

Prior GCD algorithms predominantly focused on the holistic encoding of aerial image
features, such as average pooling features to derive the overall image representations,
followed by learning the semantics of input images via contrastive learning. However,
these methods neglect the semantics of local objects. Particularly when dealing with
unlabeled aerial images, the characteristics of multi-object and inter-class object sharing
may lead to inaccuracies in the derived image features. To mitigate this issue, we propose
a semantic decoupling and reconstruction method based on slot attention. This method
computes the attention of each slot at various positions on the feature map to extract
distinct local semantic features. Additionally, we reconstruct the overall semantic feature
of the image using the slots’ confidence scores and feature maps. Consequently, semantic
features at both the object and image levels can be learned through contrastive learning
to attain more precise feature representations. Experimental results on three public aerial
image datasets demonstrate that our proposed method outperforms other advanced GCD
algorithms in terms of classification performance.

Although our proposed method yields promising results, there are potential areas for
improvement. Firstly, the efficacy of the GCD task heavily hinges on the model’s feature
extraction prowess. This suggests that employing more potent feature extractors, such as
Transformer architectures [40], holds the potential to enhance the model’s classification
performance. Secondly, the contrastive learning framework utilized in this study falls
within the realm of representation learning. Leveraging advanced representation learning
techniques, such as sophisticated geometric data augmentations and employing multiple
local crops [48,58], can bolster the expressive capacity of the extracted features. Moreover,
during object-level and image-level contrastive learning, the positive pairs utilized are
exclusively drawn from sample pairs of the same aerial image under different transfor-
mations. However, within a batch, there exist diverse images from the same category,
which should also be considered positive pairs. The exploration of strategies for select-
ing these positive pairs constitutes a potential avenue for future research in this domain.
Lastly, slot attention has demonstrated notable proficiency in extracting local object features
from images [38,59,60]. Therefore, in the future, we will exploit slot attention for address-
ing open-world learning tasks characterized by multiple targets, such as open-set object
detection and image segmentation.

6. Conclusions

This work addresses the challenging task of Generalized Category Detection (GCD)
for aerial image classification. We propose Slot-GCD, a novel framework that leverages slot
attention to exploit the distinctive attributes of aerial images. Unlike conventional methods,
Slot-GCD incorporates contrastive learning of image features at both the image and object
levels, recognizing the multi-object nature of aerial images. Slot attention facilitates the
semantic decoupling of feature maps, generating object-level features that capture local
semantics. Furthermore, we propose a technique to reconstruct overall image features by
linearly combining feature maps with their corresponding confidence scores. Through
contrastive learning, the model learns to identify similarities and differences across images,
fostering a more generalized understanding of aerial images that improves its performance
on unseen categories. Extensive evaluations on three benchmark aerial image datasets
demonstrate the superiority of Slot-GCD compared to state-of-the-art methods. By enabling
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accurate detection of novel categories, Slot-GCD has the potential to significantly extend
applications of aerial image classification.
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