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Abstract: Climate change has intensified the need for robust fire prevention strategies. Sustainable
forest fuel management is crucial in mitigating the occurrence and rapid spread of forest fires. This
study assessed the impact of vegetation clearing and/or grazing over a three-year period in the
herbaceous and shrub parts of a Mediterranean oak forest. Using high-resolution multispectral data
from an unmanned aerial vehicle (UAV), four flight surveys were conducted from 2019 (pre- and post-
clearing) to 2021. These data were used to evaluate different scenarios: combined vegetation clearing
and grazing, the individual application of each method, and a control scenario that was neither
cleared nor purposely grazed. The UAV data allowed for the detailed monitoring of vegetation
dynamics, enabling the classification into arboreal, shrubs, herbaceous, and soil categories. Grazing
pressure was estimated through GPS collars on the sheep flock. Additionally, a good correlation
(r = 0.91) was observed between UAV-derived vegetation volume estimates and field measurements.
These practices proved to be efficient in fuel management, with cleared and grazed areas showing a
lower vegetation regrowth, followed by areas only subjected to vegetation clearing. On the other
hand, areas not subjected to any of these treatments presented rapid vegetation growth.

Keywords: remote sensing; unmanned aerial vehicles; grazing monitoring; forest management;
normalized difference vegetation index; land use; land cover change; vegetation dynamics;
sustainable fuel management; wildfire prevention

1. Introduction

Southern Europe is greatly impacted by wildfires, primarily due to climate conditions
and the type of vegetation cover [1]. This region experiences an average of 47,000 fires
annually, destroying 400,000 hectares of natural and forested land between 1980 and
2019 [2]. This scenario worsened in 2022, with more than 660,000 hectares burned between
1 January and 12 August, as reported by the European Forest Fire Information System
(EFFIS) [3]. This is 56% higher than the previous record set in 2017 (420,913 hectares) for the
same period. Wildfire incidence has dramatically increased over the last decades, with the
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average burned area quadrupling since the 1960s [1]. This cause is mainly due to landscape
homogenization, fuel load accumulation, and rural depopulation after the Second World
War [4]. Climate change has made wildfires more dangerous, increasing in magnitude and
severity [5]. Without effective action on land and fuel load management, reversing the
trend of increasing wildfires will be challenging. Fuel load is considered the most important
factor in fire management [6], as it supplies the energy for ignition and spread, modulating
fire intensity and severity [7,8]. Additionally, years of fire suppression practices may play a
role, particularly in vegetation biomes, with some of the highest fire frequency rates [9].

Reducing fuel load at the stand level and creating landscape discontinuities are seen as
effective strategies for preventing wildfires [10]. Pastoral systems are very common along
the Mediterranean region and provide an opportunity to manage the fuel load and reduce
ecosystem fire risk [11–13]. Recently, the Open2preserve project [14] has been experiment-
ing with strategies such as combining grazing with prescribed burning and/or mechanical
treatments like thinning and shrub clearing to reduce fuel accumulation. Such actions add
value by providing several positive effects on rural livelihoods and the environment, con-
tributing to sustainable rural development [13,15–18]. Continuous monitoring of pastures
is critical for monitoring their quality and grazing pressure. However, there is a need for
techniques that efficiently and systematically monitor pasture cover changes for effective
grazing management [19].

Remote sensing platforms can monitor areas, evaluate the characteristics of active
fires, and characterize post-fire ecological effects and vegetation dynamics [20]. Unmanned
aerial vehicles (UAVs) have increased the spatial resolution of remotely sensed data [21]
for land use and land cover classification (LULC) [22]. UAVs are flexible tools for remote
sensing data acquisition due to their ability to acquire data at different spatial, temporal,
and radiometric resolutions [23]. UAVs are used in several vegetation studies to assess veg-
etation geometric and biophysical features, nutrient content and deficiencies, water stress,
weeds, and disease detection [24]. Above-ground biomass (AGB) is an important indicator
of ecosystem carbon storage [25], and UAV-based data can be used to assess AGB and
above-ground volume (AGV) through spectral indices and/or structural metrics [26]. Stud-
ies have shown the effectiveness of UAV-based data for biomass estimation in shrubland
communities [26–28]. UAV-based data is also used to map AGB in grassland and forage
communities through the computation of vegetation indices from multispectral [29–32] or
RGB data [33–35]. Topographical features or heights can also be included [29,30,34]. Recent
studies have assessed forage quality mapping through UAV imaging spectroscopy [36,37].
Data from this platform can also be used for pasture and grazing monitoring, including the
spatial and temporal changes in the pasture, grazing rotation needs [38,39], pasture intake
estimation during grazing [40], and pasture biomass estimation [41]. UAV-based data can
estimate tree positions and heights in agrosilvopastoral systems [42]. In the case of fire
disturbances, UAV-based data can estimate fire severity by comparing pre- and post-fire
differences [43], as well as the effects of fire and grazing on trees, shrubs, and herbaceous
vegetation in savannah ecosystems [44]. Other studies explored AGB estimation from ter-
restrial LIDAR data [27,45] and airborne LIDAR and imagery data [46]. Photogrammetric
dense point clouds from close-range imagery [47] have also been used for this purpose.
These sensors can be used to obtain very high-resolution data, but those are often more
expensive and/or laborious [48–50].

Studies on the temporal changes of pasture lands using UAV-based or remote sensing
data are limited in number. This article presents a study aimed at evaluating the structure
of the understory vegetation of an open Mediterranean forest in northeastern Portugal
in plots subjected to four different treatments (control, clearing without grazing, clearing
and grazing, grazing without clearing). To achieve this goal, the plots were monitored for
three years, and high-resolution multispectral images were acquired over four different
periods. This sets the study apart from others that only evaluate one season in controlled
experimental plots [31,33,38]. In addition, the study compares two methods of assessing
vegetation structure: the line intercept method (traditional field measurement [51]) and the
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UAV-based method. The traditional methods for determining understory vegetation (herba-
ceous or shrub vegetation) involve collecting data along transects in the field by trained
technicians. Using UAV-based photogrammetric products can provide a quicker and less
labor-intensive alternative to obtain such data [52], which can be suitable for small to
medium-sized areas [49] or for mapping specific locations with multiple photographs [30].

2. Materials and Methods
2.1. Study Area

The study was conducted in an open Mediterranean forest in the “Romeu” Natura 2000
Site of Community Importance in northeast Portugal (SIC PT CON0043). The experimental
area covers approximately 4.5 hectares (41◦32′25′′ N, 7◦02′16′′ W), with an altitude ranging
between 480 m and 537 m (mean of 514 m). The location of this area within Portugal’s
mainland is presented in Figure 1a. The dominant vegetation consists of an open mixed
sclerophyllous forest with Quercus faginea, Q. rotundifolia, and Q. suber and a shrub layer
with Cistus ladanifer, Cytisus multiflorus, and Lavandula stoechas. The presence of various
species in this semi-natural forest leads to natural heterogeneity and soil fertility gradients,
resulting in differences in floristic composition and in the shrub size due to the steep
slope of the study area. The soils are classified as District Leptosols [53], according to
the FAO/UNESCO Soil Map of the World [54]. These soils, commonly found in the
Trás-os-Montes e Alto Douro region (northeastern Portugal), are derived from schist and
are characterized by low fertility and degradation due to long-term cultivation. The
heterogeneous landscape presents challenges for the flock’s decision-making in terms of
foraging and refuge. The study area was chosen due to the multiple strata present, reducing
the influence of the flock’s preferences.
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torial Units for Statistics) II regions (a). Monthly mean temperature and accumulated precipitation in
the study area between January 2019 and July 2021 (b,c) the climatological normal of Mirandela (data
from the Portuguese Institute for Sea and Atmosphere, IPMA, Lisbon, Portugal).

The study area is located in the Mediterranean region, with a Meso-Mediterranean
and a dry ombrotype. Figure 1b shows the monthly precipitation and temperature data
from the monitored period (2019 to July 2021), obtained from the Europe-wide E-OBS
temperature and precipitation gridded dataset v25.0e [55]. During the monitored period,
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a wetter pattern occurred, along with a significantly higher average temperature in 2020.
These inter-annual fluctuations are typical in the Mediterranean climate, as evidenced by
changes in the standardized 30-year series (Figure 1c). The average annual temperature is
14.3 ◦C, and the total annual precipitation is 508.6 mm, based on the data from 1971–2000
of the town of Mirandela (Figure 1c).

2.2. Experiment Description

In May 2019, a vegetation clearing procedure was conducted to remove understory
vegetation. The clearing was conducted through mechanical means using a 1.5 m wide
chain shredder, and trees were not subjected to any management. The area was fenced
after mechanical clearing (Figure 2a), and grazing began in December 2019 with a flock
of approximately 150 native sheep (Churra Galega Bragançana), which were monitored using
three GPS collars. Within the fenced area, a plot of 380 m2 was kept from grazing and served
as the “cleared and not grazed” treatment (being enclosed as shown in Figure 2c), while
the rest of the fenced area was subjected to grazing. This included 1110 m2 “not cleared”,
the “not cleared and grazed” treatment, and two “cleared and grazed” plots of 1360 m2 and
1970 m2. Two additional plots outside the fenced area were used as a control treatment,
which was neither cleared nor purposely grazed. The sizes of these plots were 457 m2 and
1106 m2. The treatment plots (polygons in Figure 2a) were defined according to the transects,
which were permanently marked on the ground and used to determine herbaceous and shrub
volume using the intercepting line method [56] (example in Figure 2b). Twelve transects were
established on the ground, each 20 m long, with four in each treatment inside the fenced area.
The location of these transects can be seen in Figure 2a.

Drones 2024, 8, x FOR PEER REVIEW 5 of 20 
 

 
Figure 2. Study area overview: (a) spatial arrangement of the treatment plots, transects and fenced 
area after vegetation clearing operations; (b) vegetation volume determination using the intercept-
ing line method (as of May 2021); and (c) cleared and not grazed plot, fenced after vegetation clear-
ing. C: Cleared; G: Grazed; NC: Not cleared; NG: Not grazed. 

2.3. Remote Sensing Data Acquisition 
To monitor the vegetation dynamics over the duration of the study, UAV-based high-

resolution aerial imagery was acquired in the visible and near-infrared (NIR) regions of 
the electromagnetic spectrum. For that purpose, a Phantom 4 (DJI, Shenzhen, China) was 
used. This multirotor UAV was equipped with a 12.4 MP RGB sensor coupled to a three-
axis electronic gimbal. The Sequoia sensor (Parrot SA, Paris, France), installed in the UAV 
through a custom mount, was used for multispectral data acquisition. This sensor is com-
posed of a camera array allowing the acquisition of green (530–570 nm), red (640–680 nm), 
red edge (730–740 nm), and NIR (770–810 nm) single-band images, with a 1.2 MP resolu-
tion. A sensor positioned at the top of the UAV was responsible for acquiring irradiance 
data during the flight. Before the flight mission, a target was used for reflectance calibra-
tion purposes. Both measurements were later used for radiometric calibration of the mul-
tispectral data. 

Four flight campaigns were conducted between 2019 and 2021, with two flights per 
campaign. The flight parameters are presented in Table 1. The first flight in each campaign 
was for RGB imagery acquisition, while the second flight mission was for multispectral 
data acquisition. Ground control points (GCPs) were placed throughout the study area, 
and their XYZ coordinates were obtained using a Global Navigation Satellite System 
(GNSS) receiver in real-time kinematic (RTK) mode for centimeter precision. 

Figure 2. Study area overview: (a) spatial arrangement of the treatment plots, transects and fenced
area after vegetation clearing operations; (b) vegetation volume determination using the intercepting
line method (as of May 2021); and (c) cleared and not grazed plot, fenced after vegetation clearing.
C: Cleared; G: Grazed; NC: Not cleared; NG: Not grazed.
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The arrangement presented in Figure 2a allows the study of the effect of different
treatments on vegetation structures with fire prevention in mind through fuel management.
The plot size differences reflect the study being conducted on a private property representa-
tive of the analyzed territory. Larger plots were placed for study in areas with the greatest
possible amount of grass for the flock’s nutritional satisfaction. Smaller plots were placed
in areas of less interest for grazing, just enough to evaluate the treatments “cleared and not
grazed” and “grazed and not cleared”.

2.3. Remote Sensing Data Acquisition

To monitor the vegetation dynamics over the duration of the study, UAV-based high-
resolution aerial imagery was acquired in the visible and near-infrared (NIR) regions of
the electromagnetic spectrum. For that purpose, a Phantom 4 (DJI, Shenzhen, China)
was used. This multirotor UAV was equipped with a 12.4 MP RGB sensor coupled to
a three-axis electronic gimbal. The Sequoia sensor (Parrot SA, Paris, France), installed
in the UAV through a custom mount, was used for multispectral data acquisition. This
sensor is composed of a camera array allowing the acquisition of green (530–570 nm), red
(640–680 nm), red edge (730–740 nm), and NIR (770–810 nm) single-band images, with a
1.2 MP resolution. A sensor positioned at the top of the UAV was responsible for acquiring
irradiance data during the flight. Before the flight mission, a target was used for reflectance
calibration purposes. Both measurements were later used for radiometric calibration of the
multispectral data.

Four flight campaigns were conducted between 2019 and 2021, with two flights per
campaign. The flight parameters are presented in Table 1. The first flight in each campaign
was for RGB imagery acquisition, while the second flight mission was for multispectral
data acquisition. Ground control points (GCPs) were placed throughout the study area, and
their XYZ coordinates were obtained using a Global Navigation Satellite System (GNSS)
receiver in real-time kinematic (RTK) mode for centimeter precision.

Table 1. Flight parameters for the RGB and multispectral data acquisition, including flight height
from the take-off position, flight pattern, image overlap and the approximate spatial resolution.

Sensor Flight Height (m) Flight Pattern Image Overlap
(Longitudinal/Lateral)

Approx. Spatial
Resolution (m)

RGB 60 Double grid
80%/70%

0.04
Multispectral 90 Single grid 0.11

Flight missions were conducted before vegetation clearing on 25 February 2019 and
after clearing on 3 July 2019, 6 July 2020, and 1 July 2021. This approach enabled the
assessment of vegetation evolution over time, starting from the vegetation dynamics zero
point (mechanical clearing).

2.4. Data Processing
2.4.1. Photogrammetric Processing

The aerial imagery from each flight was processed using Pix4DMapper Pro (Pix4D
SA, Lausanne, Switzerland). It ensured a complete pipeline for correction, alignment, and
radiometric calibration, producing dense point clouds and orthorectified raster products.

Initially, the acquired images were loaded, and a sparse point cloud was generated
based on key points within the images. After this, GCPs were marked in the images to
ensure a proper alignment between data acquired from both sensors and between different
survey periods, enabling direct comparisons between different campaigns. The sparse
point cloud was then reoptimized, and with the data properly aligned, a high-density
point cloud was generated and classified. This point cloud was interpolated to produce
an orthophoto mosaic (for RGB imagery), a digital surface model (DSM), a digital terrain
model (DTM), and a canopy height model (CHM), which was generated by subtracting
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DTM altitude values from the DSM. The CHM is calculated in QGIS software. In projects
using multispectral data, radiometric calibration was performed before generating the
raster outputs. Orthorectified reflectance maps were produced for each band, and the
normalized difference vegetation index (NDVI) [57] was calculated using the NIR and red
bands. The NIR, green, and red bands were also used to create false color compositions.

2.4.2. Vegetation Classification

The results obtained from the UAV-based photogrammetric processing have various
applications. The orthophoto mosaics provide a visual assessment of the surveyed area,
while the NDVI maps allow the analysis of the vegetative vigor, and the CHM provides
the height of the vegetation above the ground. Based on the photointerpretation of the
orthophoto mosaics and the values of CHM and NDVI, different types of vegetation cover
can be classified according to Table 2. The classification categorizes each pixel as (1) soil or
dried-up vegetation, (2) herbaceous vegetation, (3) shrubs, or (4) trees. The differentiation
between herbaceous and shrub vegetation is based on the height value and the 0.3 m
threshold, which was determined through the knowledge of the study area (as seen in
Figure 2b) and the photointerpretation of the UAV data. The grazable shrub stratum was
between 0.3 m and 1.5 m. NDVI values for live vegetation were always greater than 0.35.
These threshold values could be adjusted based on the study area characteristics.

Table 2. Pixel classification into one of the four classes and the criteria used for the canopy height
model (CHM) and normalized difference vegetation index (NDVI) raster products.

Class ID Class
Classification Criteria

CHM Value(s) (m) NDVI Value

1 Soil/Others ≤0.05 or <0.35
2 Herbaceous ≤0.30 and ≥0.35
3 Shrubs >0.30 and ≤1.50 and ≥0.35
4 Trees >1.50 and ≥0.35

Additionally, the classification maps calculated as described in Table 2 were used
to generate new CHM and NDVI products that replaced pixels belonging to arboreal
vegetation with no-data values. These new NDVIs were used to calculate the difference
NDVI (dNDVI) by subtracting the pre-clearing NDVI from a specific post-clearing season
NDVI, as expressed in (1).

dNDVIi = NDVIi − NDVIpre-clearing, (1)

The dNDVI values allow for comparison between any sampling date and the pre-
clearing state. Negative values indicate that non-arboreal elements are less vigorous than
their original state, while positive values suggest that non-arboreal elements are developing
to or above their pre-clearing condition.

2.5. Data Analysis

The UAV-based multi-temporal data were used to assess the dynamic of the vegetation
over time for the different treatments (presented in Figure 2a) by comparing the evolution
of each treatment with the initial stage and with the other treatments. Furthermore, the
impact of grazing was evaluated by comparing cleared and grazed areas with cleared-only
treatments over the various survey periods after vegetation clearing. Other comparisons,
such as cleared and grazed and grazed-only treatments, were also analyzed. For this
purpose, in each plot, the cover percentage of each class was evaluated over time. In this
analysis, the vegetation volume and mean NDVI values for each plot were also considered.
Evaluations were carried out using data discarding tree canopy. The UAV-based volume
was estimated for each treatment in each sampling period and was obtained from the
CHMs and land cover maps to exclude arboreal vegetation. The height of each CHM
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pixel was multiplied by its pixel area to calculate canopy volume (CV), as described in
Mao et al. [26]. This volumetric variable represents the space between the outer surface
of the vegetation canopy and the ground, incorporating the combination of plant parts
and void space. To standardize results and facilitate direct comparison, the CV of each
treatment plot was converted to cubic meters per hectare. A preliminary assessment of
volume estimation was performed by correlating the estimated UAV-based CV with the
field-measured volume. The Pearson correlation coefficient (r) was calculated to determine
the correlation between measured and estimated volume.

The three GPS collars installed to monitor the sheep flock provided data that could be
used to generate grazing pressure maps, which serve as a way to monitor grazing activity
over time in the study area. The monitoring took place from December 2019 to June 2021,
using data from the five months prior to the UAV surveys in 2020 and 2021. For a more
accurate grazing pressure analysis, only the locations of the collar with the highest number
of records for each grazing day were used. To effectively distinguish grazing pressure
across the study area, heatmaps were produced using a 55 m radius (the longest distance
to the nearest neighboring location) and an output pixel size of 1.5 m (half the average
distance between the closest records) by following the methods described in Hengl [58].

3. Results
3.1. Analysis of the UAV-Based Data Products

The first flight campaign coincided with the start of the Open2preserve project
(February 2019), which reflects the reality of the site just before the vegetation clearing. The
subsequent flight campaigns took place in July 2019, 2020, and 2021, coinciding with the
summer season. By comparing the orthophoto mosaics from February 2019 and July 2019
(Figure 3), one can see the absence of the herbaceous and shrub vegetation that resulted
mainly from late winter clearing and grazing of the spring shoots. The presence of leaves
on deciduous tree species is also noticeable, particularly in the false color composition
(Figure 3b). In the orthophoto mosaics from 2020 and 2021, the differences in vegetation
between cleared and non-cleared and grazed and non-grazed treatments, as well as the
regeneration of the vegetative cover and growth of tree crowns, can be visualized. In
areas subjected to heavy grazing, a reduction in available feed is expected, which will be
evaluated by the proposed methodology.
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The NDVI raster products generated from the multispectral data (Figure 4a) enabled
the analysis of the vegetative vigor along the flight campaigns. When analyzing the NDVI
raster statistics within the fenced area (Table 3), the maximum value always exceeded 0.9,
and a lower mean value was observed in the pre-clearing flight (0.5). The mean NDVI
value increased in the first post-clearing flight campaign (July 2019), decreased in 2020
(from 0.55 to 0.53), and increased to the highest value in 2021 (0.6). The minimum values
decreased from the first to the second flight campaign, increased in 2020, and decreased
in 2021. Higher NDVI standard deviation values were recorded in the post-clearing
flight campaigns. Figure 4b shows the height distribution of the surveyed area: it has a
predominance of taller vegetation (i.e., trees) in the northwestern and northern regions,
while the central and southern parts have a higher concentration of low vegetation or bare
soil. In the fenced area, the maximum value was approximately 15 m in the pre-clearing
flight campaign (February 2019) and increased to almost 18 m in the remaining flight
campaigns. The mean height value rose from 2.1 m to 2.6 m from the pre-clearing to the
post-clearing flight campaigns, and the standard deviation followed a similar trend (from
2.6 m to 3.0 m). In 2020 and 2021, the mean CHM values were 2.4 m and 2.6 m, respectively.
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of the RGB imagery.

Table 3. Basic statistics (maximum, mean, minimum, and standard deviation) of the normalized
difference vegetation index in each flight campaign. Values considering only the fenced area.

Date Max. Mean Min. SD

25 February 2019 0.95 0.50 −0.24 0.14
3 July 2019 0.92 0.55 −0.32 0.25
6 July 2020 0.91 0.53 −0.15 0.22
1 July 2021 0.93 0.60 −0.19 0.23

3.2. Multi-Temporal Vegetation Monitoring
3.2.1. General Characterization of the Study Area

The vegetation classification method described in Section 2.4.2. was applied to the
raster products from each flight campaign to characterize the four defined land cover
classes present in the study area (spatial distribution in Figure 5). Before clearing, the
data showed a predominance of herbaceous vegetation along with arboreal vegetation.
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After vegetation clearing, herbaceous vegetation decreased, and the majority of the area
was classified as soil, which decreased over time and changed to herbaceous and shrub
vegetation in some areas.

Drones 2024, 8, x FOR PEER REVIEW 10 of 20 
 

2021, both herbaceous and shrub vegetation covered 33% (1.1 ha), representing an increase 
of 3% in the shrub occupation and 5% of the herbaceous vegetation. 

 
Figure 5. Land cover distribution over the surveyed periods (a) and the overall percentage of each 
class within the fenced area (b). 

3.2.2. Treatment Plots 
An overview of the different treatment plots in each surveyed season is shown in 

Figure 6. The percentage of cover type in each plot was also analyzed, and a single result 
was calculated for the control and cleared and grazed treatments despite being composed 
of two polygons. 

Figure 5. Land cover distribution over the surveyed periods (a) and the overall percentage of each
class within the fenced area (b).

To closely examine the land cover changes over time in the study area, the percentage
of each land cover class was calculated within the fenced area (Figure 5). The land cover
distribution from the first flight campaign showed only 6% (0.2 ha) occupied by bare
soil or dried-up vegetation, followed by shrub vegetation (16%, 0.5 ha) and arboreal and
herbaceous vegetation, which represented 78% of the total land cover (each with 39%,
1.3 ha). After the clearing operations, a 22% increase in soil cover was found, occupying
28% of the fenced area (0.9 ha), and arboreal vegetation increased by 7% (46% of the area
covered, corresponding to 1.5 ha). In contrast, both herbaceous and shrub vegetation
decreased by 29% (−0.9 ha), representing 26% of the fenced area. In the two subsequent
flight campaigns (2020 and 2021), no major changes were found. Soil increased to 31%
(1.1 ha) in 2020 and decreased to 20% (0.7 ha) in 2021. Arboreal vegetation covered an area
of 44% and 47% (1.5 and 1.6 ha) in 2020 and 2021, respectively. Shrub vegetation decreased
to 5% (0.2 ha) in 2020, while herbaceous vegetation maintained a 20% land occupation.
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However, in 2021, both herbaceous and shrub vegetation covered 33% (1.1 ha), representing
an increase of 3% in the shrub occupation and 5% of the herbaceous vegetation.

3.2.2. Treatment Plots

An overview of the different treatment plots in each surveyed season is shown in
Figure 6. The percentage of cover type in each plot was also analyzed, and a single result
was calculated for the control and cleared and grazed treatments despite being composed
of two polygons.
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Figure 6. Overview of the different analyzed treatment plots (white polygons) in the different
surveyed periods (February 2019 and July 2019, 2020, and 2021).

The multi-temporal analysis of the non-arboreal cover types revealed each different
vegetative trend for treatment over time (Figure 7). The control treatments, which were
cleared and nor purposely grazed and were located outside the fenced area, demonstrated
an increase in both herbaceous and shrub cover from February 2019 to July 2021. In February
2019, 92% of the cover was herbaceous vegetation, while 1% was shrub vegetation. In
July 2019, both soil and shrubs increased to 24% and 3%, respectively; this trend was also
found in July 2020 and 2021. By July 2021, shrub cover had increased from 64%, while
herbaceous vegetation and soil represented 31% and 5%, respectively. This means that the
control treatment’s potential fuel increased to 95% (excluding soil). The treatment that was
not cleared but subjected to grazing showed a decline in shrub vegetation cover, resulting in
an increase in soil cover from 1% in February 2019 to 20% in July 2020. Herbaceous vegetation
and shrub communities decreased to 67% and 12%, respectively. However, by July 2021, the
soil cover had decreased to 2%, while herbaceous and shrub vegetation had increased to
99%, similar to the cover percentage in February 2019. Treatment plots that were subjected to
vegetation clearing showed an increase in soil cover in the first post-clearing flight campaign
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(July 2019). The treatment plots that were grazed showed a lower vegetative cover than the
not-grazed plots in 2020 (18% vs. 27%) and 2021 (24% vs. 48%).
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Figure 7. Overall percentage of land cover over the surveyed periods, excluding arboreal vegetation.

The NDVI maps were computed to measure vegetation density, with arboreal vege-
tation excluded. The mean NDVI values for each treatment were calculated for different
seasons and are shown in Figure 8a. The pre-clearing results (February 2019) indicate that
the plot that was not cleared and not grazed had the highest mean NDVI value (0.55),
followed by the not-cleared and grazed plot (0.54), the cleared and grazed plot (0.47), and
the control plot with the lowest mean NVDI value (0.46). Vegetation clearing was notice-
able for both treatments that were subjected to this procedure. An abrupt decrease in the
mean NDVI values was found from the pre- to post-clearing. In contrast, the non-cleared
treatments showed only a small decrease (−0.02). In July 2019, the highest average NDVI
value was found in the treatment that was not cleared but grazed, followed by the control
treatment, and both cleared treatments had the lowest average values. From July 2019
to 2021, the mean NDVI values in the treatments that were not cleared showed a slight
decrease, while the opposite was observed in the cleared areas. However, the treatment
that was cleared and not grazed had a higher mean NDVI value than the treatment that
was cleared and grazed. From July 2020 to 2021, the mean NDVI value increased in all
treatment plots except for the cleared and grazed plots. In the last surveyed data, the
control treatment had the highest mean NDVI value (0.66), followed by the treatment that
was not cleared and grazed (0.64) and the treatment that was cleared and not grazed (0.40),
and the lowest mean value was observed in the cleared and grazed treatment (0.27).
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Figure 8. Mean NDVI value per treatment plot over time (a) and the NDVI difference post-clearing
compared with pre-clearing (b). The clearing time is marked with the red line.

The results from the dNDVI analysis (Figure 8b) demonstrated the trend of growth or
decline across the survey periods. Initially, all values were negative during the first two
seasons after clearing. However, a positive dNDVI was observed in the control and in the
not-cleared and grazed treatments, indicating vegetation growth beyond pre-clearing levels.

The CV of each treatment in each sampling period is shown in Figure 9a, excluding
arboreal vegetation. Before vegetation clearing, the highest CV was observed for the cleared
and grazed treatment (around 2600 m3 ha−1), followed by the cleared and not-grazed
treatment (around 1380 m3 ha−1). The control treatment had the lowest CV (187 m3 ha−1),
while the cleared and not-grazed treatment had an estimated CV of 1109 m3 ha−1. After the
first post-clearing flight campaign (July 2019), all treatments had less than 1000 m3 ha−1,
with a decrease in all treatments within the fenced area, except for the control treatment,
which increased by 170% (Figure 9b). In July 2020, CV increasd in all treatments except for
the cleared and grazed treatment (−32% to 481 m3 ha−1). The control and the not-cleared
and grazed treatments showed a CV increase of over 100% (126% and 198%, respectively). In
July 2021, the control treatment had a 359% increase, while the cleared and grazed treatment
decreased by 25%. The “cleared and not grazed” and “not cleared and grazed” treatments
increased by 34% and 54%, respectively. At the end of the surveyed period, the control
treatment had the highest estimated CV (5228 m3 ha−1), followed by the not-cleared and
grazed treatment (1260 m3 ha−1) and the cleared and not-grazed treatment (922 m3 ha−1),
with the lowest estimated CV in the cleared and grazed treatment (361 m3 ha−1).
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Figure 9. Volume for each treatment plot estimated for different periods (a), its variation percentage
when compared to the previous flight campaign (b), and the comparison between field measurements
and UAV-based data (c). The clearing time is marked with the red line.

The transects placed within the treatment plots (location in Figure 2) were used to
assess the correlation the measured vegetation volume and estimated CV. This approach
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was compared to the CV estimated from the UAV-based data (Figure 9c) by using the mean
volume for each treatment from the data of 15 July 2020 and 25 May 2021. An r value of
0.91 was obtained, indicating a good relationship between the two variables. Despite the
high correlation, the CV estimated from UAV-based data showed underestimation.

3.3. Grazing Pressure

The fenced area was grazed by a local flock of about 150 sheep (Section 2.2). The
livestock husbandry system involved daily grazing circuits in the agropastoral landscape,
comprising owned, rented, and borrowed land, including the study area and adjacent
pastures. The duration of the grazing circuit varies throughout the year based on factors
such as daylight, maximum daily temperature, and resource availability. The variation
of grazing pressure on the study area from the winter to summer solstices, at 6-month
intervals, was evaluated. From December 2019 to June 2020, the flock was in the study area
for about 52 days (totaling 88 h) and from December 2020 to June 2021 for 89 days (totaling
132 h). Figure 10 shows the grazing pressure maps, each of which represents the density of
GPS records obtained using three GPS collars in the previous five months before each flight
campaign. The GPS records were collected every five minutes whenever the animal was
moving, had communication via satellite, and had a battery.
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As shown in Figure 10, the highest grazing pressure was observed in the cleared and
grazed plots in both periods, with a greater occurrence in the months prior to the 2021
flight campaign. Although the not-cleared and grazed plot also experienced an increase in
grazing pressure, it still remains lower compared with the cleared areas.

4. Discussion

The vegetation-clearing procedure is evident in the computed NDVI maps (Figure 4),
which show the differences between pre- and post-clearing periods due to both seasonal
changes and a decrease in the mean NDVI and CHM values (Table 3 and Figure 4). Despite
this, height estimates from UAV photogrammetric data have demonstrated a good agree-
ment in various studies [41,59–61]. The winter season, when the deciduous trees have no
leaves, provides a better understanding of their crown structure, as seen in the pre-clearing
flight data (February 2019, Figure 3). However, the reliability of the CHM could be affected
by height underestimations in leafless trees [44,62]. CHM maps were also used in other
studies for multi-temporal monitoring of forage grasslands [34]. The decrease in the mean
NDVI values between the first and second flight campaigns is primarily attributed to the
vegetation-clearing operation. Changes between flight campaigns are also noticeable in the
CHM; the presence of leaves on deciduous trees (mostly oaks) in the post-clearing flights
(July 2019, 2020 and 2021) led to an increase in the mean height value. This allowed for the
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observation of the vegetation-clearing operation between the first two campaigns, as well
as vegetation growth in areas that were not cleared.

The vegetation cover type analysis (Figure 7) demonstrated the impact of clearing
on shrub cover. The cleared plus grazing treatment showed almost no shrub cover, while
the non-cleared treatments showed a higher percentage of shrubs. The reduction in shrub
cover between July 2019 and July 2020 in the grazed areas demonstrated the effectiveness
of grazing as a sustainable approach to vegetation control and fire risk reduction. Multi-
temporal analysis of NDVI changes over analyzed periods (Figures 9 and 10) showed
that treatments subjected to clearing had lower NDVI values compared with non-cleared
treatments, with the control treatment having the highest mean NDVI values in the last
flight campaign. Meanwhile, the cleared and grazed treatment showed the lowest values
of NDVI and dNDVI. In other studies, dNDVI has been used as a tool for evaluating fire
severity [43] and vegetation regeneration [63]. The use of other vegetation indices besides
NDVI can also be considered [30]. Théau et al. [31] used similar approaches to this study to
classify vegetation cover in grassland but did not consider the use of CHM, and instead
of using NDVI, they used GNDVI [64]. The authors defined different intervals to classify
the study area over time into bare soil, low, medium, and high vegetation through the
analysis of eGNDVI values. The use of CHM could have improved the classification results.
In the future, to assess the effect of grazing on understory volume (pixel by pixel) (m3/m2),
another approach could be to separate the tree component from the shrub and herbaceous
component and then multiply the area of each pixel by vegetation height (CHM) and
vegetation index (e.g., NDVI), which is directly proportional to vegetative vigor.

The relationship between NDVI and grazing pressure is shown in the grazing pressure
maps (Figure 10), which demonstrate the impact of grazing on vegetation. The cleared and
grazed treatment area experiences the highest grazing pressure and exhibits the lowest
NDVI and CV. On the other hand, the not-cleared and grazed treatment presented lower
grazing pressure, resulting in higher NDVI and CV values, second only to the control
treatment. This study highlights the importance of using UAV data together in combination
with GPS collars for precision grazing management. Cattle geolocation and geographical
information system (GIS) analysis can also be used to study their seasonal patterns [65].
Other studies have explored the use of UAVs for monitoring cattle behavior response to the
presence of UAVs [66] and for livestock monitoring through its detection, counting, and
distribution [67–69].

The correlation between volume estimates (Figure 9c) demonstrates the accuracy of in-
terpreting the different treatments. Treatments with lower/higher volumes are more likely
to be ranked in the same order if the volume is measured in the field. When comparing it
with other studies that addressed biomass and volume estimation, the obtained correlation
value (r = 0.91) is good, but the estimated values have a high underestimation. Despite this
drawback, the UAV approach makes it possible to monitor large areas in a short period of
time compared with more reliable but labor-intensive terrestrial methods. Other studies,
such as Lussem et al. [33], obtained a coefficient of determination (R2) from 0.57 to 0.73 for
dry biomass and 0.43 to 0.79 for fresh biomass. Insua et al. [38] obtained an R2 = 0.80 for
pasture biomass. Abdullah et al. [28], in shrub AGB estimation, obtained an R2 of 0.815,
0.740, and 0.245 for crown area, shrub volume, and shrub height, respectively. Moreover,
Batistoti et al. [41] obtained an R2 = 0.74 for pasture biomass in a Brazilian savanna. Stud-
ies that reported high correlation values often rely on more complex methodologies that
require more labor or use more expensive equipment. For instance, Zhang et al. [30] used
a non-linear logarithmic regression model and obtained an R2 of 0.89 for grassland AGB
estimation based only on mean height; Mao et al. [26] found the most significant contribu-
tion in AGV estimation through a regression model that incorporated CV and textural and
spectral parameters obtaining an R2 = 0.928; Zhao et al. [27] obtained an R2 = 0.83 using
multispectral imagery and an R2 = 0.86 by combining multispectral and UAV LIDAR data
for individual estimation for AGB in shrubs. Passalacqua et al. [47] obtained R2 values
between 0.90 and 0.96 for AGB estimation of grasslands using 3D point clouds acquired at
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1 m above vegetation. The occasional differences in field- and UAV-based CV are due to the
fact that transects under the canopy provide additional information that is not visible from
the air. This problem may be solved with sensors that can penetrate the vegetation, such as
LIDAR. Seasonal fluctuations between years may also contribute to differences in values.
Other features, such as textural features or the sum of contrast values, could be explored,
as those were among the most important AGB predictors in Zhao et al. [27], followed by
volumetric, geometric, and spectral features.

The techniques applied in this study have the potential for wider application, with
small adjustments, such as monitoring vegetation regeneration and fuel density in areas
with a high risk of forest fire. This can be achieved through satellite-based data, although
UAV-based data may be more accurate for biomass estimation [32]. UAV data can also
be used for land cover classification and to improve the quality of satellite data by re-
moving mixed pixels [70]. Increasing the frequency of monitoring throughout the year
could provide insights into the short- and medium-term effects of grazing in pastures, as
demonstrated by Alvarez-Hess et al. [40]. UAVs are also useful for monitoring grassland
recovery during seasonal droughts [71]. Machine learning and more vegetation indices can
improve land cover classification [72]. For example, Adar et al. [70] used machine learning
to classify land cover in areas subject to intensive grazing and non-grazing, while Lu and
He [73] used high-resolution UAV data to classify grassland species along the season, and
Trenčanová et al. [74] used deep learning and UAV data to classify shrub cover.

Several limitations should be considered for improvement in future studies, such as the
issue of discrimination between dried-up vegetation and bare soil, as the surveyed periods
and the resolution of the UAV data have made it difficult to discriminate between dried-up
vegetation and bare soil. To tackle this problem, aerial surveys should be conducted more
frequently to identify the best soil moisture stage for the monitored area, probably during
springtime. The location of the field data should be examined since transects below the
tree canopy prevent a proper data validation of UAV-based results. Thus, those should be
placed in open areas visible from the sky (without being covered by tree crowns), as well as
using sampling points of at least 50 × 50 cm, enabling the acquisition of a larger number of
samples in each treatment and the performance of regression analysis on vegetative volume.
The grazing activities should be carried out equally for all treatments that are subjected to
it by scheduling rotational grazing to ensure that all treatments have the equivalent grazing
pressure. Moreover, if it is intended to study the effects of the different treatments in other
situations (fertility gradients and spatial heterogeneity), there is a need to stratify the area
beforehand and repeat the treatments in different situations.

5. Conclusions

This study provided insights into the effects of grazing, combined or not with me-
chanical clearing, on vegetation dynamics and demonstrated the usefulness of UAV-based
methods in monitoring these effects. The UAV flight campaigns enabled the extraction of
several variables from a single flight campaign. The use of multispectral and RGB data
allowed us to calculate different variables, such as vegetation volume, vigor level, and land
cover type. As expected, the most effective treatment for controlling understory scrub in
open Mediterranean oak woodlands, thus reducing fire risk, is a combination of mechani-
cal clearing and grazing. Grazing activities alone also demonstrated its effectiveness, as
vegetation was managed, and the presence of shrub vegetation did not increase at the same
rate as in the control treatment. The understory volume estimated from the UAV-based
data showed a good correlation with the line-intercept method, confirming the feasibility of
using UAV data to evaluate the effects of combined treatments (grazing and/or mechanical
cleaning). This approach enables more extensive and timely monitoring of fuel loads and,
consequently, fire risk. However, the relationship between vegetation moisture and the
optimal timing for UAV flight surveys requires further investigation, as the herbaceous
layer in aerial data can be confused with the bare soil class as it dries out.
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