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Abstract: End-to-end autonomous driving has become a key research focus in autonomous
vehicles. However, existing methods struggle with effectively fusing heterogeneous sensor
inputs and converting dense perceptual features into sparse motion representations. To
address these challenges, we propose BevDrive, a novel end-to-end autonomous driving
framework that unifies camera–LiDAR fusion and motion planning through a bird’s-eye
view (BEV) representation. BevDrive consists of three core modules: the bidirectionally
guided BEV feature construction module, the dual-attention BEV feature fusion module,
and the BEV-based motion planning module. The bidirectionally guided BEV feature con-
struction module comprises two branches: depth-guided image BEV feature construction
and image-guided LiDAR BEV feature construction. Depth-guided image BEV feature
construction employs a lifting and projection approach guided by depth information from
LiDAR, transforming image features into a BEV representation. Meanwhile, image-guided
LiDAR BEV feature construction enriches sparse LiDAR BEV features by integrating com-
plementary information from the images. Then, the dual-attention BEV feature fusion
module combines multi-modal BEV features at both local and global levels using a hy-
brid approach of window self-attention and global self-attention mechanisms. Finally, the
BEV-based motion planning module integrates perception and planning by refining control
and trajectory queries through interactions with the scene context in the fused BEV features,
generating precise trajectory points and control commands. Extensive experiments on
the CARLA Town05 Long benchmark demonstrate that BevDrive achieves state-of-the-art
performance. Furthermore, we validate the feasibility of the proposed algorithm on a
real-world vehicle platform, confirming its practical applicability and robustness.

Keywords: deep learning; autonomous driving; end-to-end autonomous driving; sensor
fusion; motion planning

1. Introduction
Autonomous driving technology is revolutionizing the way people travel, offering

the potential for safer, more efficient, and more convenient transportation. Traditional
autonomous driving systems are typically designed using a modular pipeline, where the
core functions of perception [1–3], prediction [4–6], planning [7–9], and control [10–12]
are implemented as separate components. While this modular approach has been effec-
tive in many scenarios, it often suffers from error propagation across modules, limiting
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overall system performance. With the rapid advancements in artificial intelligence and
computational power, a new paradigm known as end-to-end autonomous driving has
emerged [13–17]. This paradigm leverages deep learning to directly map raw sensor
data to future trajectory points or control commands, enabling a globally differentiable
model for autonomous driving. Unlike traditional modular pipelines, end-to-end meth-
ods optimize system performance holistically, mitigating potential bottlenecks caused by
intermediate errors.

End-to-end autonomous driving requires models to directly infer a comprehensive
understanding of the environment from raw sensor data and generate safe, accurate motion
plans. Early approaches [18,19] primarily relied on visual inputs, using RGB images to pro-
duce control commands via deep neural networks, showcasing the feasibility of end-to-end
driving. However, vision-based methods face significant limitations in complex scenarios,
such as dynamic interactions, dense traffic, and adverse weather conditions (e.g., rain or
fog), due to their inherent weaknesses in depth perception and susceptibility to lighting
variations and occlusions. To overcome these challenges, recent approaches [20,21] leverage
multi-modal data fusion, combining inputs from cameras and LiDAR to complement the
strengths and weaknesses of each modality. Current multi-modal end-to-end autonomous
driving systems are typically divided into two key stages: sensor encoding and motion
decoding. In the sensor encoding stage, the model must effectively fuse heterogeneous
data from different modalities, such as the rich 2D color and texture information from RGB
images and the precise 3D geometric data from LiDAR point clouds. Bridging the gap
between these vastly different data modalities and integrating them seamlessly remains a
significant technical challenge. Early end-to-end autonomous driving approaches [21,22]
improved performance by simply concatenating LiDAR and image features as inputs to
the sensor encoding network. Subsequent studies [23–26] explored Transformer-based
methods, utilizing attention mechanisms to facilitate information interaction and fusion
between image and LiDAR point cloud features. However, these methods have not fully
addressed the intrinsic gaps between sensor data in both the data space and feature space,
which constrain the effectiveness of the fusion process. In the motion decoding stage, the
model must translate dense perceptual features into sparse motion representations, such
as trajectory points or control commands. This transformation is particularly challenging
due to the significant differences in the spatial distributions of perceptual and motion
features. However, the aforementioned methods often rely on pooled or hybrid features
as inputs to the motion decoder, failing to tightly integrate motion planning and scene
encoding within a unified feature space. This shortcoming results in a loss of critical spatial
information. Addressing these challenges is crucial for developing robust and reliable
end-to-end autonomous driving systems.

To address the challenges outlined above, this paper introduces a camera–LiDAR
fusion and motion planning framework using bird’s-eye view (BEV) representation for
end-to-end autonomous driving, abbreviated as BevDrive. BevDrive utilizes a BEV repre-
sentation to effectively unify multi-modal scene perception and motion planning within
a shared feature space, enabling seamless integration and collaboration between the two
tasks. The framework consists of three core modules: the bidirectionally guided BEV
feature construction module, the dual-attention BEV feature fusion module, and the BEV-
based motion planning module. During the scene encoding stage, the bidirectionally
guided BEV feature construction module employs a dual-stream network to independently
extract features from image and LiDAR data, mapping both modalities into a unified BEV
feature plane. This effectively addresses the spatial gap between the two data types. In the
image branch, the depth-guided image BEV feature construction leverages a lifting and
projection approach, utilizing depth information from LiDAR point clouds to transform
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image features into a BEV representation. Meanwhile, in the LiDAR branch, image-guided
LiDAR BEV feature construction integrates complementary information from the image
branch to refine the sparse LiDAR BEV features, enhancing the completeness and accu-
racy of the feature representation. Building on this, the dual-attention BEV feature fusion
module adopts a hybrid approach that combines window self-attention and global self-
attention mechanisms to deeply fuse multi-modal BEV features at both local and global
levels. After fusing the multi-modal BEV features, the BEV-based motion planning module
utilizes learnable trajectory queries and control queries to extract scene context information
from the fused BEV features and generate motion plans for the ego vehicle. Specifically,
self-attention mechanisms are employed to capture the relationships between trajectory
and control queries, while cross-attention mechanisms facilitate interactions between these
queries and the fused BEV features, dynamically refining the results. Finally, an output
fusion strategy integrates the trajectory and control commands, delivering robust and
reliable outputs for vehicle control.

Our main contributions are summarized as follows:

• We propose BevDrive, a novel end-to-end framework that unifies sensor fusion and
motion planning within a unified BEV representation, bridging the gap between
perception and planning process.

• We propose a bidirectionally guided BEV feature construction module, which aligns
2D and 3D data by projecting image and LiDAR features into a unified BEV space,
eliminating spatial discrepancies.

• We design a dual-attention mechanism that integrates multi-modal BEV features at
both local and global levels, enhancing contextual reasoning.

• We develop a BEV-based motion planning module that dynamically refines trajectory
and control queries through interaction with fused BEV features to generate robust
trajectory points and control commands.

2. Related Work
2.1. End-to-End Autonomous Driving

End-to-end autonomous driving has been widely explored through two major
paradigms: imitation learning (IL) [27] and reinforcement learning (RL) [28]. IL-based
methods aim to mimic expert demonstrations to optimize perception-to-control pipelines.
Early works like CIL [14] introduced conditional branching networks guided by nav-
igation commands to predict control commands. LBC [29] adopted privileged expert
supervision to enhance feature learning, while LAV [30] incorporated surrounding vehicle
trajectories to supervise ego-vehicle predictions. In contrast, RL-based approaches opti-
mize policies by interacting with the environment and learning through feedback signals.
For example, Maximilian et al. [31] utilized RL with novel reward designs to achieve
robust end-to-end driving from RGB images. Roach [32] proposed an RL-based method
that leverages privileged simulation states as an expert to supervise imitation learning.
Although these RL-based methods demonstrate the feasibility of learning driving policies
through exploration, they often require extensive simulation training with dense rewards
to achieve stability and performance. However, RL-based approaches face challenges such
as the simulation-to-reality gap and the complexities of reward design. To address these
challenges and enable real-world deployment, we adopt an IL-based framework to build
our BevDrive.

2.2. Multi-Modal Fusion for End-to-End Autonomous Driving

Multi-modal fusion has become a vital approach to enhancing the robustness of
end-to-end autonomous driving. Early methods [33–35] primarily relied on camera-based
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inputs, directly predicting driving actions from visual features. While these methods
perform well in simple scenarios, they struggle to generalize in complex and dynamic
environments due to the lack of depth perception and their susceptibility to variations in
weather and lighting conditions. To address these challenges, recent research [15,25,26,29]
has focused on combining data from cameras and LiDAR to improve perception and
planning capabilities. TransFuser [15] integrated image and LiDAR features into a hy-
brid representation through self-attention, enabling better fusion of complementary data
modalities. LAV [29] adopted a point-painting [36] strategy to annotate LiDAR points
with semantic features from images, generating BEV features for downstream tasks. Inter-
Fuser [25] further leveraged Transformer-based architectures to fuse multi-view images
and LiDAR inputs, significantly enhancing scene understanding and motion planning by
capturing global contextual information. Despite these advancements, multi-modal fusion
methods still face challenges such as sensor misalignment, where discrepancies between
camera and LiDAR data compromise the quality of fused representations. To overcome
these limitations, we propose a bidirectionally guided BEV feature construction module
that aligns 2D and 3D data by projecting image and LiDAR features into a unified BEV
space, effectively eliminating spatial discrepancies between modalities. Furthermore, we
design a dual-attention mechanism to integrate multi-modal BEV features at both local and
global levels.

2.3. Motion Planning for End-to-End Autonomous Driving

Early end-to-end autonomous driving motion planning methods [37] employed multi-
layer perceptrons (MLPs) to directly map perceptual features to control commands, such as
throttle, brake, and steering. Building on this foundation, CIL [14] introduced navigation
commands as conditional inputs to guide the selection of specialized submodules, enabling
the generation of task-specific control commands to resolve decision-making ambiguities at
intersections. TransFuser [23] proposed an autoregressive GRU-based framework that gen-
erates trajectory points from latent scene features, significantly improving motion planning
for point-to-point navigation. TCP [38] bridged the gap between trajectory planning and
direct control through a dual-branch architecture, leveraging the complementary strengths
of both approaches. InterFuser [25] addressed the shortcut learning issue observed in Trans-
Fuser by introducing a Transformer-GRU architecture that combines global attention with
temporal modeling, further enhancing the robustness and accuracy of trajectory planning.
However, these methods used pooled or hybrid features as inputs to the motion decoder,
failing to integrate motion planning and scene encoding into a unified feature space, which
leads to a loss of spatial information. Our BevDrive addresses this limitation by unifying
sensor fusion and motion planning within a BEV feature space, utilizing trajectory and
control queries to extract scene context for more reliable motion planning.

3. Methodology
The overall architecture of the proposed BevDrive is depicted in Figure 1, comprising

three key components: (1) a bidirectionally guided BEV feature construction module, where
image and LiDAR features are extracted via a dual-branch network and transformed into
a unified BEV space; (2) a dual-attention BEV feature fusion module, which fuses multi-
modal BEV features from local to global levels; and (3) a BEV-based motion planning
decoder, which predicts future trajectory points and control commands using scene context
in the fused BEV features. In the following sections, we first formulate the inputs and
outputs in Section 3.1, followed by a detailed discussion of the various components of
BevDrive in Sections 3.2–3.5.
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Figure 1. Overview of BevDrive. In the scene encoding stage, a bidirectional BEV feature construction
module extracts image and LiDAR features separately and transforms them into a unified BEV
space using depth-guided image BEV feature construction and image-guided LiDAR BEV feature
construction. A dual-attention mechanism integrates multi-modal BEV features at both local and
global levels. In the motion decoding stage, a BEV-based decoder predicts future trajectory points
and control commands by leveraging scene context in the fused BEV feature.

3.1. Input and Output Representation
3.1.1. Input Representation

For RGB image inputs, we utilize three cameras oriented forward, 60° to the left,
and 60° to the right. Each camera captures images at a resolution of 300 × 400 pixels
with a horizontal field of view (FOV) of 60°. Together, these cameras provide a combined
horizontal FOV of 180° for the ego vehicle. The raw images are cropped to 288 × 400 pixels
before being processed by the image feature extraction backbone. For LiDAR inputs, the
raw point cloud is voxelized with a resolution of 0.2 m.

3.1.2. Output Representation

BevDrive generates two types of outputs: trajectory points and control commands. For
trajectory point prediction, the model predicts a future trajectory to guide the ego vehicle,
represented as {wpt}T

t=1, where wpt ∈ R2×1 denotes the 2D coordinates of the ego vehicle
at time step t. For control command prediction, the model outputs the current steering
angle, throttle, and brake values, denoted as {steerctr, throttlectr, brakectr}.

3.2. Bidirectionally Guided BEV Feature Construction Module

To eliminate the spatial discrepancies between images and LiDAR point clouds and
fully exploit the complementarity of different modalities, we propose a bidirectionally
guided BEV feature construction module. This module consists of two key modules:
depth-guided image BEV feature construction and image-guided LiDAR BEV feature
construction. The depth-guided image BEV feature construction module transforms 2D
image features into the BEV space using depth estimation, while the image-guided LiDAR
BEV feature construction module enriches LiDAR BEV features with semantic information
extracted from image features. Collectively, these modules unify image and LiDAR data
into a shared BEV feature space, facilitating the effective fusion of multi-modal data.
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3.2.1. Depth-Guided Image BEV Feature Construction

As illustrated in Figure 1, for RGB image inputs, we first utilize an image backbone to
extract basic image features, formulated as follows:

Fimg = ConvBlock(I), (1)

where ConvBlock(·) represents the convolution operation performed by the image back-
bone, I denotes the input images, and Fimg ∈ RN×Hi×Wi×Ci is the resulting extracted image
feature. Here, N is the number of cameras, Hi and Wi are the spatial dimensions of the
feature maps, and Ci is the number of feature channels.

After extracting image features, as shown in Figure 2, the 2D image features are lifted
into 3D space through depth estimation and then projected onto the BEV plane using
efficient voxel pooling. Specifically, a depth estimation network predicts the discrete depth
distribution Dimg ∈ RN×Hi×Wi×Di , which is aligned with the image features Fimg, where
Di represents the number of discrete depth levels. Finally, the frustum feature F̄img is
computed by performing an outer product between the image features Fimg and their
corresponding depth distribution Dimg.

F̄img = Dimg ⊗ Fimg, (2)

where ⊗ denotes outer product operation, and the resulting frustum feature F̄img ∈
RN×Hi×Wi×D×Ci . With the intrinsic and extrinsic parameters of the camera, each voxel in
the frustum can be mapped to the corresponding grid in the BEV. The final image BEV
feature, Bimg ∈ RH×W×C, is generated through sum pooling, where H and W represent the
spatial dimensions of the image BEV feature, and C denotes the number of channels.

Depth distribution 𝐷img

Feature 𝐹img

𝑑0𝑐 𝑑1𝑓 ⋯ 𝑑𝐷img
𝑓

𝐷img

𝐹

Per-pixel outer product

Figure 2. The lifting and projection approach in depth-guided image BEV feature construction.
The 2D image features are lifted into 3D space using depth estimation, where the discrete depth
distribution is aligned with the image features.

In the depth distribution estimation process, the sparse LiDAR point cloud is projected
onto the image coordinate system using intrinsic and extrinsic transformation matrices to
generate a sparse depth map, which is then refined through spatial interpolation to produce
a dense depth map, as shown in Figure 3. Concretely, the sparse depth map Dsparse

img is
obtained by projecting the LiDAR point cloud onto the image plane, as described by the
following equation:

Dsparse
img = K ·

[
R t
0 1

]
·


x
y
z
1

, (3)
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where K ∈ R3×3 is the intrinsic matrix of the camera, R ∈ R3×3 is the rotation matrix,
t ∈ R3×1 is the translation vector, and [x, y, z]T ∈ R3×1 corresponds to the 3D coordinates
of a LiDAR point in the LiDAR coordinate system.

Projected point clouds Sparse depth map Dense depth map

Figure 3. The process of generating a dense depth map. The sparse LiDAR point cloud is projected
onto the image plane using intrinsic and extrinsic matrices to create a sparse depth map, which is
then refined through spatial interpolation to produce the final dense depth map.

Finally, a classical depth completion method [39] is applied to densify the projected
sparse depth map Dsparse

img . The resulting dense depth map Dgt
img is subsequently utilized to

supervise the depth estimation process.

3.2.2. Image-Guided LiDAR BEV Feature Construction

For LiDAR point cloud inputs, we employ a LiDAR backbone to generate the initial
LiDAR BEV feature Blid ∈ RH×W×C, which corresponds to the image BEV features Bimg

in the same BEV space. However, relying solely on a simple LiDAR backbone as the
encoder poses challenges due to the sparsity of LiDAR point clouds, making it difficult
for the model to effectively learn features in sparse regions. To address this limitation, we
propose an image-guided LiDAR BEV feature enhancement module for LiDAR feature
learning. As shown in Figure 4, this module compresses LiDAR BEV features, interacts with
image features via cross-attention, and decodes them into enhanced LiDAR BEV features.
Specifically, we first use a BEV encoder comprising several convolutional layers to compress
the initial LiDAR BEV feature Blid into a smaller bottleneck feature B′

lid ∈ R H
2 ×W

2 ×C:

B′
lid = Fconv(Fdown(Fconv(Blid))), (4)

where Fconv denotes a 3 × 3 convolutional layer function, and Fdown represents a down-
sampling layer function. The compressed LiDAR feature B′

lid is used as the query Qlid,
while the image feature Fimg, generated by concatenating the multi-view image features
Fimg along the width dimension, serves as the key Kimg and value Vimg. By applying a
cross-attention mechanism followed by a convolutional layer, we obtain the aggregated
feature Alid as follows:

Q = WQB′
lid, K = WKFimg, V = WVFimg, (5)

Cross-Atten(B′
lid, Fimg) = Softmax

(
QKT
√

dk

)
V, (6)

Alid = Fconv(Cross-Atten(B′
lid, Fimg)), (7)

where WQ, WK, and WV are the weight matrices used for linear transformations to
generate the query matrix Q, the key matrix K, and the value matrix V, respectively,
and dk is the dimension of the key vector, used to scale the dot product for stabilizing
gradient computation.
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Figure 4. LiDAR BEV enhancement. This module first compresses the initial LiDAR BEV features into
a bottleneck representation. It then performs cross-attention between LiDAR BEV queries and image
feature key-value pairs. After feature aggregation through attention mechanisms, the module decodes
the enhanced representation to generate refined LiDAR BEV features. This process significantly
improves feature quality and semantic richness in the BEV space.

Subsequently, we concatenate the aggregated feature Alid with the bottleneck feature
B′

lid and apply a BEV decoder consisting of several convolutional layers to generate the
final LiDAR BEV feature B̄lid ∈ RH×W×C:

B̄lid = Fconv(Fup(Fconv([Alid, B′
lid]))), (8)

where [., .] denotes the concatenation operation along the channel dimension, and Fup

represents an upsampling layer function.

3.3. Dual-Attention BEV Feature Fusion

After generating the image and LiDAR BEV features, we directly concatenate them
into a single multi-modal BEV representation, as they are generally aligned within the
BEV space. However, spatial misalignments may occur due to inaccuracies in depth
estimation. To address this issue, we propose a cross-modal BEV fusion module based on
dual-attention, as shown in Figure 5a. This module utilizes both the window self-attention
block and global self-attention block to compensate for local misalignments and capture
global feature dependencies, thereby enhancing the robustness and expressiveness of the
fused BEV feature. The process begins with a residual network block (RNB), which fuses
the concatenated BEV features and reduces their resolution to Z ∈ R H

2 ×W
2 ×C:

Z = RNB([Bimg, B̄lid]), (9)

where RNB denotes a residual network block. Next, we apply several window self-attention
blocks [40], as depicted in Figure 5b. These blocks divide the feature map Z into four
windows {zi ∈ R H

8 ×W
8 ×C | i = 1, 2, 3, 4}. Self-attention is performed independently

within each window, effectively capturing local correlations while significantly reducing
computational complexity. After computing the attention for each window, the resulting
features are concatenated and reshaped to restore the original feature map dimensions. The
computation within the window self-attention block is defined as

q = wqzn−1
i , k = wkzn−1

i , v = wvzn−1
i , (10)

Self-Attent(zn−1
i ) = Softmax

(
qk⊤√

dk

)
v, (11)

zn
i = Self-Atten(FLN(zn−1

i )) + zn−1
i , (12)

z̄n
i = FMLP(FLN(zn

i )) + zn
i , (13)
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Z̄n = Reshape([z̄n
1 , z̄n

2 , . . . , z̄n
i ]). (14)

where wq, wk, and wv are the weight matrices used for linear transformations to generate
the query matrix q, the key matrix k, and the value matrix v, respectively; Self-Attent
denotes the self-attention mechanisms; zn

i and zn−1
i correspond to the output and input

features of the i-th window in the n-th window self-attention block, respectively; dk is
the dimension of the key vector k, used to scale the dot product for stabilizing gradient
computation; FLN represents the layer normalization function, and FMLP refers to an MLP
layer; and finally, Z̄n represents the reconstructed feature map after concatenating and
reshaping the outputs of all windows. Following this, we apply another residual network
block to further reduce the resolution of the BEV feature to H

4 × W
4 :

¯̄Zn = RNB(Z̄n). (15)

Subsequently, a global self-attention block, as shown in Figure 5c, is employed to
model global feature dependencies. When the BEV features after local fusion are fed into
the n-th global self-attention layer, the processing is described by the following formulas:

¯̄̄Zn = Self-Attent(FLN(
¯̄Zn)) + ¯̄Zn, (16)

Ẑn = FMLP(FLN(
¯̄̄Zn)) + ¯̄̄Zn, (17)

Finally, the image BEV features and the LiDAR BEV feature are fused to form a
unified BEV feature Ẑ , which serves as the input to the subsequent BEV-based motion
planning decoder.

Residual Network Block

Window Self-Attention Block

Residual Network Block

Global Self-Attention Block

BEV Feature

Fused BEV Feature

LayerNorm

Window Self-Attention

Feed Forward

LayerNorm

×n

LayerNorm

Global Self-Attention

Feed Forward

LayerNorm

×n

(a) Cross-modal BEV Fusion (b) Window Self-Attention Block (c) Global Self-Attention Block 

Figure 5. Dual-attention BEV feature fusion. This module integrates image and LiDAR BEV features
through dual attention mechanisms: window self-attention captures local spatial correlations, while
global self-attention models long-range dependencies.

3.4. Bev-Based Motion Planning

The fused BEV feature contains spatial information that is crucial for motion planning.
Previous works [23,26] apply global average pooling (GAP) to convert the feature into a
single vector, which is then processed by an MLP + GRU decoder to predict future trajectory
points. However, GAP averages all features, leading to the loss of spatial information and
the relative positional relationships between features. To address this issue, we propose
a BEV-based motion planning decoder. As illustrated in Figure 6, our BEV-based motion
planning decoder consists of three key components: joint motion queries, attention-based
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motion planning, and an output fusion strategy. The joint motion queries (including
trajectory point queries and control command queries) are designed to extract and aggregate
information about predicted trajectory points and control commands from the implicit BEV
features. The attention-based motion planning network utilizes a self-attention mechanism
to capture the intrinsic relationships between trajectory point queries and control command
queries. It then interacts with the fused BEV features through a cross-attention mechanism,
dynamically updating the joint queries based on the scene context contained within the
implicit BEV features. Finally, the network adopts an output fusion strategy to jointly
optimize both types of outputs, producing more robust control commands to precisely
guide the motion of the autonomous vehicle.
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Figure 6. BEV-based motion planning decoder. In the BEV-based motion planning decoder,
self-attention connects trajectory point queries with control command queries, while cross-attention
enables interactions with fused BEV features to extract contextual information and iteratively refine
the queries, enhancing their understanding and adaptability to complex scenes.

Specifically, we first initialize feature vectors using local target points to represent
multiple trajectory points, which are then employed as query embeddings for the decoder,
as follows:

Q(0)
motion = [Q(0)

traj, Q(0)
ctr ] + PEmotion, (18)

where Q(0)
traj denotes the initial trajectory points queries, Q(0)

ctr denotes the initial control
commands queries, and PEmotion represents the learnable positional encodings. By incorpo-
rating learnable positional encodings, the decoder can effectively distinguish and capture
the relationships between different query embeddings.

Then, in the n-th motion planning decoder layer, we first propagate information
between trajectory point queries and control command queries through a self-attention
mechanism, thereby establishing their intrinsic relationships.

Q̄n
motion = FMLP

(
FLN(Self-Atten(Qn

motion))
)
+ Qn

motion, (19)

The updated query embeddings Q̄n
motion are utilized to deeply interact with the fused

BEV features, leveraging scene contextual information to iteratively refine trajectory point
queries and control command queries.

Q(n+1)
motion = FMLP

(
FLN(Cross-Atten(Q̄(n)

motion, Ẑ))
)
+ Q̄(n)

motion, (20)

After the queries have been processed by multiple layers of the motion planning
decoder, we obtain the final trajectory point queries and control command queries. The tra-
jectory point queries are used to generate trajectory points through a GRU-based trajectory
head, while the control command queries produce the corresponding control commands
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via an MLP-based control head. To convert trajectory points into vehicle control commands
(steering, throttle, brake), methods like Transfuser [23] rely on PID controllers. While
effective for smooth driving, PID controllers require extensive tuning and may struggle
with sharp turns or rapid maneuvers due to model inertia. To overcome this, we propose
an output fusion strategy (Algorithm 1) that combines steering commands with trajectory
predictions during turns using a weighted coefficient while relying solely on trajectory
predictions for straight driving. This strategy reduces PID dependence and enhances
control accuracy in dynamic scenarios.

Algorithm 1 : Generating control commands from the output fusion strategy.

Input: sensor perception information i, vehicle status information s, navigation informa-
tion g, and weight coefficient α;

Output: steer ∈ [−1, 1], throttle ∈ [0, 1], brake ∈ [0, 1];
1: {wpt}T

t=1, steerctr, throttlectr, brakectr = model(i, s, g) // Predicted trajectory points
and control command.

2: steertraj, throttletraj, braketraj = PIDcontroller({wpt}T
t=1) // The controller generates

control commands based on the predicted trajectory points.
3: throttle = throttletraj, brake = braketraj
4: if nt−1 > 10 then
5: steer = (1 − α) × steertraj + α × steerctr // If the number of times the historical

steering angle exceeds 0.1 is greater than 10, the vehicle is considered to be in a
turning state.

6: else
7: steer = steertraj
8: end if
9: if |steer| > 0.1 then

10: nt = nt−1 + 1
11: else
12: nt = 0
13: end if

3.5. Loss Function

The overall loss function consists of three components: trajectory point prediction
loss Ltraj, control command prediction loss Ldep, and depth estimation loss Lctr. These
components are combined as follows:

L = λtrajLtraj + λdepLdep + λctrLctr, (21)

where λtraj, λdep, and λctr are hyperparameters used to balance the contributions of the
different loss terms. These weights are tuned based on validation errors observed across
multiple experiments.

For depth distribution estimation, we employ Binary Cross-Entropy loss [41],
defined as

Ldep = − 1
N

N

∑
i=1

D

∑
j=1

(
dgt

ij log(dij) +
(

1 − dgt
ij

)
log(1 − dij)

)
, (22)

where N is the number of pixels in the depth map, D is the number of discrete depth bins,
and dgt

ij ∈ Dgt
img represents the dense depth values projected by LiDAR.

For trajectory point prediction, we use the ground truth trajectory points wgt provided
by the expert to supervise the predicted trajectory points using an L1 loss:

Ltraj =
T

∑
t=1

∥wt − wgt
t ∥1, (23)
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where T denotes the number of trajectory points.
For direct control command prediction, an L1 loss similar to the trajectory point

prediction is applied. The control loss is defined as

Lctr = λsteerLsteer + λthrottleLthrottle + λbrakeLbrake, (24)

where λsteer, λthrottle, and λbrake are weighting factors that balance the steering, throttle,
and brake losses, respectively.

4. Experiments in CARLA Simulator
This section presents a comprehensive evaluation of BevDrive’s closed-loop driv-

ing performance in the CARLA simulator, including (1) comparative analysis with
state-of-the-art methods, (2) systematic module ablation studies, and (3) qualitative and
interpretability analyses.

4.1. Experimental Setup
4.1.1. Implementation Details

We employed ResNet-34 [42] as the backbone for the camera branch and PointPillars [43]
as the backbone for the LiDAR branch. Both the image BEV Grid and LiDAR BEV Grid were
configured with a range of [0, 32] m × [−16, 16] m (front = 32 m; back = 0 m; left = −16 m;
right = 16 m) and a resolution of 0.4 m, resulting in a grid size of 80 × 80. The discrete depth
distribution bins were set to a range of [2, 40] m and a spacing of 0.4 m. The model was
trained using the AdamW optimizer [44] on four NVIDIA Tesla T4 GPUs for 40 epochs. The
learning rate was set to 1 × 10−4 for the first 30 epochs and reduced to 1 × 10−5 for the final
10 epochs. For the loss weights, we used the following settings: λtraj = 10.0; λdep = 1.0;
λctr = 1.0; λsteer = 2.0; λthrottle = 1.0; and λbrake = 1.0.

4.1.2. Dataset

We utilized a rule-based expert agent to collect expert driving data across all eight
towns and weather conditions in Carla (version 0.9.10). The expert agent operated using
privileged information provided by the simulator. Following standard protocols [23,26,45],
we collected a total of 253K frames of data at 2 FPS. This dataset included both vehicle
state information and sensor data. For sensors, we employed three RGB cameras (facing
forward, 60° left, and 60° right), a LiDAR, an IMU, a GPS, and a speedometer. Each camera
had a resolution of 300 × 400 pixels and a horizontal field of view (FOV) of 60°. Together,
the three cameras provided a combined horizontal FOV of 180° for the ego vehicle.

4.1.3. Benchmark

We evaluated our method through closed-loop autonomous driving experiments in the
CARLA simulator. First, we trained our model using expert driving data collected across
seven towns (excluding Town05). For evaluation, we employed the widely recognized
Town05 Long benchmark, which comprises 10 long routes spanning 1000 to 2000 m, each
featuring 10 intersections. These routes were populated with high-density dynamic agents
and adversarial scenarios, strategically placed at predefined locations to rigorously test
driving performance. This benchmark served as an effective measure of our approach’s
generalization capabilities in complex and challenging environments.

4.1.4. Metrics

To ensure a fair and rigorous comparison with existing approaches, we adopted a set of
standardized metrics that enabled a detailed assessment of diverse driving behaviors. These
metrics, calculated per route and averaged across all routes, included route completion
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(RC), infraction score (IS), and driving score (DS), with DS as the key metric. Infractions
per kilometer provided insight into violations, and infraction counts were converted into
scoring rates for intuitive comparisons in adversarial scenarios.

Route Completion (RC): RC measures the percentage of a predefined route completed
by an agent. It is calculated as

RC =
1
K

K

∑
i

Ri, (25)

where Ri denotes the completion ratio for route i, and K = 10 is the total number of routes
in the Town 05 Long benchmark.

Infraction Score (IS): IS penalizes the agent for committing infractions during a route,
such as collisions (with pedestrians, vehicles, or static objects) and traffic violations
(e.g., running red lights). It is defined as

IS =
Ped,··· ,Red

∏
j

(pj)infractionsj
, (26)

where pj is the penalty coefficient for infraction type j, and infractionsj denotes the number
of occurrences of infraction j.

Driving Score (DS): DS evaluates overall driving performance by combining route
completion and infraction penalties. It is defined as

DS =
1
K

K

∑
i

RiPi, (27)

where Pi represents the infraction multiplier for route i.

4.2. Comparison with State-of-the-Art Methods

We evaluated our BevDrive method against several state-of-the-art approaches on the
Town05 Long benchmark in a closed-loop driving scenario, designed to test robustness
and generalization due to its complex environments and long routes. Following the
standard setup of the Town05 Long benchmark, we performed three evaluations using
different random seeds and reported the mean and standard deviation to account for
experimental uncertainties. As summarized in Table 1, BevDrive achieves the highest DS
and RC among all compared methods, demonstrating its superior performance. Notably,
BevDrive achieves these results while relying solely on depth supervision, outperforming
methods that utilize additional supervision signals such as semantic segmentation, BEV
map segmentation, and object detection. Specifically, BevDrive achieves a DS of 58.1,
representing a significant improvement over strong baselines such as Interfuser [25] (51.6)
and LAV [30] (46.5). In addition, BevDrive strikes a better balance between route completion
and compliance with traffic rules. For methods with an RC exceeding 85%, BevDrive
achieves competitive Infraction Score (IS) values, highlighting its ability to handle complex
driving scenarios without compromising safety. For instance, while Roach [32] achieves a
slightly higher RC of 96.4%, its DS and IS are significantly lower, reflecting inferior driving
behavior and weaker adherence to traffic rules. In contrast, BevDrive not only ensures
high route completion but also maintains consistent and safe driving behavior, making it a
robust and reliable solution for challenging driving tasks.
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Table 1. Performance on the Town05 Long benchmark. ↑ indicates that higher values are better,
while ⋆ highlights the primary metric. For modalities, C represents camera images, and L denotes
LiDAR point clouds. Expert refers to imitation learning based on the driving behavior of a privileged
expert. Seg. stands for semantic segmentation, Map. corresponds to BEV map segmentation, Dep.
represents depth estimation, and Det. refers to object detection. Optimal values are shown in bold.

Method Modality Supervision DS ⋆ ↑ RC ↑ IS ↑
CILRS [19] C Expert 7.8 ± 0.3 10.3 ± 0.0 0.75 ± 0.05
LBC [29] C Expert 12.3 ± 2.0 31.9 ± 2.2 0.66 ± 0.02

Roach [32] C Expert 41.6 ± 1.8 96.4 ± 2.1 0.43 ± 0.03
TCP [38] C Expert 57.2 ± 1.5 80.4 ± 1.5 0.73 ± 0.02

CrossFuser [26] C + L Expert 25.8 ± 1.7 71.8 ± 4.3 -
Transfuser [23] C + L Expert, Dep., Seg., Map., Det. 31.0 ± 3.6 47.5 ± 5.3 0.77 ± 0.04

LAV [30] C + L Expert, Seg., Map., Det. 46.5 ± 2.3 69.8 ± 2.3 0.73 ± 0.02
Interfuser [25] C + L Expert, Map., Det. 51.6 ± 3.4 88.9 ± 2.5 0.59 ± 0.05

BevDrive (ours) C + L Expert, Dep. 58.1 ± 1.3 89.3 ± 2.9 0.66 ± 0.03

4.3. Ablation Study
4.3.1. Ablation Study of Feature Encoder Modules

The feature encoder consists of two key components: the bidirectionally guided BEV
feature construction module and the dual-attention BEV feature fusion module. Specifically,
the bidirectionally guided BEV feature construction module is further divided into two
sub-modules: depth-guided image BEV feature construction and image-guided LiDAR
BEV feature construction. To assess the impact of these components, we performed ablation
studies on the DIFC, ILFC, and DF modules within the feature encoder. Here, DIFC refers to
the depth-guided image BEV feature construction module, ILFC denotes the image-guided
LiDAR BEV feature construction module, and DF represents the dual-attention BEV feature
fusion module. As shown in Table 2, each module contributes significantly to performance
improvements. Starting with Model 0, which excludes all components, adding DIFC
(Model 1) significantly improves performance (DS: 28.5 → 45.2, RC: 56.7 → 75.3), showing
the effectiveness of projecting image features into BEV space. Model 2 adds ILFC to DIFC,
aligning image and LiDAR features in BEV space, resulting in further gains (DS: 46.5, IS:
0.63). Model 3 evaluates the DF module with DIFC but without ILFC, demonstrating that
DF independently enhances fusion (DS: 49.6, RC: 77.3, IS: 0.66) by integrating global and
local features. Finally, Model 4 combines DIFC, ILFC, and DF, achieving the best results
(DS: 51.8, RC: 78.2, IS: 0.66). These results highlight the importance of DIFC and ILFC for
feature representation and the complementary improvements provided by DF for feature
fusion and alignment.

We also conducted ablation experiments on the lifting and projection module and
depth supervision within the depth-guided image BEV feature construction module. As
shown in Table 3, Model 5 uses the same experimental setup as Model 0, serving as the
baseline for these ablation studies. Integrating the lifting and projection module into Model
5 results in Model 6, leading to an improvement of 7.8 in DS, 6.1 in RC, and 0.08 in IS.
Furthermore, adding depth supervision to Model 6 produces Model 7, which achieves an
additional improvement of 8.9 in DS and 12.5 in RC compared to Model 6. These findings
demonstrate that both the lifting and projection module and depth supervision play a
significant role in enhancing the model’s performance.

In addition, we conducted ablation experiments on the dual-attention BEV feature
fusion module. As shown in Table 4, Model 8, which does not use any attention mechanisms,
serves as the baseline. By incorporating the window self-attention mechanism into Model
8, we obtain Model 9, which achieves an improvement of 2.7 in DS, 1.2 in RC, and 0.04 in
IS. Furthermore, adding the global self-attention mechanism to Model 9 results in Model
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10, which further improves DS by 2.6 and RC by 2.5. These results demonstrate that
the dual-attention mechanism, combining both WSA and GSA, effectively enhances the
model’s performance.

Table 2. Performance comparison of different modules in feature encoder. DIFC represents the
depth-guided image BEV feature construction module, ILFC represents image-guided LiDAR BEV
feature construction, and DF represents the dual-attention BEV feature fusion module.

ID DIFC ILFC DF DS ⋆ ↑ RC ↑ IS ↑
0 28.5 56.7 0.56
1 ✓ 45.2 75.3 0.56
2 ✓ ✓ 46.5 74.5 0.63
3 ✓ ✓ 49.6 77.3 0.66
4 ✓ ✓ ✓ 51.8 78.2 0.66

Table 3. Ablation study of the depth-guided image BEV feature construction module. LP represents
the lifting and projection module, and Dep represents the depth supervision.

ID Module DS ⋆ ↑ RC ↑ IS ↑
5 None 28.5 56.7 0.56
6 + LP 36.3 62.8 0.64
7 + LP + Dep 45.2 75.3 0.56

Table 4. Ablation study of the dual-attention BEV feature fusion module. WSA represents the
window self-attention mechanism and GSA represents the global self-attention mechanism.

ID Module DS ⋆ ↑ RC ↑ IS ↑
8 None 46.5 74.5 0.63
9 + WSA 49.2 75.7 0.67
10 + WSA + GSA 51.8 78.2 0.66

4.3.2. Ablation Study on the Motion Decoder Modules

We evaluated the contributions of the attention-based motion planning network
(AMP), joint motion queries (HMQ), and output fusion strategy (OFS) in the motion de-
coder. As shown in Table 5, the baseline model (Model 11) without these modules performs
the worst (DS = 51.8, RC = 78.2, IS = 0.66). Adding AMP (Model 12) improves performance
(DS = 55.7, RC = 83.9) by enhancing spatial feature interaction through attention, enabling
better handling of complex roads. Including HMQ (Model 13) further boosts performance
(DS = 56.2, RC = 85.6, IS = 0.67) by combining global trajectory and local control, improving
decision-making in complex environments. Finally, integrating OFS (Model 14) achieves
the best results (DS = 58.1, RC = 89.3, IS = 0.66), demonstrating that OFS effectively balances
trajectory prediction and control outputs, enhancing robustness and stability. These results
validate the synergy of AMP, HMQ, and OFS in improving motion planning.

Table 5. Ablation study of the motion decoder modules. HMQ denotes joint motion queries, AMP
denotes the attention-based motion planning network, and OFS represents the output fusion strategy.

ID AMP HMQ OFS DS ⋆ ↑ RC ↑ IS ↑
11 51.8 78.2 0.66
12 ✓ 55.7 83.9 0.65
13 ✓ ✓ 56.2 85.6 0.67
14 ✓ ✓ ✓ 58.1 89.3 0.66
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4.3.3. Ablation Study on the Parameters of the Output Fusion Strategy

We analyzed the effect of fusion weights in the output fusion strategy. As shown in
Table 6, a weight of 0.2 achieves the best performance (DS = 58.1, RC = 89.3, IS = 0.66),
balancing control and trajectory predictions for optimal performance during turns. Higher
weights (e.g., 0.5 or 1.0) degrade performance (DS = 55.6, RC = 86.1 for 0.5; DS = 48.5,
RC = 81.4 for 1.0), indicating that over-reliance on control commands reduces robustness.
Conversely, a weight of 0.0 also underperforms, showing that control commands are
necessary for turning scenarios. A small, non-zero weight effectively enhances performance
in turns, while trajectory prediction and PID control remain reliable for general driving.

Table 6. Ablation study of the parameters of the output fusion strategy. This table presents the
impact of varying fusion weights on driving performance metrics.

ID Weight DS ⋆ ↑ RC ↑ IS ↑
15 0.0 56.2 85.6 0.67
16 0.2 58.1 89.3 0.66
17 0.5 55.6 86.1 0.66
18 0.8 52.1 84.3 0.65
19 1.0 48.5 81.4 0.64

4.4. Qualitative Results

We conducted a qualitative analysis to demonstrate the effectiveness of BevDrive in
typical driving scenarios. In Figure 7a, the ego vehicle approaches an intersection with
a red traffic light. BevDrive brings the vehicle to a complete stop and, upon detecting
the green light, initiates movement smoothly. Figure 7b shows the collision avoidance
capability of BevDrive. When an obstacle (another vehicle) is detected, BevDrive reduces
the throttle from 0.30 to 0.00, decreases the vehicle speed from 3.93 m/s to 0.00 m/s, and
activates braking to avoid a collision. In Figure 7c, BevDrive performs a left turn at an
intersection by reducing the throttle from 0.75 to 0.06, adjusting the steering angle to −0.08,
and decelerating to execute the turn safely and smoothly.

4.5. Interpretability Analysis

We visualize BEV feature maps to analyze the interpretability of the decision-making
process. In Figure 8a, the ego vehicle encounters a traffic light, stopping for red and
resuming movement when the light turns green. The BEV feature maps show clear shifts
in focus on the traffic light state, with noticeable changes corresponding to the transition
of the light. This highlights the ability of the model to detect traffic light changes and
incorporate them into motion planning. Figure 8b illustrates a scenario where a vehicle
ahead and to the right makes a left turn. The model brakes to yield and resumes motion
once the vehicle clears the path. The BEV feature maps consistently highlight the turning
vehicle, demonstrating the ability of the model to perceive dynamic obstacles and integrate
this information into its decisions. This effective planning strategy ensures smooth and
cautious navigation in complex scenarios.
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Figure 7. Qualitative results in typical driving scenarios. BevDrive showcases its ability to stop
and go at traffic lights, avoid collisions by detecting obstacles and activating brakes, and navigate
intersections with precise speed, throttle, and steering adjustments for smooth turns.

（a）BEV feature maps in traffic light 
stop-and-go scenarios

（b）BEV feature maps in obstacle 
avoidance scenarios

t

t+1

Figure 8. Interpretability analysis of our BevDrive. (a) visualizes the BEV feature map focusing on
traffic light changes, while (b) visualizes the BEV feature map highlighting the model yielding to a
turning vehicle and resuming safely.
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To improve the interpretability of the BEV-based motion planning decoder, we vi-
sualize the attention maps corresponding to the BEV feature regions for each trajectory
point query. As illustrated in Figure 9, in a left-turn scenario, the attention for the first
trajectory point query is concentrated in the left-front area of the vehicle. This suggests that
the model is focusing on detecting potential obstacles in this region that could affect the
vehicle’s turning behavior. As the trajectory point queries advance to later moments, the
model’s attention shifts further into the left-front area. This observation highlights that the
BEV feature regions associated with the trajectory point queries are closely aligned with
areas critical for motion planning, offering valuable insights into how the model’s focus
influences specific driving decisions.

LiDAR BEV RGB image n = 1 n = 2 n = 3 n = 4

(a) Sensor inputs (b) Attention visualization

Figure 9. Attention analysis of the BEV-based motion planning decoder: (a) sensor inputs of Bev-
Drive; (b) attention heatmaps corresponding to different trajectory point queries. In (b), the red dot
represents the target point, while the white dots represent the predicted points. “n” indicates the
trajectory point query corresponding to the attention heatmap. In the heatmaps, red indicates higher
attention, and blue indicates lower attention.

5. Experiments Using Real Navsim Benchmark
5.1. Dataset and Metrics

We conducted a systematic evaluation of end-to-end autonomous driving algorithms
on real-world data using the Navsim benchmark. Navsim utilizes the Openscene [46]
dataset for training and testing, which is one of the largest real-world autonomous driving
datasets to date. The Navsim end-to-end environment includes 1192 training and validation
scenarios, as well as 136 test scenarios, comprising over 100,000 samples collected at a 2 Hz
sampling rate.

In the Navsim environment, the 2 Hz, 4 s trajectories were interpolated into 10 Hz, 4 s
trajectories using an LQR controller. These trajectories were evaluated based on closed-loop
metrics, including No-fault Collisions (SNC), Drivable Area Compliance (SDAC), Time to
Collision (STTC) with bounds, Ego Progress (SSEP), Driving Comfort (SCF), and Driving
Direction Compliance (SDDC). The final score was calculated by aggregating these metrics.

PDMS = SNC × SDAC × STTC × 5 × SEP + 5 × SCF + 2 × SDDC

12
. (28)

5.2. Quantitative Analysis

Table 7 presents a performance comparison of various methods on the NAVSIM bench-
mark, emphasizing the effectiveness of the proposed BevDrive framework. BevDrive
delivers outstanding overall performance, achieving a PDMS score of 83.8, the highest
among all methods in the comprehensive evaluation. Notably, it excels in the DAC metric
with a score of 92.5, demonstrating its exceptional ability to adhere to drivable area con-
straints. These results highlight the robustness and adaptability of BevDrive in navigating
complex driving scenarios within realistic environments.
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Table 7. Performance comparison of different methods on Navsim benchmark.

Method NC ↑ DAC ↑ TTC ↑ Comf. ↑ EP ↑ PDMS ⋆ ↑
ConsVelo [47] 68.0 57.8 50.0 100 19.4 20.6

EgoStatMLPc [47] 93.0 77.3 83.6 100 62.8 65.6
VADv2 [48] 97.2 89.1 91.6 100 76.0 80.9

DrivingGPT [49] 98.9 90.7 94.9 95.6 79.7 82.4

BevDrive 97.7 92.5 92.9 100 78.7 83.8

5.3. Qualitative Analysis

To validate the effectiveness of our model, we selected several representative driving
scenarios for qualitative analysis, including three typical conditions: Turn Left, Turn Right,
and Keep Straight. As shown in Figure 10, we visualized the forward-facing camera images
and overlaid the generated trajectories on the map for intuitive demonstration. On the
map, the blue points represent the trajectories planned by our model. In all scenarios, the
vehicle was able to accurately perceive the road structure and generate safe and reasonable
trajectories, with the planned results aligning closely with the actual road environments.
This demonstrates that our model is capable of adapting to diverse driving scenarios and
further highlights its generalization ability in real-world environments.

To further evaluate the performance of our model in challenging driving scenarios, we
conducted an experimental analysis in dense traffic and rainy weather conditions, as shown
in Figure 11. In the dense traffic scenario, the model was able to dynamically adjust the
desired trajectory of the vehicle based on the presence of obstacle vehicles ahead, coming
to a stop to avoid collisions and demonstrating collision avoidance capabilities. In the rainy
weather scenario, despite the camera images becoming blurred due to rainwater, the model
successfully utilized perception data to accurately plan a safe straight-driving trajectory.
These experimental results clearly demonstrate the robustness and reliability of our model
in handling complex and challenging driving scenarios.

(a) Turn left

(b) Turn right

(c) Keep straight

Figure 10. Performance in representative driving scenarios.
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(a) Dense traffic condition

(b) Rainy weather condition

Figure 11. Performance in challenging driving conditions.

6. Experiments using Real Autonomous Vehicle
In this section, we demonstrate the capability of BevDrive to handle complex tasks

in real-world driving scenarios by presenting real-world driving experiments conducted
using a full-scale autonomous vehicle.

6.1. Implementation Details

The setup of the physical autonomous vehicle is shown in Figure 12. We equipped
a full-scale autonomous vehicle with a 64-line LiDAR sensor (10 Hz, FOV: ±22.5◦), two
video cameras (10 Hz, resolution: 1920 × 1200 × 3, focal length: 8 mm and 25 mm), a
GPS/IMU localization module with real-time kinematic (RTK) correction signals, and a
powerful industrial computer running a real-time dataset collection program. In this study,
we used three kinds of raw data from these devices. Front-view images and LiDAR point
clouds were acquired at 10 frames per second to record the environmental conditions of the
video cameras and LiDAR sensor on top of the vehicle. In addition, accurate localization
and attitude data were recorded by the combined GPS/inertial solution at a frequency of
50 Hz.

64 Line LiDAR

8mm Camera

IMU/GNSS

Industrial computer

Uninterruptible power supply

（a）Our autonomous vehicle （b）Sensors （c） Industrial computer

Figure 12. Our autonomous vehicle and its equipped devices. (a) Our full-scale autonomous vehicle
equipped with a LiDAR sensor, cameras, and an integrated navigation module. (b) The sensors
equipped on our autonomous vehicle. (c) The industrial computer and power system equipped on
our autonomous vehicle.

The real scenario dataset records urban driving conditions in Guangzhou, China. Our
dataset includes scenarios with various weather and illumination conditions. The vehicle
was driven manually, and drivers were asked to drive moderately and smoothly. Our final
dataset covers a driving distance of 80 km and contains 100,000 frames of driving data. To
better understand the distribution of driving scenarios in our dataset, we categorized them
into three main types: Turn Right, Turn Left, and Keep Straight. The Keep Straight category
was further divided into four subcategories: driving on straight roads, driving on curved
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roads, crossing intersections, and slowing down for collision avoidance. As illustrated
in Figure 13, the distribution of driving scenarios in our dataset is as follows: Turn Right
constitutes 15.8%, Turn Left accounts for 17.0%, and Keep Straight makes up 67.2%. Within
the Keep Straight category, the data are further broken down into driving on straight roads
(52.5%), driving on curved roads (25.7%), crossing intersections (11.7%), and slowing down
for collision avoidance (10.1%).

 Driving on straight roads (52.5%)

 Crossing intersections (11.7%)

 Driving on curved roads (25.7%)

 Slowing down for collision avoidance (10.1%)
Turn Left

17.0%

Turn Right
15.8%

Keep Straight
67.2%

Figure 13. Statistics of our dataset. We categorized the driving scenarios in our dataset into three
main types: Turn Right, Turn Left, and Keep Straight. For the Keep Straight category, we further
divided the data into four subcategories: driving on straight roads, driving on curved roads, crossing
intersections, and slowing down for collision avoidance.

6.2. Quantitative Analysis

The results in Table 8 demonstrate that the proposed BevDrive consistently achieves
lower L2 errors across all time horizons (0.5 s, 1 s, 1.5 s, and 2 s) compared to the baseline
methods, Late Fusion and Transfuser. Specifically, BevDrive achieves a significantly lower
average L2 error of 0.08 m, outperforming Transfuser (0.12 m) and Late Fusion (0.16 m).
This highlights the superior decision-making and trajectory planning capabilities of the
proposed method, which remain reliable even in real-world scenarios. The reduced short-
term and long-term L2 errors validate the robustness and accuracy of the algorithm in
practical autonomous driving environments.

Table 8. L2 error comparison across methods at different time horizons.

Method
L2 Error (m)

0.5 s 1 s 1.5 s 2 s Avg.

Late Fusion 0.06 0.09 0.16 0.31 0.16
Transfuser 0.05 0.07 0.11 0.23 0.12
BevDrive 0.04 0.05 0.08 0.13 0.08

6.3. Qualitative Analysis

To show the performance of our proposed method in real driving scenarios, we
visualize the driving trajectories and the corresponding motion states of the ego vehicle in
several typical scenarios, including keeping straight, turning right, turning left, following
the lane, stopping at a red light, and going at a green light, as shown in Figure 14. In general,
we can see that our BevDrive is able to accurately generate collision-free trajectories under
various driving conditions. As shown in Figure 14a, the vehicle can run smoothly with a
high driving speed in the straight driving scenario. As shown in Figure 14b, the planned
trajectories in the turning scenarios are reliable and smooth. As shown in Figure 14c,
our model reasonably slows down as a human driver would when following a vehicle.
Moreover, our model can stop at an intersection when the traffic light is red, as shown in
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Figure 14d, and start up again after the traffic light turns green, as shown in Figure 14e.
These results demonstrate that our method is capable of controlling the vehicle to drive
stably in real-world driving scenarios.

(a)

(b)

(c)

t = 56.0 s
Car following

(a)

t = 40.0 s
Turn right

t = 10.0 s
Keep straight

(b)

(c)

(d, e)

(f)

t = 97.0 s
Go at green light

(d)

(e)

(f)

t = 26.3 s
Stop at red light

t = 105.0 s
Turn left

Expert

Ours

Expert

Ours

Figure 14. Visualization of trajectories in typical driving scenarios. BevDrive demonstrates its ability
to generate collision-free trajectories in a variety of driving scenarios, including lane following (a),
turning (b, f), collision avoidance (c) and traffic light reaction (d, e).

7. Discussion
Although BevDrive demonstrates outstanding performance in perception, sensor

fusion, and motion planning, there are certain limitations that should be addressed in
future work. The current framework relies solely on single-frame sensor data for decision-
making, which restricts its ability to capture and model dynamic changes in the driving
environment. This reliance on static, frame-by-frame processing may limit its effective-
ness in highly dynamic scenarios, where understanding the temporal motion patterns
of surrounding agents is essential for precise trajectory prediction and efficient obstacle
avoidance. To address this limitation, future work will investigate architectures capable
of long-term temporal modeling, including Temporal Transformers and Long Short-Term
Memory (LSTM) networks. By integrating historical frame data (e.g., past trajectories,
images, and LiDAR information), the system can more accurately predict the behaviors and
intentions of surrounding vehicles and pedestrians. Leveraging this temporal information
for motion planning can significantly enhance the obstacle avoidance capabilities of end-to-
end autonomous driving models, ultimately improving their robustness and adaptability
in real-world dynamic driving environments.

In addition, BevDrive currently relies on LiDAR geometric measurement data during
the BEV construction process. The supervision of depth information is primarily based on
3D measurements from LiDAR, which may limit the adaptability of the system to a broader
range of scenarios. To address this issue and further enhance the robustness and flexibility
of the system, we will also explore BEV construction methods that do not rely on LiDAR
supervision, thereby reducing the dependency on 3D measurements from LiDAR.

8. Conclusions
In this work, we proposed BevDrive, a novel end-to-end autonomous driving frame-

work that unifies camera–LiDAR fusion and motion planning within a BEV representation.
The framework integrates three key modules: the bidirectionally guided BEV feature
construction module, the dual-attention BEV feature fusion module, and the BEV-based
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motion planning decoder. The bidirectionally guided BEV feature construction module
leverages a dual-stream network to process image and LiDAR data independently, us-
ing depth-guided image BEV construction and image-guided LiDAR BEV construction
to transform cross-view features into a unified BEV space, effectively eliminating spatial
discrepancies between modalities. The dual-attention BEV feature fusion module combines
local and global features using hybrid attention mechanisms to achieve comprehensive
multi-modal integration. The BEV-based motion planning decoder consists of joint motion
queries, attention-based feature interaction, and an output fusion strategy, enabling precise
and reliable vehicle control by dynamically refining motion plans and integrating trajectory
and control commands. Extensive evaluations demonstrate that BevDrive achieves accurate
and collision-free motion planning, highlighting its robustness and potential for real-world
autonomous driving applications.
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