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Abstract: This work deals with the optimization of crucial process parameters related to the abrasive
flow machining applications at micro/nano-levels. The optimal combination of abrasive flow machin-
ing parameters for nano-finishing has been determined by applying a modified virus-evolutionary
genetic algorithm. This algorithm implements two populations: One comprising the hosts and one
comprising the viruses. Viruses act as information carriers and thus they contribute to the algorithm
by boosting efficient schemata in binary coding to facilitate both the arrival at global optimal so-
lutions and rapid convergence speed. Three cases related to abrasive flow machining have been
selected from the literature to implement the algorithm, and the results corresponding to them have
been compared to those available by the selected contributions. It has been verified that the results
obtained by the virus-evolutionary genetic algorithm are not only practically viable, but far more
promising compared to others as well. The three cases selected are the traditional “abrasive flow
finishing,” the “rotating workpiece” abrasive flow finishing, and the “rotational-magnetorheological”
abrasive flow finishing.

Keywords: abrasive flow machining; nano-finishing; parameter optimization; genetic algorithms;
surface finish; nonconventional machining

1. Introduction

The modern manufacturing industry faces the continuous challenge of delivering
high-quality products with special properties, achieving high productivity rates as well as
stringent tolerance requirements. The research question on how to deliver these elements
when it comes to miniature products is of special interest. Even though new machining
equipment has come to improve production lines, process performance is still on the
able hands and expertise of engineers who are to judge the influence of related process
parameters and examine the most advantageous settings to meet the requirements.

Abrasive flow machining (AFM) is a nonconventional machining process mainly
applied to finishing operations. Its applications span a number of processes such as the
finishing of inaccessible surface areas and free-form profiles, as well as deburring and
polishing radii, existing in parts’ corners [1]. Surface roughness after applying AFM is
reduced by 70% to 90% when it comes to cast and machined parts. In addition, it can
simultaneously process a large number of inner holes found in products by achieving a
uniform surface finish. The material used for finishing parts is a semi-solid, self-deformable
stone in the form of an abrasive medium. This material is applied in small quantities to
remove the excess material forming the part’s surface through back and forth motions
of the two cylinders that constitute the main tooling devices in the AFM apparatus. The
parameters responsible of controlling the AFM process are the medium’s flow speed, the
percentage concentration of the medium, its mesh size, and the number of cycles executed
to achieve the final surface finish. In addition, the piston velocity is also a factor that can
be controlled depending on the experiment and application. Noticeable contributions
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dedicated to AFM and its related optimization research efforts are the work of Jain and
Jain (2000) [2], Sankar et al., (2009) [3], and Das et al., (2012) [4]. In these contributions, a
number of selected process parameters are treated in the form of independent variables
to optimize responses not only related to surface finish, but to productivity as well (i.e.,
material removal rate—MRR). It should be noted that AFM is found under a variety
of process-assisted alternatives such as ultrasonic-assisted AFM [5], magnetic abrasives-
assisted AFM [6], and electrochemical-aided abrasive flow finishing (ECA2FM) [7] to name
a few. Other important advances in abrasive machining techniques forming a research
perspective are presented in references [8–16].

Researchers have tried to study and optimize the variants of the AFM process by
adopting different methodologies. Some of them are based on the application of neural
networks [2,17,18], optimization algorithms [2,19], and fuzzy logic [20]. Undoubtedly,
genetic, evolutionary, and swarm-based intelligent algorithms constitute the most often-
implemented elements for optimizing an engineering process. These algorithms follow
either the standard operational principles of genetic/evolutionary algorithms, or the prin-
ciples of swarm intelligence. Each of these algorithmic variants implements a number of
algorithm-specific parameters to be set to achieve the optimal outputs. The genetic algo-
rithm implements crossover and mutation operators to produce new candidate solutions
and facilitate their spread. Differential evolution implements the scaling factor to arrive
at the same optimization goal as genetic algorithms do; particle swarm optimization em-
bodies inertia weight, social cognitive variables, as well as maximum velocity of particles,
and so on.

This paper differentiates its research content from previous similar studies, by propos-
ing a virus-evolutionary genetic algorithm to optimize the control parameters of a selected
group of nano-finishing operations related to the abrasive flow machining (AFM) process.
The novelty of the research lies mainly in the optimization concept using a nonconven-
tional artificial intelligence system based on the viral intelligence. In addition, to the
best of the authors’ knowledge, intelligent optimization proposals for optimizing crucial
parameters when it comes to abrasive flow nano-finishing operations are yet to be pre-
sented. The proposed algorithm adheres to the “virus theory of evolution” [21], which is
an entirely different evolution theory form proposed by Darwin. According to this theory,
physical/natural viruses can not only exchange their genetic information by adopting
genetic material from their hosts but also be transferred from phylum to phylum both
vertically (vertical inheritance) and horizontally (horizontal propagation) [22]. The im-
proved virus-evolutionary genetic algorithm presented in the paper can be applied to
both single (VEGA) and multi-objective (MOVEGA) optimization problems related to
engineering and manufacturing. In this work, the first and the second AFM cases selected
for parameter optimization are of a single-objective optimization nature, whilst the third
one is of a two-objective optimization nature. The results obtained by this improved and
novel algorithmic variant not only have been found reasonable to control all selected AFM
processes, but also seem to be optimal ones by taking into account the original experimental
results from the contributions adopted, as well as their trends in terms of main effects
among influential parameters, as well as their interactions. In addition, the results obtained
have been compared to the available ones according to the selected AFM case. From the
three AFM cases selected, the regression equations have been adopted to be incorporated
with the proposed algorithm’s functions and routines to be evaluated as objective functions
with the same constraints (where applicable), the same operational ranges, and the same
evaluation perspectives (i.e., number of iterations, population size, etc.).

2. The Virus-Evolutionary Genetic Algorithm (VEGA)

As pure stochastic search systems, evolutionary algorithms are inevitably based on
the concept of natural selection, thus inheriting the benefits but also the drawbacks charac-
terizing it. Other evolutionary theories such as the “virus theory of evolution” [21] suggest
that natural selection may not always be responsible for the evolution of species. The
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virus theory of evolution lies thoroughly on the concept suggesting that viral transduction
is a major mechanism for transferring DNA segments across species. Viral transduction
represents the mechanism of the genetic modification that occurs to bacteria by genomes
taken from other bacteria through a bacteriophage. Most viruses can cross species’ bounds
whilst they can straightforwardly be transmitted from phylum to phylum among individ-
uals. This means that viruses can pass over their genome to a population as horizontal
propagation. In addition, a viral genome may exist in germ cells; thus, it can be transferred
from generation to generation as vertical inheritance. For simulation experiments related
to engineering problems, viral individuals might as well act as intelligent, sophisticated in-
formation carriers (“hill climbers”) capable of providing the necessary local information to
contribute to the optimization problem. The functions integrating the infrastructure of the
proposed single/multi-objective virus-evolutionary genetic algorithm (VEGA/MOVEGA)
for addressing the problems related to AFM processes are undertaken to execute the
following steps:

• Initialization of candidate solutions
• Objective function computation
• Ranking
• Fitness function computation
• Selection
• Crossover
• Mutation
• Viral infection

As the above steps up to mutation operator can be found in almost any algorithmic
variant, only viral infection is presented here as the intelligent operation under interest.

Viral Infection

Artificial viral intelligence simulates the sophisticated mechanism of physical viruses
to handle DNA information for their own benefit. Viral infection is based on transduction
and reverse transcription operators where the former is used for producing a virus individ-
ual from a selected host (either targeted as an “elite” or randomly), whereas the latter is
applied for infecting a population of hosts. The rationale behind this implementation is
the direct handling of schemata to distinguish those being effective to the process, while
deteriorating those judged as ineffective. Increasing a schema means increasing local infor-
mation in a population. In addition, proportional selection operators increase all schemata
including ineffective ones, as well. This in turn leads to local trapping and therefore pre-
mature convergence of the algorithm. On the contrary, viral infection handles schemata
directly, thus eliminating this occurrence, and creates virus individuals as substrings of
the strings that represent the hosts. Both viruses and hosts coevolve throughout the entire
timespan during the evolution process. Coevolution between the populations of viruses
and hosts allows one to rapidly solve optimization problems.

The strength of viral infection is represented by the FitVrsi,j parameter and is the dif-
ference in the fitness values after and before the infection of a selected host. Let FitIn f Idvj
be the fitness after viral infection and FitIdvj be the fitness before viral infection. The
strength of viral infection is computed using the relation given in Equation (1).

FitVrsi,j = FitIn f Idvj − FitIdvj (1)

The value obtained by Equation (1) is the difference between the two fitness values of
individual Idvj before and after its infection by Vrsi j. Given that Vrsi j might infect more
than a single individual (let S be the set of infected individuals), then FitVrsi,j reveals
the improvement in fitness values of all infected individuals, and it is as Equation (2)
determines:

FitVrsi = ∑
j∈S

FitVrsi,j (2)
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Every virus Vrsij is also accompanied with its corresponding life force, indicating its
contribution through successful infections to the main population. The life force of a virus
Vrsij is presented as VrsLi f orcei,G, where i is the index of the virus Vrsij and G is the current
generation. VrsLi f orcei,G is also dependent on the fitness of a virus Vrsij and is compared to
the one obtained by the Vrsij virus in the previous generation. If its value is negative, then a
new transduction operation is applied by Vrsij to change its scheme by randomly selecting
an individual. Otherwise, Vrsij cuts a partially new substring from one of the successfully
infected individuals for its own benefit from the evolutionary viewpoint. The magnitude
of the VrsLi f orcei,G parameter is computed in each generation with regard to an important
indicator, which is the virus life reduction rate VLi f eRrate satisfying 0.001 ≤ VLi f eRrate ≤ 1.0.
Hence, maximum viral infection rate maxVinfRate and virus life reduction rate VLi f eRrate are
related through the relation presented in Equation (3).

VrsLi f orcei,G+1 = VLi f eRrate ×VrsLi f orcei,G + FitVrsi (3)

maxVinfRate and VrsLi f orcei,G parameters are initialized in VEGA as maxVinfRate
= maxVinfRate_i,0,VrsLi f orcei,0 = 0. Figure 1a illustrates the transduction operation to
generate a virus individual. Figure 1b illustrates the reverse transcription to infect a se-
lected individual. Figure 1c shows an infected host, and finally Figure 1d depicts the
operation of partial transduction in the case where VrsLi f orcei,G < 0. The procedure of
viral infection is depicted in Figure 2.
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3. Optimization Problems Related to Abrasive Flow Nano-Finishing Processes

The study focuses on the optimization of process parameters related to the three inde-
pendent nano-finish machining processes, namely conventional abrasive flow nano-finishing,
“rotating workpiece” abrasive flow nano-finishing, and rotational-magnetorheological abra-
sive flow nano-finishing. Parameter optimization for these nano-finish machining processes
has been achieved by implementing the virus-evolutionary genetic algorithm, and the
results were compared to those available in the literature by other algorithms applied for
solving the same optimization problems.

3.1. Conventional Abrasive Flow Nano-Finishing Process

Abrasive flow machining for nano-finishing operation is comparable to lapping or
grinding and removes small material quantities by flowing semisolid abrasive medium
in the form of self-deformable stone. The equipment comprises two vertically opposed
cylinders to extrude the medium back and forth through sequential passes of tooling
and workpiece. The process is implemented for finishing inaccessible or difficult-to-reach
part surfaces. The optimization problem for optimizing the parameters for conventional
abrasive flow nano-finishing has been formulated by considering the experimental results
available in [2]. Maximum material removal rate, MRR (mg/min), and minimum surface
roughness, Ra (µm), have been set as the two objectives for simultaneous evaluations,
whilst surface roughness, Ra (µm), has been constrained to four different values, 0.7, 0.6,
0.5, and 0.4 (µm), in the form of an inequality constraint, i.e., g(x) = Ra ≤ Ramax, to better
examine the convergence behavior in the case of the contradicted objective of material
removal rate, MRR, when subjected to these discrete Ra values. The independent variables
and their operational ranges are exactly those examined in [2], and are the piston velocity
U (cm/min), percentage concentration for abrasives C, abrasive mesh size D, and number
of cycles, N. Percentage concentration C has been defined as the weight ratio of abrasives
and total weight of abrasive medium (abrasives and carrier) × 100. Table 1 gives the main
process parameters and their experimental levels as examined in [2].
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Table 1. Parameter design for the experiments [2].

Parameters for Conventional Abrasive Flow Nano-Finishing
Levels

Low High

Piston velocity U (cm/min) 40 85
Percentage concentration for abrasives C 33 45

Abrasive mesh size D 100 240
Number of cycles N 20 120

The exponential regression models for maximizing MRR and minimizing Ra given by
Jain and Adsul (2000) [23] were considered the objective functions, as it is recommended
in Jain and Jain (2000) [2]. The models are given in Equations (4) and (5) for maxMRR
and minRa, respectively. Note that a constraint requirement was defined for minRa, as:
minRa ≤ Ra_max for Ra_max = 0.7, 0.6, 0.5, and 0.4 (µm).

maxMRR = −(5.285 × 10−7 × U1.6469 × C3.0776 × D−0.9371 × N−0.1893) (4)

minRa = 282,751 × U−1.8221 × C−1.3222 × D0.1368 × N−0.2258 (5)

Jain and Jain (2000) [2] optimized the process parameters of conventional abrasive
flow nano-finishing by implementing a genetic algorithm (GA). The settings for their GA
involved a population size equal to 50, and maximum number of generations equal to
200, thus 10,000 function evaluations. The selected algorithms were tested under equal
parameters, i.e., 50 agents and 200 generations. Note that various values were simulated in
terms of population size and other algorithm-specific parameters during the preliminary
simulations using the algorithms selected for optimization. Algorithms were simulated
using MATLAB® 2014b in Dell® Precision 7510 workstation. The results obtained by
implementing the virus-evolutionary genetic algorithm are summarized in Table 2. The
results take into account the various constraints for surface roughness, i.e., 0.7, 0.6, 0.5,
and 0.4 µm. Table 3 summarizes the comparative results between those obtained by the
virus-evolutionary genetic algorithm and the GA applied by Jain and Jain (2000) [2] for
solving the same problem.

Table 2. Optimal pairs of conventional abrasive flow nano-finishing process parameters obtained
using the single-objective virus-evolutionary genetic algorithm (VEGA).

Sol. No. Ra_Max
(µm)

U
(cm/min) C D N MinRa

(µm)
MaxMRR
(mg/min)

1 0.7 85 45 100 20 0.537 0.738
2 0.6 85 45 100 20 0.537 0.738
3 0.5 85 45 100 27.376 0.5 0.695
4 0.4 85 45 100 73.544 0.4 0.577

Table 3. Optimal pairs of conventional abrasive flow nano-finishing process parameters obtained
using VEGA.

Sol. No.
Ra_Max

(µm)

GA [2] VEGA
% Benefit
for MRRMinRa

(µm)
MaxMRR
(mg/min)

MinRa
(µm)

MaxMRR
(mg/min)

1 0.7 0.6070 0.6970 0.537 0.738 5.56
2 0.6 0.5530 0.6950 0.537 0.738 5.83
3 0.5 0.4900 0.6690 0.500 0.695 3.74
4 0.4 0.3700 0.5803 0.400 0.577 0.52

According to the results presented n Tables 2 and 3, it is evident that VEGA has
exhibited superiority against the GA in terms of maximizing MRR while minimizing
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Ra, according to the operation range of process parameters and the constrained values
suggested for Ra_max. The maxMRR gain by implementing the proposed algorithm has
been found equal to approximately 5.56%, 5.83%, 3.74%, and 0.52% compared to the values
corresponding to GA results for maxMRR for the constrained values of Ra_max equal to
0.7, 0.6, 0.5, and 0.4 µm, respectively. The VEGA obtained its optimal recommended results
for MRR in the 3rd generation for the constrained values of Ra_max equal to 0.7, 0.6, and
0.5 µm, whilst for Ra_max ≤ 0.4 µm, the algorithm obtains its maximum MRR value in
the 2nd generation. This implies that the VEGA can find the optimal result for MRR with
significantly fewer candidates, as well as less generations. Note that this behavior has been
extensively examined after running a series of simulation runs to examine the stochastic
nature of the VEGA. Figure 3 illustrates the convergence diagrams for the VEGA in the
four cases of constrained surface roughness values.
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Figure 3. Convergence graphs for optimizing the conventional abrasive flow nano-finishing process [2] using VEGA, under
the constraint of: (a) Ra_max ≤ 0.7 µm, (b) Ra_max ≤ 0.6 µm, (c) Ra_max ≤ 0.5 µm, and (d) Ra_max ≤ 0.4 µm.

It can be observed that in all four cases, the algorithms exhibit a stable increase without
giving the impression of local trapping. In all four diagrams, the algorithm reaches its
best value and then remains stable until the algorithms stop their evaluations. Despite the
fact that 200 iterations have been simulated, only 100 have been plotted in the diagrams
owing to the fast algorithmic convergence and better visualization. The results have been
plotted in same scale for the maxMRR increase and number of iterations for clear and
rigorous comparisons.

Table 4 summarizes the results obtained by GA [2], VEGA, and actual experimental
results retrieved by confirmation experiments conducted and presented in [2]. Figure 4
presents a graphical depiction of the optimization trends among minRa and maxMRR
objectives by considering the different constrained values for maxRa.
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Table 4. Comparison of minRa and maxMRR among genetic algorithm (GA), multi-objective virus-
evolutionary genetic algorithm (MOVEGA), and actual experimental results for the conventional
abrasive flow nano-finishing process examined in [2].

Ra_Max
(µm)

GA [2] VEGA Experimental Results

MinRa
(µm)

MaxMRR
(mg/min)

MinRa
(µm)

MaxMRR
(mg/min)

MinRa
(µm)

MaxMRR
(mg/min)

0.7 0.6070 0.6970 0.537 0.738 0.390 0.538
0.6 0.5530 0.6950 0.537 0.738 0.500 0.635
0.5 0.4900 0.6690 0.500 0.695 0.590 0.692
0.4 0.3700 0.5803 0.400 0.577 0.625 0.716J. Manuf. Mater. Process. 2021, 5, x FOR PEER REVIEW 9 of 14 
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Figure 4. Comparative results between the optimization objectives of minRa and maxMRR corre-
sponding to GA, VEGA, and actual experimental results of conventional abrasive flow nano-finishing
process [2]: (a) minRa, (b) maxMRR.

By examining the results presented in Figure 4a,b with reference to Table 4 for minRa
and maxMRR, respectively, it can be observed that VEGA exhibits a better adaptation in
the trends of actual experimental data. In addition, VEGA favors minRa results, especially
under larger constraints for the same objective, as Figure 4a depicts. At the same time,
when the Ra_max objective is not restricted to low values (i.e., 0.4 and 0.5 µm), maxMRR
is greatly increased beyond the results recommended by GA. This supports the overall
conclusion that VEGA is capable of obtaining maximum results for MRR while keeping Ra
as low as possible for the same experimental solution domain.

3.2. Rotating Workpiece Abrasive Flow Nano-Finishing Process

Providing rotary motion to the work piece during the abrasive flow machining assists
in reducing the time of finishing, especially when it comes to nano levels. The experimental
results provided by Sankar et al. (2009) in [3] have been examined in this case in order to
formulate an optimization problem referring to the rotating work piece abrasive flow nano-
finishing. The optimization objective of this problem is to maximize the improvement in
surface finish ∆Ra (µm) in the rotating workpiece abrasive flow nano-finishing process. The
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independent process parameters have been identified as the processing oil wt% in medium
M, the extrusion pressure P (MPa), the number of cycles N, and the rotational speed n (rpm).
The parameters were subjected to the following ranges: 7.0 ≤M ≤ 13.0, 5.35 ≤ P ≤ 7.15,
372 ≤ N ≤ 728, and 2 ≤ n ≤ 10. Sankar et al. (2009) [3] did not try to optimize the process
using an intelligent system; yet, they thoroughly examined the experimental results, as well
as their corresponding statistical outputs. This variant of abrasive flow nano-finishing [3]
was applied to three aluminum-based alloys for which a regression model was generated
to correlate the independent parameters to the objective of improvement in surface finish
max∆Ra (µm). The three alloys were the pure aluminum alloy, the aluminum alloy/SiC10%,
and the aluminum alloy/SiC15%. The models for max∆Ra corresponding to each of the
three materials are given in Equations (6)–(8), respectively.

max∆RaAluminum =
−(0.098 ×M + 0.875 × P + 0.002 × N + 0.05 × R − 0.006 ×M2 − 0.068 × P2 − 9.6 × 10−7 × N2 − 0.002 × n2)

(6)

max∆RaAluminum/SiC10% =
−(0.118 ×M + 0.831 × P + 0.001 × N + 0.031 × R − 0.006 ×M2 − 0.067 × P2 − 1.2 × 10−6 × N2 − 0.002 × n2)

(7)

max∆RaAluminum/SiC15% =
−(0.101 ×M + 0.767 × P + 0.002 × N + 0.043 × R − 0.0046 ×M2 − 0.0571 × P2 − 8.28 × 10−7 × N2 − 0.002 × n2)

(8)

According to Figure 5, the virus-evolutionary genetic algorithm has achieved its
optimal value in the 195th iteration where max∆Ra equals 4.46218 µm for the model corre-
sponding to pure aluminum alloy. This result is obtained for M = 8.1577, P = 6.4337 MPa,
N = 728, and n = 10 rpm. For the second model referring to Al/SiC10% material, the
algorithm reached its maximum value for max∆Ra, equal to 3.48535 µm. This result is
obtained for M = 9.8426, P = 6.2056 MPa, N = 417.2663, and n = 7.7451 rpm (n = 8 rpm).
The optimum result for max∆Ra in this case was reached in the 88th iteration. For the third
model referring to the Al/SiC15% material, the algorithm reached its maximum value for
max∆Ra, equal to 4.37727 µm. This result is obtained for M = 10.9965, P = 6.7168 MPa,
N = 728, and n = 10 rpm. The optimum result for max∆Ra in this case was reached in
iteration 192.
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for the cases of: (a) Aluminum alloy, (b) aluminum alloy/SiC10%, and (c) aluminum alloy/SiC15%.
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3.3. Rotational-Magnetorheological Abrasive Flow Nano-Finishing Process

This abrasive flow nano-finishing process involves a rotary cam reciprocating motion
applied to the polishing medium by a rotary magnetic field and hydraulic apparatus.
Through the proper control of these two motions, a uniform and smooth mirror-like finish-
machined surface is produced with enhanced material removal rates (nm/cycle). What is
responsible for the finish-machining of parts is the magnetic flux density measured at the
fixture’s adjacent inner surface. The brush formulated by the magnetorheological polishing
fluid at the inner surface is in contact with the workpiece. The optimization problem
formulated in this case is a multi-objective one, and takes advantage of the experimental
results provided by Das et al., (2012) in [4]. In their work, four process parameters were
examined, hydraulic extrusion pressure P (Bar), number of finishing cycles N, magnet’s
rotational speed n (rpm), and mesh size of abrasive, M. The four independent parameters
were studied under the central composite design approach having 30 experimental runs.
The optimization objectives were to minimize surface roughness minRa, or equivalently,
to maximize the percentage improvement in surface roughness, max%∆Ra = max∆Ra ×
100/Rainitial, while simultaneously maximizing material removal maxMR (mg). Regression
models and parameter bounds were the same as those examined by Das et al., (2012).
Equations (9) and (10) represent the models developed by Das et al. (2010) referring to
max%∆Ra (%) and maxMR (mg), respectively, while the parameter bounds were subjected
to the following ranges: 32.5 ≤ P ≤ 42.5, 600 ≤ N ≤ 1400, 50 ≤ S ≤ 250, and 90 ≤M ≤ 210.

max%∆Ra =
−(−52.61 + 10.49 × P − 0.08 × N − 0.56 × S + 0.11 ×M + 2.77 × 10−3 × P × N + 0.02 × P × S − 1.33 × 10−3

× P ×M + 0.60 × 10−4 × N × S + 1.75 × 10−4 × N ×M − 9.22 × 10−5 × S ×M − 0.19 × P2 − 3.16 × 10−5 × N2

− 8.61 × 10−4 × S2 − 8.2 × 10−4 ×M2)

(9)

maxMR =
−(−687.55 + 30.39 × P − 0.04 × N − 0.76 × S + 0.69 ×M + 2.04 × 10−3 × P × N + 1.56 × P × S + 4.60 × 10−3

× P ×M − 1.33 × 10−4 × N × S + 3.33 × 10−6 × N ×M − 3.00 × 10−3 × S ×M − 0.44 × P2 − 3.85 × 10−5 × N2

− 6.05 × 10−4 × S2 − 1.75 × 10−3 ×M2)

(10)

Das et al. (2012) [4] optimized max%∆Ra using the desirability function embedded
in the response surface methodology. The same problem has been handled in this work
as a multi-objective optimization problem, by applying the virus-evolutionary genetic
algorithm with its multi-objective modules (MOVEGA) with a population size equal to
10 and a maximum number of generations equal to 100. The resulting nondominated
optimal solutions in the form of the Pareto front are illustrated in Figure 6. It is observed
that the algorithm has successfully solved the two-objective problem by obtaining solutions
that satisfy several optimization concepts in terms of the two conflicting objectives. The
nondominated solutions are uniformly distributed all along the resulting solution path
while the spacing and coverage of solutions are dense and almost equidistant. It can also
be observed that the majority of nondominated optimal solutions are located in the central
region of the Pareto front, suggesting that the algorithm has managed to cope with the
trade-off between the two conflicting optimization objectives and provide more solutions
for simultaneously satisfying both objectives rather than favoring one objective at the
expense of the other. Unfortunately, the solutions obtained as nondominated optimal ones
have not been compared to any results found in [4], as the problem was not examined
under such assumptions. For this particular optimization problem, a comparison with
results yet to be obtained by other heuristics will be conducted as a future work.
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Figure 6. Nondominated Pareto optimal solutions obtained by VEGA for optimizing the rotational-
magnetorheological abrasive flow nano-finishing process [4].

In order to provide an experimental validation at least when it comes to the work of
Das et al. (2012) [4] concerning the single-objective optimization of the max%∆Ra objective,
contour plots that have not been presented in the original work of Das et al. (2012) [4] were
created to examine whether the experimental results agree with the model employed for
optimizing the max%∆Ra objective, for validation purposes. The same for the maxMR
objective was not examined, as it is not analytically provided in the work of Das et al.
(2012) [4]. The experimental observations appearing in Figure 7a,b, are in total agreement
with the original experimental results presented in [4].
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Figure 7. Contour plots for examining the effects of independent variables for controlling the rotational-magnetorheological
abrasive flow nano-finishing process, with reference to experimental results presented in [4], (a) for max%∆Ra vs. P (bar), N
(cyles); (b) for max%∆Ra vs. S (rpm), R (ratio).

4. Conclusions and Future Perspectives

In the present study, three cases related to the nonconventional machining process
known as “abrasive flow machining-AFM” have been examined for their parameter opti-
mization potentials. A modified virus-evolutionary genetic algorithm has been applied to
find the optimal solutions for the objective determined per case study, whilst the results
obtained have been compared to those available in the contributions where the AFM cases
have been found. In all cases examined, the results have been found to be superior to those
obtained by other optimization systems such as soft computing (neural networks), genetic
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algorithm, and desirability function. In the work, the same regression equations as original
outputs from actual experiments have been adopted as objective functions to evaluate them
with the virus-evolutionary genetic algorithm under the same conditions (i.e., constraints,
upper and lower parameter bounds, algorithmic parameter settings, etc.). Looking further
ahead, the authors are to implement this algorithm to optimization problems either selected
from the broader literature or formulated by their original experimental results mainly
referred to the milling and tuning of several engineering materials.
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