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Abstract: The use of the welding process on an industrial scale has become significant over the
years and is currently among the main processes for joining metallic materials. Along the weld,
structural changes occur in the vicinity of the joint. These thermal stresses and geometric distortions
are mostly undesirable and are complex to predict with precision. Using S235JR steel as the base
material, laboratory experiments were carried out using the multipass GMAW process, with the
aim of investigating the influence of the welding direction on angular distortion. To measure the
distortions, a methodology was applied using equipment to identify the coordinates in the operational
space with metrological precision. Through metrological and statistical analyses, we found that the
orientation factor significantly influenced the final distortions and that the alternated orientation
sequence resulted in less distortions.

Keywords: welding distortion; welding sequence; residual stress; welding; GMAW; multipass;
butt joint

1. Introduction

One of the chosen joining processes in the assembly and manufacture of many types of
components is welding, and the main reasons for this choice are the velocity and reliability
of the welding processes. In addition, the economic feasibility of the various types of
welding compared to other manufacturing processes is another important motivation for
its choice [1,2]. Gas Metal Arc Welding (GMAW) is a versatile welding method that is used
in semi-automatic and fully automatic modes. It is the most utilized and preferred welding
technique in the industry owing to its advantages, such as the capability of all position
welding and good quality welds [3,4].

Despite the many advantages of welding processes, one important drawback is that it
frequently can lead to inadmissible levels of imperfections, such as distortion and shrink-
age [5]. Distortions in the welding process are caused by the non-uniform expansion and
contraction of the weld and the surrounding areas [6]. These defects appear because of the
high temperature of the weld area and its thermal expansion restrained by the surrounding
areas with metal at a lower temperature, which leads to compressive stress [7]. One of
the great challenges caused by distortions is to find strategies to control its appearance in
complex structures.

In some cases, distortions can result in an increase of the production cost and time,
when their amount exceeds the acceptable limits and it is necessary to correct the defects or
rework the operation [8]. In order to avoid losses and maintain the mechanical properties
of welded components, is essential to predict and minimize distortions during the welding
processes [3]. With the aim of minimizing the residual stresses and distortion effects, it is
necessary to consider some parameters and manufacturing conditions [9], namely material
specifications, the level of heat input, joint shapes, stiffener arrangements, welding type
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and continuity, heat treatments before and after the welding process, initial distortions,
and welding sequences [10,11].

As reported by D. Radaj [12] and T. Schenk [13], high residual stresses emerge when
the deformations are restricted, and low residual stresses occur when the deformations are
not restricted. Figure 1 correlates the residual stresses and the distortions according to the
clamping degree [14].
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Figure 1. Relationship between the clamping degree and the level of distortion as well as the effect
on residual stresses.

In butt-welded plates, angular distortion is the major problem and the most pro-
nounced type of distortion [15]. It consists of a rotation of the structure around the welding
line [13]. This distortion occurs in a butt joint when the transverse shrinkage is not uni-
form in the thickness direction [15,16]. When the angular distortion occurs, the welded
component is distorted in angular directions around the weld interface [17,18], as sketched
in Figure 2.
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The application of subsequent welds causes the previous welds to be heated and
melted in the context of multipass welding. In each pass, a thermal cycle is applied on the
base metal, and the material in this area can experience multiple-phase transformations
that cause, under the same parameters, different changes to the structures of the welded
area and the heat-affected zone. These differences result in multiple states of stresses and
strains in the heat-affected zone and surroundings [19].

Some factors, such as the increase in the number of tack welds and step welding
techniques, were proven to increase the angular distortion, according to Tomkow et al. [20].
Lohate M.S. and Dr. Damale A.V. concluded that the number of passes significantly
influences the distortions, while the feed rate and time gap between the passes directly
affects the distortions [21].

Kumar P. [22] and Kumar A. [23] performed different research about the influence
on joint gap distortions, the number of passes, and the time gap between passes. Both
experiments concluded that the distortion increases with the increase of joint gap and
number of passes and yet decreases with the increase of the time gap between the passes.

In this work, we investigate the influence of the welding sequence in butt joint welds
in the emergence of distortion when changing the pass orientation in GMAW multipass
in steel plates. As we could see in the presented brief review, previous studies have
investigated the effect of welding parameters, such as the voltage, current, welding velocity,
feed rate, gas flow, torch tilt angle, length of electrode, number of passes, time gap between
the passes, rise of angle of the V groove, plate length, and electrode diameter, in distortions.
As the present work had the objective to evaluate the effect of welding orientation, which
is a novelty, we considered that these comparisons would be between very distinct aspects.
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2. Materials and Methods

The equipment used to carry out the experiments was a welding machine model
MIG 453 Modular, brand Electrex, and, to assure the precision of the welding, a numerical
controlling equipment (Figure 3) developed in the Instituto Politécnico de Bragança was
also used. This equipment is capable of moving the torch with three degrees of freedom
and automatically operates the trigger of the welding machine by Code G programming in
Grbl Controller 3.6.1 software.
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The base metal used for the experiments was carbon steel S235JR (EN10025 with the
chemical composition C: 0.17–0.22%, Mn ≤ 1.40%, p ≤ 0.035%, and Si ≤ 0.035%) and the
weld metal was an electrode wire M/SG 2 manufactured by Eurotrod, identified as 14341-A
G3Sil by ISO Standard and ER70S-6 by AWS (Chemical composition C: 0.06–0.14%, Si: 0.80–
1.00%, Mn: 1.40–1.60%, p ≤ 0.025%, and Si 0.025%). This electrode is constituted of steel
and coated in copper. In order to avoid contamination by the external environment and
promote better mechanical proprieties, a mixture of 82% Argon and 18% Carbon Dioxide
(ISO 14175–M21–ArC–18) was used as the protection gas. The mechanical properties of the
materials used are presented in Table 1.

Table 1. Mechanical properties for the base metal and electrode.

Material Mechanical Properties Value

Carbon Steel S235JR Rm—Tensile Strength 360–510 MPa
(100 mm thickness) ReH—Minimum Yield Strength 235 MPa

Electrode AWS ER70S-6 Rm—Tensile Strength 520 MPa
Re—Yield Strength 420 MPa

Given that the desired investigation is the analysis of the influence of the welding
sequence, all the samples were prepared following the same procedure and using the same
welding parameters. With the aim to improve the investigation precision, each welding
sequence was made in triplicate, to ensure the non-interference of possible imperfections of
the materials and human or machine failure during the execution of the whole experiment.

For the purpose of obtaining thermal uniformity, at the beginning of each weld bead,
the welding of all the samples was made alternately, and, after the end of each weld
bead, the respective sample was submitted to uniform air cooling, without restriction or
acceleration [24].

The parameters used for the welding process are shown in Table 2. These parameters
were selected following the range recommended by the electrode’s manufacturer and in
order to provide the arc stability.
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Table 2. Parameters used for multipass welding.

Pass Type Welding Parameter Value

Root Pass Voltage 22.8 V
Angle of the torch 15◦

Protection Gass Flow 16 L/min
Welding Velocity 0.20 m/min
Wirefeed Velocity 5 m/min

Electrode Stick-out 19 mm

Fill Pass Voltage 23.7 V
Angle of the torch 15◦

Protection Gass Flow 14 L/min
Welding Velocity 0.25 m/min
Wirefeed Velocity 3.5 m/min

Electrode Stick-out 19 mm

Cover Pass Voltage 23.7 V
Angle of the torch 15◦

Protection Gass Flow 14 L/min
Welding Velocity 0.30 m/min
Wirefeed Velocity 3.5 m/min

Electrode Stick-out 19 mm

The welding sequences performed were divided into two groups.:

• M[s]: Single orientation.
• M[a]: Alternated orientation.

Figure 4 shows the sequences, indicating the orientation and order of each pass to be
made, with Figure 4a showing the multipass welding with single orientation and Figure 4b
showing the multipass welding with alternated orientation.
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The base metal, even before the welding process, shows geometrical discontinuities.
To obtain better control of the distortions caused by the process, the measurements were
performed before and after the welding. Thus, the distortions already existing before the
welding were considered and properly compensated.

The flowchart of Figure 5 shows, schematically, the order of the used methodology. The
measurements of the distortions were performed using a methodology with computerized
equipment to identify the coordinates in the operational space with metrological precision.
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Figure 5. Methodology flowchart.

For this laboratory experiment, six pairs of S235JR steel sheets with dimensions of
110 × 100 × 10 mm were obtained with a V-groove as shown in Figure 6. For the analysis
of distortions, a 30 × 30 mm control grid (Figure 7) with 32 nodes (measurement points)
was created.
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As cited by D. Radaj [12] and T. Schenk [13], high residual stresses arise when defor-
mations are restricted. In this way, we chose laboratory experiments as it is not necessary
to fix the samples during the welding procedures, and consequently these experiments did
not restrict the deformations at any time.

The welding was performed in flat position (1G) with the pulling technique and the
parameters, and the arrangement of the strands for filling the V-groove was defined to
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obtain a uniform distribution of the stands and to guarantee a better structural and visual
aspect of the whole weld. Thus, in Figure 8, there is a schematic illustration of the result of
the arrangement of the weld beads deposited at the time of welding.
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Figure 8. Weld bead arrangement for filling the chamfer with the indicated cutting direction.

For data acquisition, was used the C-Track (Figure 9a) coordinate measurement equip-
ment interconnected with HandyPROBE using the Metrolog X4 and VXelements. The
arrangement for sample positioning to acquire data is shown in Figure 9b. Three support
cylinders and four optical reflectors were placed on a granite surface plate following all the
recommendations in the manufacturer’s manual.
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Figure 9. (a) C-Track measurement equipment and (b) arrangement positioning for data acquisition.

3. Results

The graphical representation of the vertical displacement averages of three samples of
each sequence can be seen in Figure 10. Figure 10, with (a) the multipass sequence with
single orientation, M[s], and (b) the multipass sequence with alternated orientation, M[a].
It is also possible to see, in Figure 10, the positioning of the sections A–H and 1–4 of the
control grid of the steel sheets.

In Figure 11, sections A to H are indicated, and in Figure 12 are the averages of sections
1, 2, 3, and 4, since the standard deviation between the values obtained from the cross
sections were less than or equal to 0.03 mm. The comparative graphs of M[s] × M[a]
enabled analysis of the deformation patterns and the amplitudes of the displacements
caused by the welding process by comparing the sections, with the continuous lines
referring to the welding sequence in the single orientation and the dashed line referring to
the alternated orientation.
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In both welding sequences, the maximum mean vertical displacement occurred in
Section H, with M[s] an average displacement 20.1% greater than in M[a] in this section. All
the vertical displacements measured were summed and transformed in one only variable
for each sample (Table 3).
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Table 3. Summation of the sample distortions in multipass welding.

Sequence Σ Displacement (mm)

M[s]_1 69.84
M[s]_2 66.61
M[s]_3 67.51
M[a]_1 56.24
M[a]_2 51.82
M[a]_3 59.60

ANOVA was used to obtain the true null hypothesis as a result (p < 0.05) for the
welding orientation factor. Therefore, we concluded that the orientation of multipass
welding had a significant effect on the final distortion of the samples and that, in general,
the specimens of multipass welding with alternated orientation had an average vertical
displacement 17.8% lower when compared to the sequence of multipass with single orien-
tation (Table 4). It also verified the decreasing of displacement average of M[a] comparing
with M[s], as can be seen in Figure 13.

Table 4. ANOVA analysis between the orientation and direction of multipass welding.

Sum of Squares Mean Squares F P

Between Groups 208.943 208.943 22.318 0.009
Within Groups 37.448 9.362

Total 246.391
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4. Conclusions

Understanding the mechanisms and parameters that influence distortions proved
to be essential for the prevention, control, and correction of deformations caused during
the welding process for any type of joining pieces. Thus, within the experimental and
theoretical conditions of the present work, it was possible to conclude that:

• The transverse distortions in all specimens were negligible, with a maximum standard
deviation of 0.03 mm in each cross section. However, the longitudinal distortions were
significant, and, in all specimens, the highest peak occurred in section H, with the
average displacement in M[s] 20.1% greater than in M[a] in this section.

• The ANOVA statistical analysis indicated that there was a statistically significant
difference in displacement between the single orientation and alternated orientation
of multipass welding sequences. Through the average of the sum of the displacements
of each sequence, we found that M[a] resulted in a vertical displacement that was
17.8% less than M[s].
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