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Abstract: This work deals with the experimental investigation and multi-objective optimization of
mean kerf angle (A) and mean surface roughness (Ra) in laser cutting (LC) fused filament fabrication
(FFF) 3D-printed (3DP), 4 mm-thick polylactic acid (PLA) plates by considering laser feed (F) and
power (P) as the independent control parameters. A CO2 laser apparatus was employed to conduct
machining experiments on 27 rectangular workpieces. An experimental design approach was adopted
to establish the runs according to full-combinatorial design with three repetitions, resulting in
27 independent experiments. A customized response surface experiment was formulated to proceed
with regression equations to predict the responses and examine the solution domain continuously.
After examining the impact of F and P on mean A and mean Ra, two reliable prediction models
were generated to model the process. Furthermore, since LC is a highly intricate, non-conventional
machining process and its control variables affect the responses in a nonlinear manner, A and Ra
were also predicted using an artificial neural network (NN), while its resulting performance was
compared to the predictive regression models. Finally, the regression models served as objective
functions for optimizing the responses with an intelligent algorithm adopted from the literature.

Keywords: laser; processing; FFF; 3D printing; surface roughness; kerf angle; multi-objective opti-
mization; neural networks; grey wolf algorithm

1. Introduction

Laser cutting (LC) is a thermal processing technique that severs the material by locally
melting it, using a repeatedly pulsing or continuously immersed laser beam. As a result,
a kerf is formed through relative motion between the beam and the workpiece surface.
Laser cutting is used to cut an extensive range of materials (composites, papers, wooden
plates, ceramics, metals, inorganics, organics, etc.) without regard for their hardness or
electrical conductivity [1–3]. Laser beam cutting and other laser processing methods (laser
finishing, engraving, welding, etc.) are applied extensively in many industrial applications,
particularly in automotive and aerospace industries [4–6]. The post-processing of the
objects formed by conventional or non-conventional techniques is critical for enhancing the
final product grade [7–9]. As a result, fused filament fabrication (FFF) or material extrusion
(MEX) is growing extensively in numerous engineering and industrial fields [10–12]. A
workpiece is created by adding layers of material [13–15]. In addition, the filament material
extrusion process creates opportunities for enhancing sustainability issues due to the
customized demand for energy and materials [16–18]. One of the most naturally used
biopolymers is polylactic acid (PLA), with the second largest volume of applications
worldwide [19]. It is a recyclable, biodegradable, and bioactive thermoplastic originating
from renewable sources such as sugarcane or corn starch. Moreover, PLA is a promising
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polymer for several customized applications, having the most negligible environmental
impact compared to other thermopolymers [20,21].

Numerous investigations have studied various laser beam processing techniques.
For example, different thermoplastics such as polypropylene (PP), polyethylene (PE), and
phosphorylcholine (PC) thin plates were cut with a range of laser variable parameters,
revealing that with low laser feed, the result has a more positive outcome when using a high-
power laser [22,23]. In addition, several researchers have studied polymethyl methacrylate
(PMMA) thin plates on different laser beam settings by investigating the kerf angle, surface
roughness, and heat-affected zone [24–26].

Zhou and Mahdavian studied the cutting of nonmetallic materials experimentally
and theoretically using a CO2 laser [27]. In addition, the cutting performance of the laser
beam onto thin plates of PLA, ABS, PET-G, PLA/Wood, and PLA/CB manufactured by
the material extrusion process has been studied for dimensional and surface property
improvement [28–33].

Combinatorial experimental methodology contributes to well-organized documen-
tation correlating a process’s input parameters to its corresponding outputs [34], as does
response surface methodology [35,36]. The DOE approach is prominent in the full and frac-
tional factorial design (FD) [37]. In order to attain the optimum results during a cut, efforts
to concurrently optimize two or more control factors have been carried out, depending
vastly on the test workpiece [38–41]. The post-processing of FFF is vital for most products,
especially when strict precision requirements are imposed [42]. Note here that the shape
accuracy of the FFF parts is affected by the 3D printing processing parameters such as layer
thickness, nozzle temperature, printing speed, etc., and their inappropriate tuning causes
material overflow, overheating, and gaps between layers, which in turn results in uneven
corners and curling surfaces [17]. Therefore, precision laser-assisted post-processing can
be an alternative to conventional machining for precision customized FFF parts used in
assemblies or mechanisms.

The present study optimizes the surface properties of a PLA 3D-printed (3DP) thin
plate processed by a laser beam utilizing soft computing techniques. The surface proper-
ties specified were the geometry of the mean kerf angle (A) and the cut’s mean surface
roughness (Ra), as these two are the most critical according to the literature. It is worth
mentioning that the published work on optimizing the laser cutting of 3D-printed parts
is somewhat limited. The authors designed this work to have two key processing param-
eters after the literature review, and the research aim was mainly the multi-parameter,
multi-objective optimization of CO2 laser cutting of a 3D-printed material (PLA thin plates)
for the case of two inputs and two outputs with experimental design, mathematical RSM
(regression surface models) and NN modeling, and MOGWO (grey wolf optimization
algorithm) metaheuristic optimization algorithm adopted from the literature.

Therefore, additional research and experimentation are needed to determine the prob-
ability of successfully executing laser processing on 3DP thin workpieces on an industrial
basis. This work displays how laser beam feed (F) and power (P) impact the kerf angle
(A) and mean surface roughness (Ra) of a 3DP thermoplastic (PLA) during LC. Likewise,
the laser feed and power results have been examined through response surface analysis
and residual analysis. Cutting experiments were conducted using the full combinatorial
approach, with three repetitions following the design of experiments (DOE) methodology.
In contrast, regression analysis and artificial neural networks (ANN) were implemented to
model the process. Finally, a multi-objective optimization problem was formulated and
solved by implementing a modern metaheuristic algorithm found in the broader literature.

2. Materials and Methods

Test samples were manufactured with the filament material extrusion (FME) technique
(Ender 3, Creality, Shenzhen, China) with a 0.4 mm nozzle diameter. Initially, twenty-seven
25 × 25 × 4 (mm) PLA cuboid thin plates were FME manufactured. Then, they were
cut into 15 × 15 (mm) rectangular samples (see Figure 1b,c). The PLA 3DP cuboid parts
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were manufactured adopting the 0.2 mm layer height, 100% infill, 100% flow rate, zero
raster angle, 220 ◦C nozzle temperature, 55 ◦C bed temperature, 2 shells (perimeters, floors,
roofs), 100% fan, and 45 mm/s deposition speed. Note that the laser beam was positioned
vertically or parallel to deposited strands of the FME plates during all laser cut work
presented in this study.
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Figure 1. (a) Laser cutting work, (b) final cuboid part (15 × 15 mm No 25), and (c) remaining ring
after cutting.

The laser cut of samples was realized by a budget (BCL 1325B; 150 W max, 10.6 µm
wavelength; 2 mm nozzle diameter; convergent type; 1 bar pressure air) continuous CO2
laser. The focus lens adjustments (three reflection mirrors and a focus lens) and all the
laser details were presented in [3]. Therefore, a 0.3 mm laser spot was achieved at an 8 mm
stand-off distance. Then, the samples were placed on the laser working table, as presented
in Figure 1a.

The samples were cut with 8, 13, and 18 mm/s feed and 82.5, 90, and 97.5 W power
(Table 1). The parameter level selection follows the previous work’s cutting setting of
PMMA plates [3]. Note that the specific gravity of PMMA and PLA is very close (about
1.2 g/cm3), so all combinations were considered suitable for cutting the PLA samples. The
nine combinations of the different sets of laser feed and power were repeated three times,
resulting in twenty-seven independent experiments (Table 2). All experiments were cut
in the laser bed at the same position and orientation (Figure 1a). Mean results from the
measurements of kerf angles and roughness corresponding to cut surfaces along the X and
Y axes were finally kept as final outputs for further statistical analysis.

Table 1. LC parameters.

Laser Parameters Symbol Levels

1 2 3
Feed F (mm/s) 8 13 18

Power P (W) 82.5 90.0 97.5

Table 2. Laser cutting experiments and corresponding results for A and Ra responses.

a/a F (mm/s) P (W) Mean A (◦) Mean Ra (µm)

1 8 82.5 1.596 1.72
2 8 82.5 1.438 1.74
3 8 82.5 1.519 1.88
4 8 90.0 1.465 1.51
5 8 90.0 1.612 1.50
6 8 90.0 1.537 1.42
7 8 97.5 1.216 0.81
8 8 97.5 1.307 0.88
9 8 97.5 1.259 1.06
10 13 82.5 1.108 1.16
11 13 82.5 1.054 1.04
12 13 82.5 1.094 1.05
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Table 2. Cont.

a/a F (mm/s) P (W) Mean A (◦) Mean Ra (µm)

13 13 90.0 1.076 0.92
14 13 90.0 1.012 1.00
15 13 90.0 1.094 1.07
16 13 97.5 1.088 1.09
17 13 97.5 1.079 2.08
18 13 97.5 1.102 1.46
19 18 82.5 0.965 4.42
20 18 82.5 1.012 2.23
21 18 82.5 0.894 2.53
22 18 90.0 0.989 2.61
23 18 90.0 0.945 2.42
24 18 90.0 0.917 2.37
25 18 97.5 1.009 6.15
26 18 97.5 0.897 6.19
27 18 97.5 0.884 5.92

The geometric measurements were taken utilizing the ImageJ software. Photos were
taken utilizing a budget microscope and the Cooling Tech Microscope software. Figure 2a
presents a cut parallel to strands, whereas Figure 2b presents a cut perpendicular to strands.
Surface roughness measurements were taken with the DIAVITE profilometer (4 mm sample
length, 0.001 µm accuracy). The Ra measurements were taken in the middle of the cutting
surface on both X and Y sides and about 2 mm from the top surface.
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Figure 2. (a) Parallel cutting, (b) perpendicular cutting.

The cutting surface and the vertical plane formed the kerf angle (see Figure 3a). The
same microscope mentioned above examined kerf angles for each test sample. Ra was
measured by preparing a special fixture device for clamping the test specimens, as depicted
in Figure 3b.
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3. Results and Discussion
3.1. Full Quadratic Regression Models for CO2 Laser Cutting Objectives

Based on the results obtained for the two objectives of kerf angle and surface roughness,
two second-order regression models were generated for correlating laser feed and laser
power to kerf angle and surface roughness. The general regression equation for producing
the models is given in Equation (1):

y = β0 +
k

∑
i=1

βixi +
k

∑
i=1

βijxi
2 + ∑

i
∑

j
βijxixj (1)

y is the response—mean kerf angle A (◦) and surface roughness (Ra, µm), “β” are
the regression coefficients as computed by the least square fit, and xi is the different
independent factors for i = 1 to k, where k is the total number of independent (control)
factors (parameters). Nonlinearity and effects referring to laser feed and laser power on
mean A and mean Ra have been examined with the aid of surface and contour plots
utilizing the Minitab17 (Figure 4).
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Surface and contour plots represent the simultaneous effect of laser feed and laser
power on mean kerf angle (Figure 4a) and mean surface roughness (Figure 4b). It can be
observed that when increased, laser feed (F) tends to reduce kerf angle, provided that laser
power is set to high levels, i.e., 97.5 (W). In the case of mean surface roughness, Ra lower
levels for laser feed need to be set. Laser power must be set with a value between 86 (W)
and 96–97 (W), approximately. The trend in the response surfaces and contour plots shows
that the LC problem is highly nonlinear, even when studying two independent process
parameters on discrete objectives such as those selected in this work: mean A and Ra. The
regression equations corresponding to these plots for mean A and Ra, with reference to the
general equation shown in Equation (1), are given in Equations (2) and (3).
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A (◦) = 0.98 − 0.3177 × F + 0.0615 × P + 0.00464 × F2 − 0.000493 × P2

+ 0.001682 × F × P,
(2)

Ra (µm) = 123.8 − 1.734 × F − 2.536 × P + 0.01947 × F2 + 0.01320 × P2

+ 0.01566 × F × P
(3)

The ANOVA corresponding to the regression models for mean kerf angle and mean
Ra is summarized in Table 3.

Table 3. ANOVA results for A and Ra regression models.

Source DF Seq.SS % Contribution Adj.SS Adj.MS F-Value P-Value

F(mm/s) 1 0.93298 76.86 0.93298 0.932978 165.59 0.000
P(W) 1 0.02936 2.42 0.02936 0.029363 5.21 0.033

F2 1 0.08089 6.66 0.08089 0.080891 14.36 0.001
P2 1 0.00461 0.38 0.00461 0.004611 0.82 0.376

F × P 1 0.04775 3.93 0.04775 0.047754 8.48 0.008
Error 21 0.11832 9.75 0.11832 0.005634
Total 26 1.21392 100.00

A model R2 90.25%

F(mm/s) 1 14.706 51.69 14.706 14.7063 103.73 0.000
P(W) 1 1.905 6.69 1.905 1.9045 13.43 0.001

F2 1 1.421 4.99 1.421 1.4211 10.02 0.005
P2 1 3.308 11.63 3.308 3.3078 23.33 0.000

F × P 1 4.136 14.54 4.136 4.1360 29.17 0.000
Error 21 2.977 10.46 2.977 0.1418
Total 26 28.453 100.00

Ra model R2 89.54%

The probability of an F-value greater than the calculated F-value due to noise is
indicated by the P-value. Therefore, if the P-value is less than 0.05, the importance of
the related term is specified. Otherwise, if the P-value is higher than 0.05, a lack of fit
exists. A negligible lack of fit is desirable because it indicates that any term excluded by
the model is minor and that the developed model serves well. Finally, the normality test
(Anderson–Darling) is employed to confirm the suitability of the models corresponding to
the mean A and Ra. If the P-value for the normality test is lower than 0.05, it is supposed
that the data do not follow a normal distribution. In this work, ANOVA indicates that
both quadratic models are suitable for predicting the mean A and mean Ra with high
contributions, i.e., 90.25% and 89.54%.

3.2. Validation

The adequacy of regression models for predicting the objectives of interest is validated
by the Anderson–Darling normality test, where the P-value for normality plots is examined
and should be found well above 0.05 in order to indicate that residuals follow a normal
distribution. Suppose the P-values for residuals are located well above 0.05. In that case, the
regression equations can be considered adequate to use the models to predict the responses
and claim that they agree with experimental results. Figure 5 illustrates the results obtained
by the Anderson–Darling normality test applied to the residuals obtained by ANOVA
analysis for both regression models. Figure 5a presents the results corresponding to the
mean kerf angle, while Figure 5b corresponds to the results concerning mean surface
roughness. P-values corresponding to the residuals of mean kerf angle and mean surface
roughness are equal to 0.478 and 0.390, respectively, and are well above 0.05. Therefore, the
models agree with experimental results and can be used for predicting the responses.
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3.3. Neural Network Prediction

It has been shown that laser cutting operation exhibits high complexity despite the fact
that only two independent variables have been considered (laser feed and laser power). This
complexity may introduce difficulties in accurate response predictions using conventional
approaches. To further examine the potential of accurate response prediction, several neural
network architectures have been examined to obtain a reliable neural network capable of
predicting both responses. In the current work, laser feed and laser power were considered
as the two input parameters. Each of the parameters are represented by a single neuron
and, consequently, the input layer in the neural network structure comprises two neurons.
To introduce a reliable database to the network, the experimental results were considered,
referring to the outputs and the independent variables along with their limit ranges. Results
for kerf angle and surface roughness were used for training the network and examine the
input–output correlation. Thereby, the database was divided into three discrete datasets,
namely the training, testing, and validation (random selection of data division; 70% for
training, 15% for validating, and 15% for testing). The training set was thoroughly used
for adjusting the weights, the testing set was used for examining the network’s accuracy
in its predictions, and the validation set was used for validating the results according
to the training procedure. Consequently, the experiments were divided into three sets:
thirty-eight for training, eight for validation, and eight for testing, i.e., fifty-six experimental
data. Note here that Table 2 contains twenty-seven measurements for mean Ra and mean
A, which were produced each by twenty-seven average values in the X and twenty-seven
in the Y direction, and therefore fifty-six values were used for NN modelling.

Neural network training deals with the update in its connected weights so that the
error among predicted and actual experimental outputs is minimized. The neural network
architectures examined were tested using the standard backpropagation algorithm found in
Mathworks® MATLAB® R2014b. In order to decide the final number of neurons referring
to the hidden layer, several structures under a varying number of neurons were tested
according to the methodology explained in [43]. The activation level for the neurons
was determined by the tan-sigmoid transfer function, while “trainlm” was the training
function. It was found that the 2-8-2 network topology was the most beneficial among
those examined. Additionally, 0.001 mu (learning rate), 0.1 mu+ (increment factor), and
10 mu− (decrement factor) were decided upon.

This topology ended up with the best result for validation performance, equal to
0.029731 at epoch 5 and after 100 iterative evaluations. Figure 6a illustrates the ANN
architecture with k = 8 neurons for the hidden layer, and Figure 6b shows the train, test, and
validation results corresponding to the best validation performance (0.029731) and epochs.
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To verify the prominence of this trained ANN architecture, the training set was
presented to the ANN. Figure 7 depicts the regression analysis among the ANN response
and related targets. It can be observed that there was a high correlation coefficient (R)
among the outputs (predicted results), and the targets verify the ANN’s performance.
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A comparison of the experimental results, the results predicted by the regression
models, and the results predicted by the ANN are shown in Figure 8. Figure 8a refers
to the results concerning the mean kerf angle, while Figure 8b refers to the results for
mean surface roughness. It can be observed that both regression and ANN analysis exhibit
almost equal prediction potentials referring to the objectives of mean kerf angle and surface
roughness and the system’s nonlinear behavior.
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3.4. Multi-Objective Optimization of CO2 LC Parameters

The optimization problem formulated in this work was based on the regression
equations presented in Equations (2) and (3) for predicting mean kerf angle and mean
surface roughness. The objective function, control parameters, and their optimization
bounds considered are the same as those presented in the experimental design. In this
two-objective optimization case, the two control parameters of laser feed and laser power
were examined in a continuous form. The problem was solved by employing the multi-
objective grey wolf optimization algorithm (MOGWO) developed by Mirjalili et al. [44].
The optimization problem was solved using a population size of grey wolves equal to
20 and a maximum number of generations equal to 1000 (i.e., a maximum number of
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function evaluations equal to 20,000). Since the current work is purely experimental, no
comparative results based on multiple algorithmic simulations were produced using other
competitive metaheuristics. Therefore, no statistical outputs are presented in this work. It is
in the scope of the authors’ future research to compare several algorithms in terms of their
performance on this problem and other manufacturing-related multi-objective problems
for optimization.

The results obtained by the MOGWO algorithm are presented in the form of non-
dominated optimal solutions in a Pareto front. The trend in the Pareto front representing the
non-dominated optimal solutions clearly reveals the trade-off between the two objectives
of minimum kerf angle and minimum surface roughness, mainly owing to laser feed. By
examining the experimental results presented in the form of contour and surface plots, it
can be deduced that optimization outputs are well-supported. The non-dominated optimal
solutions are depicted in Figure 9, and they are also tabulated in Table 4.
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Figure 9. Non-dominated, “Pareto optimal” solutions, obtained by MOGWO algorithm for solving
the CO2 laser cutting problem.

Table 4. Recommended optimal solutions for minKA and minRa by MOGWO algorithm.

Sol. No. Optimization Objectives Control Parameters

minA (◦) minRa (µm) F (mm/s) P (W)

1 0.98822 2.64480 17.48111 82.50000
2 1.07466 1.87228 14.92668 86.77339
3 1.42772 1.11480 08.53595 90.92663
4 1.27861 1.23830 10.71434 89.29454
5 1.33577 1.16668 09.66419 91.03837
6 1.02117 2.29789 16.40072 83.83890
7 1.07543 1.86701 14.91328 87.15281
8 1.03065 2.21364 16.11121 84.18711
9 1.29996 1.20229 10.20007 90.76634
10 1.00332 2.47574 16.99961 83.21187
11 1.10474 1.70393 14.09902 87.58292
12 1.00525 2.45430 16.91170 83.22919
13 1.19700 1.38032 12.04552 89.16643
14 1.11602 1.67524 13.84686 86.67821
15 1.15247 1.52201 13.01707 87.74314
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Table 4. Cont.

Sol. No. Optimization Objectives Control Parameters

minA (◦) minRa (µm) F (mm/s) P (W)

16 1.01505 2.35604 16.64665 83.78354
17 1.03745 2.15047 16.00275 84.95377
18 1.11079 1.68988 13.96640 86.86978
19 1.05329 2.02306 15.53363 85.66028
20 1.37699 1.13618 09.18147 90.72416
21 1.36152 1.14691 09.41792 90.46029
22 1.37215 1.13903 09.24583 90.70076
23 1.08154 1.84548 14.70373 86.03587
24 1.21654 1.34745 11.76379 88.63053
25 1.14929 1.54881 13.11347 87.17124
26 1.13218 1.60573 13.47646 87.05567
27 1.13155 1.60924 13.49164 87.01271
28 1.28392 1.22144 10.53108 90.08822
29 1.21911 1.33139 11.64764 89.29424
30 1.22900 1.31082 11.46317 89.46176
31 1.14719 1.55199 13.15207 87.25544
32 1.11552 1.68425 13.86107 86.47686
33 1.10185 1.73947 14.18546 86.43617
34 1.17593 1.45489 12.55105 87.87838
35 1.17909 1.42963 12.42239 88.69144
36 1.34805 1.15551 09.57331 90.58348
37 1.24481 1.28694 11.24017 89.20021
38 1.03864 2.14012 15.97860 85.07588
39 1.24427 1.28737 11.24562 89.22634
40 1.15305 1.51632 12.99429 87.91324
41 1.01524 2.35420 16.64214 83.79649
42 1.25371 1.26658 11.03781 89.70594
43 1.05238 2.03865 15.49707 85.07198
44 1.24447 1.28734 11.24459 89.20843
45 1.24447 1.28734 11.24459 89.20843
46 1.04677 2.07469 15.71065 85.26258
47 1.02666 2.24627 16.28398 84.26596
48 1.24447 1.28734 11.24459 89.20843
49 1.16961 1.48469 12.70009 87.44660
50 1.24447 1.28734 11.24459 89.20843

By looking at the Pareto front, the spread of non-dominated solutions is uniformly
distributed along the path line, while they almost equidistantly cover its trend, suggesting
both coverage and spacing. This is very important when it comes to the selection of several
solutions depending upon different requirements referring to the objectives. It is evident
that no combinatorial solution such as the non-dominated solutions in multi-objective
problems can simultaneously satisfy the objectives involved in the same degree. One
objective will always be optimized at the expense of the rest. However, it is important
to maintain advantageous outputs regardless of the trade-off among the antagonizing
solutions. A typical example is shown through the combination between the results
obtained by the MOGWO algorithm for the minimum mean kerf angle and minimum mean
surface roughness in the first solution (Table 4). Based on the experimental results, the
minimum attainable value for the mean kerf angle is found to equal 0.884◦, corresponding
to the value of 5.92 µm for mean surface roughness. The minimum value for mean kerf
angle obtained by the MOGWO algorithm was found to equal 0.988◦. This result is 10.53%
worse compared to the actual experimental value of 0.884◦ for mean kerf angle. However,
this result corresponds to the value of 2.645 µm for minimum mean surface roughness
(see solution number 1 in Table 4). This result is 55.32% more beneficial at the expense of
mean kerf angle. It should also be noted that the gain among the different non-dominated
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optimal solutions depends on the quality of predictions by regression models rather than
the algorithm itself. If the experimental error is low, then there is a higher chance that
regression modeling will attain a higher correlation among control factors and responses.
Thereby, the resulting non-dominated solutions will occur with higher quality and overall
gain. The maximum (worst) experimental result for mean kerf angle is 1.612◦ against the
maximum (worst) result obtained by MOGWO, which is 1.4277◦. In other words, the worst
result corresponding to the non-dominated solution for mean kerf angle is 11.43% more
beneficial than that which appeared in the actual experiment. Similarly, the maximum
(worst) experimental result for mean surface roughness is 6.19 µm against the maximum
(worst) result obtained by MOGWO, which is 2.6448 µm. This means that the worst result
corresponding to the non-dominated solution for mean surface roughness is 57.27% more
beneficial compared to the actual experimental result. The computational time required by
the MOGWO algorithm to perform 20,000 function evaluations was approximately 2 min.

4. Conclusions

This work examines the results of two key parameters, laser feed and laser power,
on the responses of mean Ra and mean A when it comes to the CO2 laser cutting of 3DP
polylactic acid (PLA) plates. The responses were modeled using regression analysis and
neural networks whilst being simultaneously optimized by implementing the grey wolf
optimization algorithm (MOGWO) adopted from the literature. The findings of this work
are summarized below:

• The kerf angle and Ra of the PLA 3DP samples cut by the CO2 laser are affected by
the direction of the filament strands during the 3DP, as well as feed (F) and power (P)
parameters.

• In general, when laser feed increases or the power decreases, the energy per unit area
decreases, resulting in smaller bottom kerf widths and energy redistribution inside
the cutting area.

• ANOVA and statistics show that feed is the dominant parameter for both responses,
having the power to be rather significant for mean Ra. By examining the contour
plots and response surfaces, we concluded that the interaction between laser feed and
power is synergistic for mean A and antagonistic for mean Ra.

• The feed parameter exhibits approximately 77% contribution in terms of its effect on
the mean kerf angle. This contribution is followed by the effect of the square term
of feed (6.66%), the interaction effect between feed and power (3.93%), and the effect
of power (2.42%). Therefore, the correlation coefficient for the regression model to
predict mean A was equal to 90.25%.

• The feed parameter also exhibits a high contribution percentage for the response of
mean Ra (51.69%). The second contribution effect is seen through the interaction
between feed and power (14.54%), followed by the square term of power (11.63%). The
rest of the parameter effects are less significant for mean Ra. The correlation coefficient
for the regression model to predict mean A is equal to 89.54%.

• The topology of 2-8-2 for the layers of a backpropagation ANN seems to be quite
promising in predicting the responses of mean A and Ra, with high correlation.

• The non-dominated set of Pareto optimal solutions seems advantageous for different
importance degrees among mean kerf angle and surface roughness. Their inherent
trade-off results from the nonlinear behavior, mainly owing to feed. A general range in
terms of the overall gain by employing some indicative optimal solutions is between
10 and 55%.

In this manuscript, we formulated a two-objective optimization problem based on
the two objectives of mean kerf angle and surface roughness. According to the “non-
dominated” set of solutions theory, it would be difficult to emphasize the best parameter
settings for the objectives. In a multi-objective optimization problem (i.e., two objectives),
the end user should decide which non-dominated solution is to be selected according
to the process requirements, constraints, and technical specifications. The Pareto front
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should be carefully examined, and a “bi-objective” solution should be selected, with the
recommended settings for its process parameters referring to both laser power and laser
feed. To assist with process planning for laser cutting and to recommend a range of “best”
solutions, one should restrict their selections to the Pareto points existing on the curved
space of the front. These solutions are closer to the axes’ origin, thus simultaneously
minimizing both objectives to the best possible extent.

Looking further ahead, the authors plan to study other LC operations for several
3DP materials, examine the effect among crucial laser and 3D printing parameters, and
optimize more responses related to quality and productivity (heat affected zone, dross,
energy consumption, etc.) by implementing different modern metaheuristics and intelligent
algorithms. Additionally, note that the infill structure of 3D-printed parts can vary even for
the same material and geometry by changing the infill parameters or fabrication orientation,
affecting laser cutting performance.
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