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Abstract: In this paper, a void closure model applicable to the general hot forming process has been
proposed. Through the representative volume element (RVE) method, the influences of void shape,
orientation, and stress state on void closure tendency were analysed. The void closure model was
established so that it could consider these cross effects. The model calculates the changing void radius
and orientation during deformation by considering the rate of change of the parameters affecting
void deformation with respect to the effective strain. The model predicted the void closure tendency
well on the RVE scale and predicted the void closure adequately in a multi-stage process with random
voids. The results were compared with the stress-triaxiality-based (STB) model, which showed
that the void closure model proposed in this study is applicable in general situations. A cogging
process was analysed, and the degree of void closure at the end of each pass was compared with the
calculated results of the void closure model. For the experimental verification of the proposed model,
spherical and ellipsoid voids were placed in a rectangular specimen, and the radii of the voids after
compression were measured. The measurement results were compared with the calculation results of
the proposed model.

Keywords: void closure; representative volume element; hot metal formation; finite element analysis

1. Introduction

A large ingot produced from the casting process has voids caused by gas and shrinkage
porosities. These voids weaken and degrade the material and can lead to catastrophic
failure of the component during its service [1]. A hot forging process is a frequently used
procedure to close the voids of the as-cast material to improve the mechanical properties
of components. In addition, since the metal components need a high qualification to be
used in aerospace, transportation, and energy applications, it is important to ensure that
the voids are closed from the hot forging process. Therefore, understanding how voids
deform during hot forging is vital to ensure the final product’s quality.

A representative volume element (RVE) approach by means of finite element analysis
(FEA) is one of the major approaches to analysing the deformation behaviour of voids
during the hot forging process. Since the actual voids are small and randomly distributed
throughout the ingot, it is impossible to establish a model that contains real voids for
the FEA [2], which is why the RVE approach is widely used. The RVE approach is used
to find the correlation between macroscopic stresses and strains and the deformation of
the voids. Based on this RVE approach, numerous studies have been conducted on void
closure behaviour. Zhang et al. [3] predicted the volume of the void with the function
of the stress triaxiality and effective strain. Since the Norton power law, in which the
stress is expressed by the strain rate only, was adopted as the flow stress model in their
study, the model cannot be used for materials that show strain hardening or softening
behaviour. Chen et al. [4] proposed a neural network model to predict void closure in the
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cold rolling process. The neural network model was trained to predict the reduction of
the void diameter with 64 sets of FE analyses, and it showed a good correlation with the
simulation results. However, the model has a limitation in that it can only be utilised in the
cold rolling process.

Saby et al. [5] constructed an RVE model with real void shapes from 3D images taken
using computed microtomography. They proposed a simple model that predicts the void
volume change with stress triaxiality and the equivalent strain rate. They compared the
void closure behaviour between RVE models with real void shapes and RVE models with
equivalent ellipsoid voids that ideally mimicked real voids. Xie et al. [6,7] characterized the
shape of voids captured using high-resolution micro-X-ray-computed tomography (µXCT)
by categorizing them as spheres, ellipsoids, or polyhedra. Through this characterization,
they demonstrated that most micro-porosities in structural steels can be characterized as
polyhedra. Gravier et al. [8,9] classified the shapes of voids within aluminium materi-
als captured through microtomography and proposed a model to predict void closure
behaviour during hot rolling processes.

Feng and Cui [10] analysed the void closure of viscous materials under large com-
pressive deformation. They obtained a semi-analytical function for the void evolution of
the linear viscous materials. A semi-analytical function was developed for the nonlinear
viscous materials and was fitted for different initial void shapes and loading conditions.
They applied the model to a multi-stage forging process and showed that it could be used
when the load direction changed. The models listed above consider the initial shape and
orientation of the voids before deformation begins. However, the voids continue to change
shape and orientation during deformation, and the deformation history of the voids affects
how they deform.

Understanding the influence of the stress state during deformation is important, since
a void deforms differently when the stress history differs Chen et al. [11,12]. From most
studies on void closure behaviour, stress triaxiality was considered the major factor affecting
void closure. The hydrostatic integral parameter Q is a famous parameter used to predict
void closure empirically [13]. The parameter Q is defined as the integral of the stress
triaxiality η with the equivalent strain ε as follows:

Q =
∫ ε

0
ηdε. (1)

Based on the parameter Q concept, a stress-triaxiality-based (STB) model Q was
proposed by Saby [14]. The STB model describes the void volume increment ∆V as a
function of the triaxiality and the equivalent strain increment ∆ε as follows:

∆V
V0

= Kcη∆ε, (2)

where Kc is a model parameter, and V0 is the initial void volume. However, the model does
not consider the geometry characteristic of the void, which makes it hard to be employed
for multi-step forging processes. To overcome this con of the model, Saby et al. [15]
proposed a model that considers the geometry and orientation parameters. The geometry
and orientation parameters could be calibrated from RVE simulations with different initial
void shapes and orientations. Based on the STB model, numerous forms of void volume
evolution functions were proposed [16–19].

Besides empirical models, an analytical approach is frequently adopted to predict
void closure behaviour. One of the famous analytical models is the void growth model
proposed by Gurson [20]. Based on the Gurson model that was modified by Tvergaard [21],
Ragab [22] derived a function to evaluate the volumetric strain rate of a spherical void as
follows:

1
Ė

V̇
V

=
3
2

q1q2 sinh
(

3
2

q2η

)
, (3)
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where V̇ is the volumetric strain rate of the void, V is the void volume, Ė is the macroscopic
equivalent strain rate, and q1 and q2 are the model constants. Similarly to the empirical
model, numerous models were developed based on the Gurson–Tvergaard model [2,23].

Void closure models that consider the geometrical features of the pores have been
previously studied. Saby et al. [24] proposed a model based on the geometrical properties
in the hot forming process. They proposed a void closure model that considers the initial
void geometry by defining a directional cosine to the main compression direction and
orientation of the void and a dimensionless void radius. The model considers the closure
tendency that depends on the initial geometry of the voids, but, since it only considers the
initial void geometry, the void geometry during deformation is not considered.

This study proposes a void closure model that is applicable to the whole forging
process based on stress triaxiality, as well as the void geometry parameters, radius, and
orientation. The RVE was used to determine the effect of the stress state on the void closure
behaviour, and the model coefficients were fitted from the analysis results. The model was
applied to the upsetting and multi-stage compression processes for cylinder and rectangular
bar specimens, respectively, and the void volume ratios calculated from the FEA and the
void closure model were compared to verify the applicability of the proposed model to
the overall forging process. In addition, random void geometries were modelled for the
multi-stage compression process to verify whether the model could accordingly predict
the closure tendency of ellipsoid void geometries and random void geometries, which
were compared with the STB model. A cogging process was performed, and the degree of
void closure at the end of each pass was compared with the calculated results of the model
to verify that the proposed model adequately predicted the degree of void closure when
applied to the actual process.

2. Description of the Meso-Scale Approach
2.1. Representative Volume Element

Numerous studies have stated that the void affects the material flow of the narrow
region nearby, and the deformation of the void is a local phenomenon [10]. In addition, it is
impossible to model all of the voids in the material, since these are tiny, large in number, and
distributed irregularly. These characteristics make a representative volume element (RVE)
an appropriate approach for investigating void closure behaviour. Therefore, the RVE was
utilised to analyse the void closure behaviour in the hot forging processes. The geometry
of the RVE adopted in this study is a parallel-piped rectangular with a hemisphere at the
centre of the domain, as shown in Figure 1a. The symmetry condition was given to the
z plane, and the displacement boundary conditions were given in the x and y directions.
The domain size of the RVE model was set as 10 mm × 10 mm × 5 mm. The void radii in
each direction are denoted as r1, r2 and r3, as described in Figure 1b. The domain size was
determined from the work of Wang and Dong [2], wherein they indicated that the domain
size is large enough to exclude the effect of the void in macroscopic deformation behaviour
when the domain size is greater than 6 or 7 times the void radius.

A spherical and two ellipsoid shapes were considered as the initial void shapes in the
RVE simulations as follows: (1) a spherical void with a radius of 1 mm (r1 = r2 = r3 = 1 mm),
(2) an ellipsoid with radii of 1.5 mm in the x and z directions and 0.5 mm in the y direction
(r1 = r3 = 1.5 mm, r2 = 0.5 mm), and (3) an ellipsoid with radii of 1.25 mm in the x and z
directions and 0.75 mm in the y direction (r1 = r3 = 1.25 mm, r2 = 0.75 mm). The shapes
of each void are depicted in Figure 2. In this paper, the voids are named with their initial
shapes as (1) Regular Spherical, (2) Ellipsoid 1, and (3) Ellipsoid 2. In addition, ellipsoid
voids rotated by 45◦ and 90◦ in the z direction have been considered.
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(a)

(b)

Figure 1. (a) The geometry, boundary conditions, and the FE mesh of the RVE and (b) the definition
of radii and orientation of the void in the canonical basis (~ex,~ey,~ez).

Figure 2. Initial void shapes considered in the RVE simulations. The voids are named as Regular
Spherical, Ellipsoid 1, and Ellipsoid 2 from left.

FEA was conducted to determine the correlation between the void volume and the
macroscopic strain of the RVE with the commercial software Abaqus. Mesh tests were
performed to determine the mesh size in the void region. The mesh size was gradually
reduced from 0.2 mm to 0.08 mm to assess the influence on the mesh sensitivity, and the
results are presented in Figure 3. The void closure tendency converged when the mesh
size reached 0.1 mm. Based on these findings, the mesh size in the void region was set to
0.1 mm, and the mesh size in other regions was set to 0.5 mm, as depicted in Figure 1a.
The analysis was conducted using reduced-integration hexahedral elements (C3D8R). M50
bearing steel was selected as the forging material. The material properties of M50 steel
were obtained from the work of Park et al. [25]. The material was assumed to follow von
Mises yield criterion with the associated flow rule and isotropic hardening. Only one void
was modelled in the RVE domain, since it was assumed that there were no interactions
between the voids.

Figure 3. Void volume change with respect to the element size in the void region.



J. Manuf. Mater. Process. 2023, 7, 117 5 of 24

2.2. Boundary Conditions

The deformation behaviour of the void is different according to the ratio of the applied
stress and the shape of the void. The void shape is one of the crucial factors, especially in
multi-step hot forging processes that involve changes in the loading direction.

The stress ratio was considered with a stress triaxiality η = σH/σ, which is the ratio of
the hydrostatic stress σH and the equivalent stress σ. Since the compressive stress is the
dominant stress state in typical forging processes [26], and the compressive stress is the
primary factor in void closure behaviour [27], the range of the triaxiality was set as from
−0.05 to −0.66.

The macroscopic equivalent plastic strain and triaxiality were calculated through the
following procedure. The elastic strains were neglected in the procedure, since the plastic
strains are much larger than the elastic strains. Let the displacement boundary conditions
be given so that the macroscopic logarithmic strain rates of the RVE in the x and y directions
become the constants ε̇x and ε̇y, respectively. The displacement u in the direction i can be
expressed by the function of time t and the macroscopic logarithmic strain rate ε̇ as the
following equation:

ui = l0,i[exp(ε̇it)− 1], (4)

where the subscript i denotes the direction (x and y), and l0,i is the original length of
the RVE in the direction i. The displacement boundary conditions were given based on
Equation (4). Assuming that the RVEs exhibit isochoric deformation in the macroscopic
scale, the macroscopic logarithmic strain rate in the z direction is ε̇z = −

(
ε̇x + ε̇y

)
. Since

the RVE was set to be free in the z direction, the stress in the z direction was zero (σz = 0).
The principal components of the deviatoric stress tensor s can be expressed by the Cauchy
stress tensor components as follows.

sx =
2
3

σx −
1
3

σy

sy =
2
3

σy −
1
3

σx

sz = −1
3
(σx + σy) = −(sx + sy).

(5)

The hydrostatic stress σH can be expressed with the deviatoric stress by summing the
first and second equations in Equation (5) as follows.

σH = sx + sy. (6)

The effective stress σ is defined as follows.

σ =

√
3
2

(
s2

x + s2
y + s2

z

)
=

√
3
(

s2
x + s2

y + sxsy

)
. (7)

From the associated flow rule, the ratio of strain rates is equal to the ratio of the devia-
toric stresses. Therefore, the stress triaxiality can be expressed with ε̇x and ε̇y as follows:

η =
σH
σ

=
ε̇x + ε̇y√

3
(

ε̇2
x + ε̇2

y + ε̇x ε̇y

) . (8)

The stress triaxiality of the RVE for the given macroscopic logarithmic strain rates was
calculated with Equation (8).

2.3. Equivalent Ellipsoid

When the void deforms, the definitions of the orientation and the radii are ambiguous,
since it does not have a specific shape during the deformation. Therefore, the definitions are
needed to consider the radii and the orientation quantitatively. In this study, the equivalent



J. Manuf. Mater. Process. 2023, 7, 117 6 of 24

ellipsoid concept was adopted to define the radii and the orientation of the voids during
the deformation.

An ellipsoid with the radii a, b, and c is described in the spherical coordinate system
as follows:

ρ2 sin2 θ cos2 ϕ

a2 +
ρ2 sin2 θ sin2 ϕ

b2 +
ρ2 cos2 θ

c2 − 1 = 0, (9)

where ρ, θ, and ϕ are the radius, polar, and azimuthal angles, respectively. When the princi-
pal directions are rotated by the angles α, β, and γ along the z, y, and x axes, the rotation
matrix R is described as follows:

R =

cos α cos β cos α cos β sin γ − sin α cos γ cos α sin β cos γ + sin α sin γ
sin α cos β sin α sin β sin γ + cos α cos γ sin α sin β cos γ − cos α sin γ
− sin β cos β sin γ cos β cos γ

. (10)

A point x on the ellipsoid is rotated according to the following equation:

xr = RTx, (11)

where xr is the point described in the rotated axes.
For a given void shape, it was assumed to follow two properties: (1) the sum of the

distances between the nodal points and the surface of the ellipsoid is minimal, and (2) the
volumes of the ellipsoid and the void are the same. An objective function f was constructed
to deduce the equivalent ellipsoid for a given void shape as follows:

f (a, b, c, α, β, γ) =
1
N

N

∑
i=1

[
(ρx)i − (ρellp)i

ρx

]2

+ K
(Vvoid − Vellp

Vvoid

)2

, (12)

where N is the total number of the nodes of the void in the RVE, ρx is the distance between
the node of the void and the origin of the coordinate system, ρellp is the distance between
the surface of the ellipsoid and the origin of the coordinate system, Vvoid is the void volume
in the RVE, and Vellp is the volume of the ellipsoid. K is the penalty coefficient used to
ensure the second property of the equivalent ellipsoid, and it was set to 106. The equivalent
ellipsoid for a given void shape was deduced by solving the minimisation problem for
Equation (12) using the L-BFGS-B algorithm [28].

3. Void Closure Model

The deformation behaviour of voids is determined by the shape and stress state of
the voids. In particular, the angle between the orientation of the voids and the direction
of deformation is a critical variable that influences their deformation behaviour. Saby
et al. [24] took this factor into account by utilising the direction cosine of the principal
compression direction for the orientation of voids. The direction cosine of the principal
compression direction was calculated as follows:

pi = (~ui ·~e1)
2, (13)

where pi is the direction cosine, ~ui is the direction to the radius ri of the ellipsoid (r1 ≤ r2 ≤ r3),
and~e1 is the principal compression direction, which can be determined from the strain rate
tensor. The normalised volume and radii were defined as follows:

V∗ = V/V0 (14)

r∗i = ri/
3
√

V0, (15)

where the superscript ∗ denotes the normalised value.
Saby et al. [24] predicted the volume change of voids by constructing the normalised

void volume as a quadratic function of effective strain and formulating the coefficients of
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the quadratic function as polynomials of the stress triaxiality, dimensionless void radius,
and direction cosine. In the model, only the initial conditions occurring in the voids were
considered to predict the volume change. However, the radius and orientation of voids
continuously change at every moment during deformation, and calculating these values
is crucial for predicting void deformation in complex situations. In this study, the rate of
change of effective strain for the parameters influencing void deformation was considered
to calculate the changing void radii and orientations during deformation.

The rates of change of the normalised volume, radii, and orientation were described
by the cubic functions as follows:

∂V∗

∂ε
= AV + BVε + CVε2 + DVε3

∂r∗1
∂ε

= Ar1 + Br1 ε + Cr1 ε2 + Dr1 ε3

∂r∗2
∂ε

= Ar2 + Br2 ε + Cr2 ε2 + Dr2 ε3

∂α

∂ε
= Aα + Bαε + Cαε2 + Dαε3,

(16)

where A, B, C, and D are the coefficients of the cubic function, and the subscripts denote
the parameters. r∗3 was excluded, since it can be determined from r∗1 , r∗2 , and V∗. In the 3D
stress state, the triaxiality and Lode angle are the major parameters that represent the stress
state. Early void closure models often considered stress triaxiality only. However, recent
studies have revealed that the Lode angle is also a significant parameter influencing void
deformation behaviour [2,16,17,19]. In this study, the model coefficients in Equation (16)
were expressed as polynomial functions of the triaxiality, Lode angle, shape parameters,
and direction cosine as follows:

A =
3

∑
i=1

2

∑
j=0

1

∑
k=0

1

∑
l=0

ajklη
k(1 + cos θ)lqj

i pi

B =
3

∑
i=1

2

∑
j=0

1

∑
k=0

1

∑
l=0

bjklη
k(1 + cos θ)lqj

i pi

C =
3

∑
i=1

2

∑
j=0

1

∑
k=0

1

∑
l=0

cjklη
k(1 + cos θ)lqj

i pi

D =
3

∑
i=1

2

∑
j=0

1

∑
k=0

1

∑
l=0

djklη
k(1 + cos θ)lqj

i pi,

(17)

where qi represents the shape parameters, which are defined as q1 = r∗1 , q2 = r∗2 , and
q3 = V∗, θ is the Lode angle, and a, b, c, and d are the coefficients of the polynomial
function. The void radii and orientation can be calculated by integrating Equation (16).
The integration can be done using a first-order Taylor series expansion as follows:

V∗
i+1 = V∗

i +
∂V∗

∂ε
∆ε

(r∗1)i+1 = (r∗1)i +
∂r∗1
∂ε

∆ε

(r∗2)i+1 = (r∗2)i +
∂r∗2
∂ε

∆ε

αi+1 = αi +
∂α

∂ε
∆ε,

(18)

where the subscripts i and i + 1 denote the current and updated states, respectively.
The void parameters are not only functions of the effective strain, but also of the stress and
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each parameter itself, so they require integration involving partial derivative terms for each
parameter. However, assuming that the influence of the effective strain is dominant, the inte-
gration is performed as shown in Equation (18). The coefficients in Equations (16) and (17)
can be derived from RVE analysis considering various initial void shapes, orientations,
and stress states.

4. Results and Discussion
4.1. Void Closure Model Coefficients from RVE Analyses

The RVE analyses described in Section 2 were conducted to determine the coeffi-
cients of the void compression model. From the analysis results, the rates of change of
the dimensionless void volume and effective strain for the void radius were calculated.
The coefficients in Equation (17) were determined through a least square fitting. There were
12 coefficients obtained for each parameter, and fitting was performed for each parameter
individually. The derived coefficients are presented in Table A1.

To evaluate the accuracy of the derived void compression model, a comparison was
made between the volumes of the voids calculated from the mesh of the RVE and the
volumes of the voids calculated using the void compression model. The comparison results
for the spherical voids are shown in Figure 4. It was observed that void closure improved
as the stress triaxiality decreased, regardless of the Lode angle. The rate of void closure
was found to be more sensitive to stress triaxiality when the Lode angle was greater than 0.
When the stress triaxiality was −0.66, the void was completely closed at an effective strain
of approximately 0.48, while, at −0.55, closure occurred at 1.25. In contrast, when the Lode
angle was less than 0, the influence of stress triaxiality was relatively small. At a stress
triaxiality of −0.45, the void closed at an effective strain of 0.48. However, at −0.05, closure
occurred at 0.75, thus indicating that the influence of stress triaxiality was greater when the
Lode angle was greater than 0.

(a) (b)
Figure 4. Comparison of the void volumes calculated from RVE analyses and the void closure model
for the regular spherical void. (a) θ ≥ 0; (b) θ < 0.

The comparison results for Ellipsoid 1 are shown in Figure 5. Figure 5a,b depict the
cases where the major axis aligned parallel to the x-axis, while Figure 5c,d represent the
cases forming a 45◦ angle, and Figure 5e,f show the cases forming a 90◦ angle. Similarly to
the spherical voids, it was observed that the influence of stress triaxiality on void closure
was greater when the Lode angle was greater than 0, even for this ellipsoidal shape. Unlike
the spherical voids, however, having lower stress triaxiality did not necessarily result in
faster void closure. This is because the principal compression direction changes from
the major axis to the minor axis, or vice versa, as the stress triaxiality varies. In the case
shown in Figure 5a, where the major axis aligned parallel to the x-axis and the Lode angle
was greater than 0, there was a phenomenon where the void closure rate decreased for a
certain void volume, which depended on the stress triaxiality. This trend was particularly
pronounced for the stress triaxiality values of −0.64 and −0.63. In the case depicted in
Figure 5b, where the Lode angle was less than 0, there was a phenomenon where the void
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volume initially increased and then decreased for specific stress triaxiality values. This
was particularly evident for the case with a stress triaxiality of −0.05. The deformation
characteristics when the void volume briefly increased indicated that the compression
was significant along the major axis of the ellipsoid, with minimal deformation occurring
along the other axis. In cases exhibiting similar deformation patterns, it was observed
that the void closure rate was slower during the initial deformation compared to the later
stages. For the case where the major axis of the ellipsoid formed a 45◦ angle with the x-axis,
the void closure rate was higher than that for the spherical voids. The influence of stress
triaxiality on the void closure rate was opposite to that of the spherical voids, with a smaller
impact when the Lode angle was greater than 0. When the major axis formed a 90◦ angle,
the influence of stress triaxiality on the void closure rate was similar to that of the spherical
voids, wherein it was more pronounced when the Lode angle was greater than 0.

The comparison results for Ellipsoid 2 are shown in Figure 6. Similarly to Figure 5,
Figure 6a,b depict the cases where the major axis aligned parallel to the x-axis, Figure 6c,d
represent the cases forming a 45◦ angle, and Figure 6e,f show the cases forming a 90◦

angle. Overall, the void closure behaviour exhibited a similar trend to Ellipsoid 1, with the
influence of stress triaxiality and the Lode angle varying with the angle of the major axis.
Furthermore, as discussed for Ellipsoid 1, there was no clear correlation between stress
triaxiality and the void closure rate. In the case shown in Figure 6b, where the major axis
aligned parallel to the x-axis, and the Lode angle was less than 0, as with Ellipsoid 1, there
was a phenomenon where the void volume initially increased for specific stress triaxiality
values. However, compared to Ellipsoid 1, where the void volume increase reached a
maximum of 18%, for Ellipsoid 2, with smaller aspect ratios, this limited the void volume
increase to 5%. The calculated void volume ratios from the RVE analysis results and the
void compression model exhibited strong correlations. Remarkably, the model accurately
captured the increasing trend of the void volume.

4.2. Experimental Verification of the Void Closure Model

To experimentally validate the void closure model, specimens were prepared with a
rectangular shape with the size of 40 × 20 × 10 mm3, as shown in Figure 7. The contact
surface of the specimen was designed to have hemispherical voids. The specimen was
prepared by welding two specimens, as depicted in Figure 8. Each specimen contained
five voids of the three mentioned shapes: Regular Spherical, Ellipsoid 1, and Ellipsoid
2. The specimens were compressed in the z direction at a rate of 10 mm/min until the
initial height was reduced by 17.5%. The specimens were made of M50 bearing steel,
as mentioned in Section 2.1.

Compression analysis was performed using FEA, and the comparison results are
shown in Figure 9. The comparison of the shapes between the experimental and analytical
results indicates that the voids deformed very similarly. The post-deformation radii ratios
from the experiment and the void closure model are plotted in Figure 10. After compres-
sion, the radii primarily decreased, with the most significant reduction observed in the
compression direction (the z-direction), while the radii in the y-direction slightly increased.
The increase in the y-directional radius was due to barrelling caused by friction during
compression. The average error between the experimentally measured results and the re-
sults calculated by the model was 3.8%, thus indicating that the model accurately predicted
the void closure behaviour in the experimental environment.
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(a) (b)

(c) (d)

(e) (f)
Figure 5. Comparison of void volumes calculated from RVE analyses and the void closure model for
Ellipsoid 1 void. (a) major and x-axes were parallel, and θ ≥ 0; (b) major and x-axes were parallel,
and θ < 0; (c) major and x-axes formed 45◦, and θ ≥ 0; (d) major and x-axes formed 45◦, and θ < 0;
(e) major and x-axes formed 90◦, and θ ≥ 0; (f) major and x-axes formed 90◦, and θ < 0.
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(a) (b)

(c) (d)

(e) (f)
Figure 6. Comparison of void volumes calculated from RVE analyses and the void closure model for
Ellipsoid 2 void. (a) major and x-axes were parallel, and θ ≥ 0; (b) major and x-axes were parallel,
and θ < 0; (c) major and x-axes formed 45◦, and θ ≥ 0; (d) major and x-axes formed 45◦, and θ < 0;
(e) major and x-axes formed 90◦, and θ ≥ 0; (f) major and x-axes formed 90◦, and θ < 0.
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(a)

(b)

(c)

Figure 7. Schematic of the specimens. (a) Regular Spherical. (b) Ellipsoid 1. (c) Ellipsoid 2.

Figure 8. Welded specimen.
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(a)

(b)

(c)

Figure 9. Comparison of the void shapes after compression from FEA and experiment. (a) Regu-
lar Spherical. (b) Ellipsoid 1. (c) Ellipsoid 2.

4.3. Void Closure Behaviour in an Upsetting Process

An upsetting process is a commonly used operation in various forging processes.
In this study, the closure behaviour of the voids was analysed using the void compression
model when a cylindrical billet was freely forged into a flat shape. The billet size was set to
have a diameter of 66 mm and a height of 100 mm, as shown in Figure 11. Five voids were
modelled with the centres positioned at the centres of circular cross-sections and spaced
at intervals of 10 mm from the height centres. The voids were named P1, P2, . . . , and P5
from the topmost void near the upper part. Similarly to Section 4.1, three different shapes
(Regular Spherical, Ellipsoid 1, Ellipsoid 2) and three orientations were considered for
the voids. The FEA was performed until a compression ratio of 50% was reached in the
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vertical direction, and the simulation was conducted with half symmetry to account for the
symmetry of deformation. A friction coefficient of 0.5 was assigned between the die and
the cylindrical billet.

(a)

(b) (c)

Figure 10. Comparison of the void shapes after compression from FEA and experiment. (a) Regu-
lar Spherical. (b) Ellipsoid 1. (c) Ellipsoid 2.

Figure 12 illustrates the closure tendencies of the spherical voids based on their loca-
tions. For spherical voids, it was observed that the closure behaviour was similar for all
voids. Most voids were completely closed when the effective strain reached approximately
0.5. However, it is noteworthy that the void at the P1 location did not close completely.
The P1 location is the closest to the die surface among all the void locations, and it experi-
ences the strongest influence of friction. As a result, the deformation near the P1 location
was constrained, and it received less deformation. The effective strain remained at around
0.2 when the overall compression reached 50%, and the void volume ratio also stabilised at
around 60%.
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Figure 11. Cylinder upsetting model and the shape after 50% compression.

Figure 12. Comparison of void volumes calculated from FEA and the void closure model for the
Regular Spherical void in the upsetting process.

The closure tendencies of the Ellipsoid 1 void are presented in Figure 13. Figure 13a
represents the case where the minor axis of the ellipsoid aligned parallel to the compression
direction. In this case, the Ellipsoid 1 voids closed when the effective strain reached
approximately 0.25. when compared to the spherical voids that closed at an effective strain
of around 0.5, the closure rate of the voids in the direction of the minor axis of the ellipsoid
was higher. At the end of compression, the void volume ratio at the P1 location was 13%,
thus indicating that complete closure did not occur. In the case where the major axis of
the ellipsoid formed a 45◦ angle with the x-axis, as shown in Figure 13b, the voids closed
completely when the effective strain reached approximately 0.5. When the major axis of the
ellipsoid formed a 90◦ angle with the x axis, the principal compression direction aligned
parallel to the major axis, thus resulting in the highest required effective strain for the void
closure. In the case of upsetting, unlike in the RVE analysis, there was no initial increase in
the void volume.
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(a) (b)

(c)
Figure 13. Comparison of void volumes calculated from FEA and the void closure model for the
Ellipsoid 1 void in the upsetting process. (a) major and x axes were parallel; (b) major and x axes
formed 45◦ angle; (c) major and x axes formed 90◦ angle.

The volume ratio changes of the voids in the shape of Ellipsoid 2 are shown in Figure 14.
When the major axis of the ellipsoid aligned parallel to the x-axis or formed a 45◦ angle,
the void closure rate was lower compared to Ellipsoid 1. However, in the case where it
formed a 90◦ angle, the closure rate was faster. This is due to the fact that Ellipsoid 2 had a
shorter major axis but smaller aspect ratios compared to Ellipsoid 1. Additionally, similarly
to previous cases, the void at the P1 location did not close completely. The calculation of
the void volume ratio in the upsetting process showed that the void compression model
appropriately predicted the deformation patterns of the voids in the upsetting process.

4.4. Void Closure Behaviour in Multi-Stage Compression of a Rectangular Bar

Some forging processes involve compressing the material in multiple directions, and a
representative process with such characteristics is the cogging process. A multi-stage
compression analysis was performed on a rectangular bar to demonstrate the applicability
of the void closure model in multi-directional processes. The void closure behaviour
was calculated using the void compression model. Additionally, the void volume ratios
calculated using the STB model expressed in Equation (2) and the void compression model
proposed in this study were compared.

The initial size of the rectangular bar was set to be 30 × 60 × 100 mm3, as shown in
Figure 15a. A total of 12 voids were modelled to be symmetrically positioned on the z plane,
with a horizontal and vertical spacing of 10 mm. Compression was applied alternately
in the x and y directions, with a displacement of 6 mm for three cycles, following the y,
x, and y axis. Symmetric boundary conditions were imposed in the z direction. Each
void shape and name is depicted in Figure 15b, with the Regular Spherical, Ellipsoid 1,
and Ellipsoid 2 voids arranged in different orientations.
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(a) (b)

(c)
Figure 14. Comparison of void volumes calculated from FEA and the void closure model for the
Ellipsoid 2 void in the upsetting process. (a) major and x axes were parallel; (b) major and x axes
formed 45◦ angle; (c) major and x axes formed 90◦ angle.

As per the given conditions, the changes in the void volume ratio for different shapes
and positions in the multi-stage forging of the rectangular bar, along with the volume
ratio calculations using the void closure model and STB model, are presented in Figure 16.
When the compression direction changed before the voids were completely closed, the void
volume ratio showed a tendency to increase and then decrease. This is attributed to
the expansion of the voids in a direction perpendicular to the compression direction,
followed by compression in the expanded radius direction. This result is consistent with
the deformation pattern observed in some of the RVE results from Section 4.1. Even in
cases where the void volume ratio significantly increased and then decreased, such as the
Oval 2-3 case in Figure 16b, the void closure model accurately captured these variations
in the volume ratio calculations. However, the notable difference between the STB and
void closure models is in their abilities to capture such trends. As observed in most
cases, both models accurately predicted the void volume ratios until the first compression
cycle. However, when the compression direction changed, and the void volume increased,
and the STB model failed to calculate the deformation behaviour of the voids accurately.
For example, in the Oval 2-2 case in Figure 16b, while the void closure model was able
to calculate the changes in the void volume ratio due to the change in the compression
direction, the STB model predicted similar behaviour to the first compression cycle, even
in the second compression cycle. This occurs when the stress triaxiality does not vary
significantly despite the change in compression direction and was observed in all cases
except for a few where the voids closed during the first compression. This demonstrates
the applicability of the void closure model, even when the compression direction changes
and the void volume ratio increases and then decreases during the process.
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(a)

(b)
Figure 15. (a) The multi-stage compression analysis model and (b) the shapes and name of each void.

4.5. Void Closure Behaviour of Randomly Shaped Voids

In reality, voids do not have perfect spherical or ellipsoidal shapes but exhibit random
shapes. Therefore, the void closure model must accurately predict the void volume ratios
for random-shaped voids to predict the void closure behaviour in real processes accurately.
The deformation-induced void volume ratios were calculated for five random void shapes,
as shown in Figure 17a, to demonstrate whether the proposed void closure model possessed
this capability. The shape and compression conditions of the material with voids were
set to be the same as in the multi-stage compression process of the rectangular bar in
Section 4.4, and the positions and labels of the voids for each shape are indicated in
Figure 17b. Additionally, the void volume ratios calculated using the STB model described
in Equation (2) and the proposed void closure model were compared.

Figure 18 presents the volume ratio variations of the randomly shaped voids according
to their positions and the volume ratio calculations using the void closure model and STB
model for each position. Even for randomly shaped voids, there were cases where the
void volume ratios increased and then decreased when the compression direction was
changed. The void closure model could appropriately calculate the void volume ratios,
even in cases where such behaviour occurred. Similar to the case of the ellipsoidal voids,
the major difference between the STB model and the void closure model was evident in
their abilities to capture such behaviour. Until the first compression completion, the STB
and void closure models adequately predicted the void volume ratios. However, when the
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compression direction was changed, and the void volume increased, the STB model failed
to accurately predict the void deformation behaviour. For instance, in the case of Shape
3-2 shown in Figure 18c, the void closure model calculated the change in the void volume
ratio. In contrast, the STB model predicted similar behaviour to the first compression,
where the void immediately closed. Similar cases were observed in Shape 1-3 in Figure 18a,
Shape 2-1 in Figure 18b, and Shape 5-2 in Figure 18e, which were consistent with the
results obtained when changing the compression direction for the ellipsoidal voids. This
indicates that, while the STB model is applicable to processes with a consistent compression
direction, a model that considers the compression direction, void deformation behaviour,
and orientation at each moment of deformation should be employed for processes where
the compression direction changes. Moreover, the void closure model accurately predicted
the void volume ratio variations during deformation for random void shapes, thereby
demonstrating its applicability to a wide range of processes compared to the STB model.

(a) (b)

(c)
Figure 16. Comparison of void volumes calculated from FEA and the void closure model in the
multi-stage compression process. (a) Sphere. (b) Oval 1. (c) Oval 2.

4.6. Application to the Cogging Process

The cogging process is an open die forging process performed to enhance the me-
chanical properties of a material by refining its grain structure and eliminating internal
defects [29–33]. In the cogging process, a billet is positioned between two dies, and the billet
is repeatedly rotated and compressed between the dies to reduce its cross-sectional area
and achieve a specific cross-sectional shape, such as circular, rectangular, or octagonal [34].
This compression is applied repeatedly along the length of the material, thus resulting
in elongation in the longitudinal direction. Billets produced through the cogging process
are commonly used to manufacture large forged components, such as turbine rotors in
aerospace engines. The void closure model could provide criteria for determining the
extent of defect elimination during the process, thereby improving the efficiency of cogging
process design. In this study, the proposed void closure model was applied to the cogging
process to verify its ability to calculate the extent of void closure in the process accurately.
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(a)

(b)

Figure 17. (a) The shapes of the random voids and (b) the location and name of each void.

The initial size of the cylindrical billet in the cogging process was set to have a diameter
of 90 mm and a height of 100 mm, as shown in Figure 19. The voids were modelled to
be symmetrically distributed in the x, y, and z planes, with eight voids in each of the
x and y planes and three voids in the z plane. Additionally, the total volume of the
voids was set to be 0.2% of the total volume of the billet. Three different ellipsoidal void
shapes were modelled with varying orientations and arranged accordingly. Boundary
conditions were applied in the x and y directions, wherein we alternated between y and x
compression for 28 passes. Symmetric conditions were applied in the x, y, and z directions.
The parameters for each pass in the cogging process are described in Table 1. Each pass
involved two compressions in the y and x directions. The cogging process design program,
NSM Billetizing 1.3, which incorporated the proposed void closure model, was used as a
reference for the cogging process.
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(a) (b)

(c) (d)

(e)

Figure 18. Comparison of void volumes calculated from FEA and the void closure model for
the random voids in the multi-stage compression process. (a) Shape 1. (b) Shape 2. (c) Shape 3.
(d) Shape 4. (e) Shape 5.

Table 1. The cogging process pass schedule.

Initial Pass 1 Pass 2 Pass 3 Pass 4 Pass 5 Pass 6 Pass 7

Cross-section size [mm] �90 73 × 73 61 × 61 54 × 54 47 × 47 47 × 47 38 × 38 32 × 32
Angle of rotation [◦] - 90 90 90 90 90 90 90
Area reduction ratio 0 0.16 0.42 0.54 0.65 0.77 0.84 0.86
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Figure 19. Cylinder shape billet utilised in the cogging process.

The cogging process was performed on the cylindrical billet under the given conditions,
and the volume ratio change of the entire void at the end of each pass and the volume
ratio calculation results using the void closure model are shown in Figure 20. By the
completion of Pass 5, most of the voids were closed, and it can be observed that the void
closure behaviour was appropriately predicted by the model until the closure point. This
demonstrates the applicability of the void closure model in the cogging process.

Figure 20. Void volume change with respect to the element size in the void region.

5. Conclusions

In this study, a void closure model applicable to the general hot forming process
was proposed. The influence of void shape, orientation, and stress state on void closure
was analysed through representative volume element (RVE) analysis, and experimental
validation of the void closure model was conducted. The compression of cylindrical billets,
forging rectangular billets, and cogging processes were performed to validate the model’s
effectiveness further. Based on these investigations, the conclusions are drawn as follows:

• Through RVE analysis, it was observed that void closure behaviour differed depending
on the Lode angle when considering the same void shape and orientation. Addition-
ally, in most cases, it was observed that voids tended to close more effectively as the
triaxiality decreases.

• In some cases, there was a lack of significant correlation between the closure behaviour
of the voids and the triaxiality. In these cases, it was observed that the compression
displacement of the ellipsoidal voids had a more considerable influence compared
to the triaxiality.

• It was observed that, when the compression amount was significant along the major
axis of the void while minimal deformation occurred along the minor axis, an increase
in the initial void volume was observed. Additionally, in the case of multi-stage
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compression of a rectangular bar, an increase in void volume was observed when the
compression direction was changed.

• When the proposed void closure model was applied to the compression of cylindrical
billets, forging of rectangular billets, and cogging processes, it successfully predicted
the void volume changes during the processes. In particular, it was able to predict
complex behaviours, such as an increase in void volume. Furthermore, the model was
able to predict the void closure behaviour of voids with random shapes.
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Appendix A

The derived coefficients of the void closure model are presented in the following table.

Table A1. Derived coefficients of the void closure model.

a000 a001 a010 a011 a100 a101 a110 a111 a200 a201 a210 a211

V∗ −4.97 −5.39 16.68 −11.61 9.06 16.31 −43.86 31.02 −1.24 −8.52 39.03 −15.23
r∗1 0.11 −2.33 3.04 −3.67 −5.41 8.40 −9.67 11.73 7.32 −6.37 9.84 −7.88
r∗2 −0.43 1.12 −0.63 2.37 4.79 −6.42 6.49 −10.01 −6.85 6.76 −6.80 9.29
α 0.55 1.87 1.62 2.46 3.08 −9.65 −0.51 −12.09 −3.35 8.21 −0.85 10.37

b000 b001 b010 b011 b100 b101 b110 b111 b200 b201 b210 b211

V∗ −18.50 32.74 −96.40 56.26 80.02 −94.83 207.86 −133.06 −73.77 −24.38 −117.71 −53.70
r∗1 −15.27 16.20 −21.15 20.74 46.07 −97.78 111.65 −163.66 −22.31 89.72 −84.15 158.27
r∗2 46.65 −60.81 127.58 −120.66 −120.07 198.25 −408.49 414.14 77.20 −167.18 323.67 −358.44
α 2.49 −23.71 −20.15 −23.32 −35.47 111.46 30.55 123.07 40.45 −72.49 1.77 −77.09

c000 c001 c010 c011 c100 c101 c110 c111 c200 c201 c210 c211

V∗ 107.80 −72.88 249.52 −121.21 −439.46 189.65 −805.74 314.10 320.37 236.27 871.72 177.37
r∗1 35.15 −41.82 59.49 −63.47 −7.51 349.63 −362.01 498.57 14.90 −322.27 341.27 −644.99
r∗2 −108.19 170.75 −343.47 348.63 10.73 −428.34 625.83 −973.02 117.62 158.11 18.92 341.47
α −15.23 74.14 34.75 80.43 66.72 −298.34 −12.67 −382.68 −86.56 −38.60 −134.62 −62.18

d000 d001 d010 d011 d100 d101 d110 d111 d200 d201 d210 d211

V∗ −102.60 61.71 −221.00 114.98 318.10 −101.57 800.51 −314.37 −76.60 −326.75 −1275.85 83.58
r∗1 −17.79 30.84 −34.83 49.36 −78.06 −284.41 99.11 −533.87 −50.68 159.01 163.30 102.50
r∗2 56.27 −102.97 189.43 −208.33 203.13 21.53 276.37 57.17 −171.83 687.85 −1332.28 1605.69
α 13.38 −54.65 −10.10 −65.78 3.47 62.6 −2.12 94.96 37.58 73.65 161.71 101.25
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