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Abstract: There has been significant interest in additively manufactured lattice structures in
recent years due to their enhanced mechanical and multi-physics properties, making them suitable
candidates for various applications. This study presents a multi-parameter implicit equation model
for designing body-centred cubic (BCC) lattice structures. The model is used in conjunction with a
multi-objective genetic algorithm (MOGA) approach to maximise the stiffness of the BCC lattice
structure while minimising von-Mises stress within the structure under a specific loading condition.
The selected design from the MOGA at a specific lattice density is compared with the classical BCC
lattice structure and the designs generated by a single-objective genetic algorithm, which focuses
on maximising stiffness or minimising von-Mises stress alone. By conducting a finite element
analysis on the optimised samples and performing mechanical testing on the corresponding 3D-
printed specimens, it was observed that the optimised lattice structures exhibited a substantial
improvement in mechanical performance compared to the classical BCC model. The suitability
of multi-objective and single-objective optimisation approaches for designing lattice structures
was further investigated by comparing the corresponding designs in terms of their stiffness and
maximum von-Mises stress values. The results from the numerical analysis and experimental
testing demonstrate the significance of the application of an appropriate optimisation strategy for
designing lattice structures for additive manufacturing.

Keywords: three-dimensional printing; additive manufacturing; body-centred cubic (BCC); digital
light processing (DLP); lattice structures; multi-objective genetic algorithm (MOGA); optimisation

1. Introduction

Additive manufacturing (AM) has opened up a great potential for geometric design
freedom, paving the way for the creation of a new generation of lightweight and efficient
materials and with diverse applications [1,2]. This potential has been further augmented
by the advancement of computer-aided design (CAD) and optimisation techniques tailored
for AM, which have enabled the realisation of energy-efficient structures. Examples of such
techniques include lattice (cellular) structure design and topology optimisation specifically
developed for additive manufacturing, as evidenced by various studies [1,3–6].

Cellular structures can be found in natural materials, including bone, wood, sponge,
and coral, with unique properties, such as their lightweight nature, high strength-to-weight
ratio, and high surface area-to-volume ratio. More recently, lattice structures have been
designed and engineered to serve specific purposes, such as impact absorption, acoustic
or vibrational damping, heat transmission, and thermal isolation [7–9]. Complex lattice
structures can only be fabricated through additive manufacturing technologies, such as
digital light processing (DLP), fused deposition modelling (FDM), and laser powder bed
fusion (L-PBF) [10].

Different types of lattice structures can be grouped into two main families, includ-
ing strut-based lattice structures and surface-based lattice structures [6,11]. The unit cell
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of a strut-based lattice structure consists of spatially distributed strut networks that are
connected at certain nodes to create a truss-like structure, with examples including body-
centred cubic (BCC), face-centred cubic (FCC), and octet structures. In contrast, surface-
based lattice structures have unit cells constructed from surfaces. Triply periodic minimal
surface (TPMS) lattices are a subset of surface-based lattices structures with their unit
cells defined mathematically as the iso-surface of a given function. Examples include the
Schwarz-P, diamond, and gyroid TPMS lattice structures [6]. Offering a diverse range of
properties, both types of lattice structures have found numerous applications in various
fields, including automotive [12], aerospace [13,14], sporting [15], biomedical [13,16], and
pharmaceutical [17] industries. The focus of the current study is on the design and opti-
misation of BCC lattice structures which have been widely used in designs for AM. An
important feature of this type of strut-based lattice structure is that the strut members
are positioned at a 45◦ angle (as can be seen in Figure 1a) making the lattice structure
self-supporting and suitable for fabrication through different AM processes [12].
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Figure 1. (a) Classical model of a BCC lattice unit cell with cylindrical members of uniform thickness
at a 45◦ angle; (b) example of a shape-optimised BCC unit cell.

Tao et al. [18] and Xiao et al. [19] developed equations of implicit surfaces to represent
unit cells of lattice structures similar to TPMS equations. The unit cell can be modified by
varying the parameters of the implicit equation to control and tune the properties of lattice
structures, such as the porosity and mechanical response. In order to achieve the desired
response for a specific application, it is important to use optimisation techniques to design
lattice structures that offer the best possible performance at minimal weight and are also
manufacturable through AM [6]. Topology optimisation techniques [20] can be utilised to
find the best material distribution, member connectivity, or position of the holes within a
lattice unit cell [21]. In contrast, shape optimisation techniques aim to determine the best
shape for a structure, while topology, i.e., the connectivity of the strut members within the
unit cell, remains unchanged throughout the optimisation process [22,23] as demonstrated
in Figure 1b for a BCC structure. Parametric shape optimisation is a subset of shape
optimisation that specifically focuses on varying a predefined set of geometric parameters
to optimise the design’s performance. In parametric shape optimization, the design space
is constrained to a set of parameters that control the geometry, such as dimensions, angles,
curves, filet radius, and other geometric attributes [24,25].

Tancogne-Dejean and Mohr [26] compared the performance of BCC structures com-
posed of beams of a uniform thickness with the performance of BCC structures composed
of tapered beams in terms of stiffness and specific energy absorption properties. Through
a numerical analysis, they found a relation between the input design parameters and
the lattice mechanical performance. Zhao et al. [27] used a parametric design approach
to reduce the stress concentration at nodes and improve the mechanical properties of
tapered BCC structures. Their simulation results showed a significant reduction in the
anisotropy of the BCC lattice structure and an increase in the elastic modulus of the struc-
ture when constant-thickness cylindrical members of the BCC structure were replaced by
parametrically designed tapered beams. Furthermore, they used an optimisation strategy
to simultaneously optimise the lattice density distribution within a structure under a speci-
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fied loading condition and the strut geometry of BCC lattice structures. In another work,
Zhao et al. [28] applied their optimisation strategy for the design of BCC lattice structures
with hollow prismatic struts. Bai et al. [29] proposed a strut thickness grading approach
applied to BCC lattice structures to improve their mechanical properties. Through com-
pression tests performed on lattice specimens produced through L-PBF, it was observed
that BCC lattices with strut thickness grading exhibited up to 38% greater stiffness and 34%
greater strength compared to the classical BCC lattices with the same density. Lee et al. [30]
developed a generative machine learning algorithm for the shape optimisation of BCC
lattice structures based on neural network and genetic optimisation techniques. Their
design showed greater stiffness and strength values than those of a classical model of BCC
structure when compared against the same relative density of ρr = 0.17.

The use of implicit surfaces has been a strong tool for designing complicated lattice
structures, such as TPMS structures. However, strut-based lattice structures, such as BCC,
are mainly designed using conventional CAD or through parametric equations. Such
representations can be used in conjunction with an optimisation approach to perform a size
optimisation on the lattice structure [31], e.g., to optimise the thickness of the struts of a
classical BCC lattice or the tapered angle of a tapered BCC lattice [27]. However, it does not
provide sufficient design freedom in relation to the shape optimisation of the lattice unit
cell. Furthermore, most research in this area focuses on the optimisation of the lattice unit
cell only for a single objective.

This study focuses on the design and optimisation of BCC structures as a type of
strut-based lattice structures frequently studied in the literature. The simple topology of
the BCC unit cell makes it well-suited for applying our proposed design and optimisation
approach. This facilitates the evaluation of the efficiency of the proposed approach while
benefiting from established benchmarks corresponding to earlier research within the same
domain. A novel aspect of the current study is the presentation of the BCC lattice structure
through an innovative implicit equation providing a high degree of design freedom for
modifying the shape of the unit cell, which is driven by a parametric optimisation approach.
Moreover, a multi-objective genetic algorithm (MOGA) tool is utilised to optimise the shape
of the BCC unit cell simultaneously for two objectives: maximising the stiffness of the
lattice structure and minimising the maximum von-Mises stress within the structure when
it is under displacement loading. The unit cell geometry achieved from the multi-objective
optimisation is compared with those of the single-objective optimisation corresponding
to the maximum stiffness and minimum von-Mises stress designs. All designs are fab-
ricated through the DLP process and undergo compression testing. The numerical and
experimental results are compared and discussed.

The remainder of the manuscript is structured as follows: it commences with the
introduction of the design methodology section, encompassing implicit surface modelling,
finite element modelling, and genetic algorithm-based optimisation. The subsequent
section covers the additive manufacturing of the designed samples and the mechanical
testing setup. Then, a comprehensive Results and Discussion section is presented, leading
to a summary and conclusion.

2. Design Methodology

The presented approach for the efficient design of BCC lattice structures involves the
utilisation of an implicit model of the structure using a multi-parameter implicit equation
implemented within the Surfer program (IMAGINARY) (Figure 2). The developed implicit
equation was then exported into MATLAB® for the finite element analysis of the lattice struc-
tures and the optimisation of the geometry through single-/multi-objective genetic algorithm
optimisations. Figure 3 presents a flowchart of the proposed lattice design approach.
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2.1. Implicit Surface Model of BCC Structure

Implicit surfaces can represent complex and irregular shapes more easily than explicit
representations and can be of benefit for the representation of complex lattice structures.
Our study employed implicit modelling primarily to facilitate the introduction of new
design variables, which can be programmed to attain the optimal configuration of a lattice
structure with respect to the specific objectives. To develop the implicit model of a BCC
lattice unit cell, initially, an implicit equation of a cylinder representing a strut member
of the lattice unit cell was utilised, as shown in Equation (1), where (a, b, 0) is the center
of the base circle of the cylinder. A BCC unit cell was constructed from four cylindrical
members; therefore, the implicit equation of cylinder was repeated (multiplied) four times
to represent a BCC structure, as presented in Figure 4 and Equation (2):

(x − a)2 + (y − b)2 = r2 (1)

F(x, y, z) =
[
k·(x + z)2 +

(
y − x+z

2
)2 − tr

]
·
[
k·(x − z)2 +

(
y − x+z

2
)2 − tr

]
·
[

k·(x + y)2 +
(

z − x−y
2

)2
− tr

]
·
[

k·(x + y)2 +
(

z − y−x
2

)2
− tr

]
− c = 0

(2)
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where tr is the parameter that controls the strut radius, fr is the parameter that controls
the fillet radius at the nodes, k is a constant equal to 0.8549, and c = t4

r + f 4
r . This equation

was developed assuming that the size of the unit cell was equal to 10 units; however, the
constructed geometry could be rescaled to match a desired cell size.
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individual cylinders.

The developed implicit equation was then exported into MATLAB® to create iso-
surfaces representing the corresponding lattice geometry. In order to achieve symmetric
features on both sides of the strut members within a lattice, the construction process
began with the creation of a single strut member. This was accomplished by mirroring the
geometry of a strut, which was defined by Equation (2), around the outer end of the strut.
A symmetrical model is important to avoid sharp corners on both sides of the strut, i.e.,
the same filet radius defined for the struts merging at the centre of the cell was defined
for the opposite sides of the struts located at the corners of the unit cell. The unit cell
was subsequently tessellated in a 3D space, with a spatial distribution defined by the
parameters nx, ny, and nz representing the number of unit cells along the x − axis, y − axis,
and z − axis, respectively. In this work, nx = ny = nz = 4 was set for creating test samples
for the numerical analysis and experimental validation, as demonstrated in Figure 5. The
generated iso-surface model of the BCC lattice structure was then converted into a STL
model for further finite element analysis (FEA), optimisation, and 3D printing. The process
included extracting surface points corresponding to the iso-surface model. Subsequently,
these surface points were triangulated to produce a triangular mesh, which could be saved
as an STL file.
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Table 1 shows various design configurations achieved by varying the design variable
fr, while keeping tr constant at 0.1. It can be seen that increasing fr beyond a specific value
significantly influences the resulting configuration, allowing control over the minimum
strut thickness through the fr variable. Since the geometry of the proposed BCC structure
was defined using an implicit equation, there was a certain range of design variables, which
enabled the generation of a valid geometry. For instance, when fr = 0, the implicit equation
did not form a valid surface model. Thus, an experimental relation was derived to establish
the lower bound of fr in relation to tr as fr = 12 × tr. This ensured a minimum value of
fr for a valid iso-surface, which enabled the generation of the corresponding STL model.
Table 2 presents various design configurations achieved by adjusting the design variable
tr while adhering to the assigned lower band values for fr. Increasing tr led to a higher
relative density of the lattice unit cell, which in turn had a significant impact on the stiffness
and stress distribution within the BCC lattice structure. Similarly, fr was expected to have
a significant impact on these factors. To achieve the desired design objectives and find
the optimal configuration for the lattice structure, the implementation of a multi-objective
shape optimisation strategy became essential.

Table 1. Different design variants of the proposed implicit-based BCC lattice structure achieved by
increasing fr while keeping tr constant at 0.1.
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Table 2. Different design variants of the proposed implicit-based BCC lattice structure achieved by
increasing tr while assigning lower band values to fr from fr = 12 ∗ tr.

J. Manuf. Mater. Process. 2023, 7, x FOR PEER REVIEW 6 of 23 
 

 

 
Figure 5. The procedure used for the construction of the proposed implicit surface-based BCC lattice 
unit cell and tessellation into a 4 ൈ 4 ൈ 4 lattice structure. 

Table 1 shows various design configurations achieved by varying the design variable 𝑓௥, while keeping 𝑡௥ constant at 0.1. It can be seen that increasing 𝑓௥ beyond a specific 
value significantly influences the resulting configuration, allowing control over the mini-
mum strut thickness through the 𝑓௥ variable. Since the geometry of the proposed BCC 
structure was defined using an implicit equation, there was a certain range of design var-
iables, which enabled the generation of a valid geometry. For instance, when 𝑓௥ = 0, the 
implicit equation did not form a valid surface model. Thus, an experimental relation was 
derived to establish the lower bound of 𝑓௥ in relation to 𝑡௥ as 𝑓௥ = 12 ൈ 𝑡௥. This ensured 
a minimum value of 𝑓௥ for a valid iso-surface, which enabled the generation of the corre-
sponding STL model. Table 2 presents various design configurations achieved by adjust-
ing the design variable 𝑡௥ while adhering to the assigned lower band values for 𝑓௥. In-
creasing 𝑡௥ led to a higher relative density of the lattice unit cell, which in turn had a 
significant impact on the stiffness and stress distribution within the BCC lattice structure. 
Similarly, 𝑓௥ was expected to have a significant impact on these factors. To achieve the 
desired design objectives and find the optimal configuration for the lattice structure, the 
implementation of a multi-objective shape optimisation strategy became essential. 

Table 1. Different design variants of the proposed implicit-based BCC lattice structure achieved by 
increasing 𝑓௥ while keeping 𝑡௥ constant at 0.1. 

      
      𝑓௥ = 4.0 𝑓௥ = 8.0 𝑓௥ = 12.0 𝑓௥ = 16.0 𝑓௥ = 20.0 𝑓௥ = 24.0 

Table 2. Different design variants of the proposed implicit-based BCC lattice structure achieved by 
increasing 𝑡௥ while assigning lower band values to 𝑓௥ from 𝑓௥ = 12 ∗ 𝑡௥. 

      
      

J. Manuf. Mater. Process. 2023, 7, x FOR PEER REVIEW 6 of 23 
 

 

 
Figure 5. The procedure used for the construction of the proposed implicit surface-based BCC lattice 
unit cell and tessellation into a 4 ൈ 4 ൈ 4 lattice structure. 

Table 1 shows various design configurations achieved by varying the design variable 𝑓௥, while keeping 𝑡௥ constant at 0.1. It can be seen that increasing 𝑓௥ beyond a specific 
value significantly influences the resulting configuration, allowing control over the mini-
mum strut thickness through the 𝑓௥ variable. Since the geometry of the proposed BCC 
structure was defined using an implicit equation, there was a certain range of design var-
iables, which enabled the generation of a valid geometry. For instance, when 𝑓௥ = 0, the 
implicit equation did not form a valid surface model. Thus, an experimental relation was 
derived to establish the lower bound of 𝑓௥ in relation to 𝑡௥ as 𝑓௥ = 12 ൈ 𝑡௥. This ensured 
a minimum value of 𝑓௥ for a valid iso-surface, which enabled the generation of the corre-
sponding STL model. Table 2 presents various design configurations achieved by adjust-
ing the design variable 𝑡௥ while adhering to the assigned lower band values for 𝑓௥. In-
creasing 𝑡௥ led to a higher relative density of the lattice unit cell, which in turn had a 
significant impact on the stiffness and stress distribution within the BCC lattice structure. 
Similarly, 𝑓௥ was expected to have a significant impact on these factors. To achieve the 
desired design objectives and find the optimal configuration for the lattice structure, the 
implementation of a multi-objective shape optimisation strategy became essential. 

Table 1. Different design variants of the proposed implicit-based BCC lattice structure achieved by 
increasing 𝑓௥ while keeping 𝑡௥ constant at 0.1. 

      
      𝑓௥ = 4.0 𝑓௥ = 8.0 𝑓௥ = 12.0 𝑓௥ = 16.0 𝑓௥ = 20.0 𝑓௥ = 24.0 

Table 2. Different design variants of the proposed implicit-based BCC lattice structure achieved by 
increasing 𝑡௥ while assigning lower band values to 𝑓௥ from 𝑓௥ = 12 ∗ 𝑡௥. 

      
      

J. Manuf. Mater. Process. 2023, 7, x FOR PEER REVIEW 6 of 23 
 

 

 
Figure 5. The procedure used for the construction of the proposed implicit surface-based BCC lattice 
unit cell and tessellation into a 4 ൈ 4 ൈ 4 lattice structure. 

Table 1 shows various design configurations achieved by varying the design variable 𝑓௥, while keeping 𝑡௥ constant at 0.1. It can be seen that increasing 𝑓௥ beyond a specific 
value significantly influences the resulting configuration, allowing control over the mini-
mum strut thickness through the 𝑓௥ variable. Since the geometry of the proposed BCC 
structure was defined using an implicit equation, there was a certain range of design var-
iables, which enabled the generation of a valid geometry. For instance, when 𝑓௥ = 0, the 
implicit equation did not form a valid surface model. Thus, an experimental relation was 
derived to establish the lower bound of 𝑓௥ in relation to 𝑡௥ as 𝑓௥ = 12 ൈ 𝑡௥. This ensured 
a minimum value of 𝑓௥ for a valid iso-surface, which enabled the generation of the corre-
sponding STL model. Table 2 presents various design configurations achieved by adjust-
ing the design variable 𝑡௥ while adhering to the assigned lower band values for 𝑓௥. In-
creasing 𝑡௥ led to a higher relative density of the lattice unit cell, which in turn had a 
significant impact on the stiffness and stress distribution within the BCC lattice structure. 
Similarly, 𝑓௥ was expected to have a significant impact on these factors. To achieve the 
desired design objectives and find the optimal configuration for the lattice structure, the 
implementation of a multi-objective shape optimisation strategy became essential. 

Table 1. Different design variants of the proposed implicit-based BCC lattice structure achieved by 
increasing 𝑓௥ while keeping 𝑡௥ constant at 0.1. 

      
      𝑓௥ = 4.0 𝑓௥ = 8.0 𝑓௥ = 12.0 𝑓௥ = 16.0 𝑓௥ = 20.0 𝑓௥ = 24.0 

Table 2. Different design variants of the proposed implicit-based BCC lattice structure achieved by 
increasing 𝑡௥ while assigning lower band values to 𝑓௥ from 𝑓௥ = 12 ∗ 𝑡௥. 

      
      

J. Manuf. Mater. Process. 2023, 7, x FOR PEER REVIEW 6 of 23 
 

 

 
Figure 5. The procedure used for the construction of the proposed implicit surface-based BCC lattice 
unit cell and tessellation into a 4 ൈ 4 ൈ 4 lattice structure. 

Table 1 shows various design configurations achieved by varying the design variable 𝑓௥, while keeping 𝑡௥ constant at 0.1. It can be seen that increasing 𝑓௥ beyond a specific 
value significantly influences the resulting configuration, allowing control over the mini-
mum strut thickness through the 𝑓௥ variable. Since the geometry of the proposed BCC 
structure was defined using an implicit equation, there was a certain range of design var-
iables, which enabled the generation of a valid geometry. For instance, when 𝑓௥ = 0, the 
implicit equation did not form a valid surface model. Thus, an experimental relation was 
derived to establish the lower bound of 𝑓௥ in relation to 𝑡௥ as 𝑓௥ = 12 ൈ 𝑡௥. This ensured 
a minimum value of 𝑓௥ for a valid iso-surface, which enabled the generation of the corre-
sponding STL model. Table 2 presents various design configurations achieved by adjust-
ing the design variable 𝑡௥ while adhering to the assigned lower band values for 𝑓௥. In-
creasing 𝑡௥ led to a higher relative density of the lattice unit cell, which in turn had a 
significant impact on the stiffness and stress distribution within the BCC lattice structure. 
Similarly, 𝑓௥ was expected to have a significant impact on these factors. To achieve the 
desired design objectives and find the optimal configuration for the lattice structure, the 
implementation of a multi-objective shape optimisation strategy became essential. 

Table 1. Different design variants of the proposed implicit-based BCC lattice structure achieved by 
increasing 𝑓௥ while keeping 𝑡௥ constant at 0.1. 

      
      𝑓௥ = 4.0 𝑓௥ = 8.0 𝑓௥ = 12.0 𝑓௥ = 16.0 𝑓௥ = 20.0 𝑓௥ = 24.0 

Table 2. Different design variants of the proposed implicit-based BCC lattice structure achieved by 
increasing 𝑡௥ while assigning lower band values to 𝑓௥ from 𝑓௥ = 12 ∗ 𝑡௥. 

      
      

J. Manuf. Mater. Process. 2023, 7, x FOR PEER REVIEW 6 of 23 
 

 

 
Figure 5. The procedure used for the construction of the proposed implicit surface-based BCC lattice 
unit cell and tessellation into a 4 ൈ 4 ൈ 4 lattice structure. 

Table 1 shows various design configurations achieved by varying the design variable 𝑓௥, while keeping 𝑡௥ constant at 0.1. It can be seen that increasing 𝑓௥ beyond a specific 
value significantly influences the resulting configuration, allowing control over the mini-
mum strut thickness through the 𝑓௥ variable. Since the geometry of the proposed BCC 
structure was defined using an implicit equation, there was a certain range of design var-
iables, which enabled the generation of a valid geometry. For instance, when 𝑓௥ = 0, the 
implicit equation did not form a valid surface model. Thus, an experimental relation was 
derived to establish the lower bound of 𝑓௥ in relation to 𝑡௥ as 𝑓௥ = 12 ൈ 𝑡௥. This ensured 
a minimum value of 𝑓௥ for a valid iso-surface, which enabled the generation of the corre-
sponding STL model. Table 2 presents various design configurations achieved by adjust-
ing the design variable 𝑡௥ while adhering to the assigned lower band values for 𝑓௥. In-
creasing 𝑡௥ led to a higher relative density of the lattice unit cell, which in turn had a 
significant impact on the stiffness and stress distribution within the BCC lattice structure. 
Similarly, 𝑓௥ was expected to have a significant impact on these factors. To achieve the 
desired design objectives and find the optimal configuration for the lattice structure, the 
implementation of a multi-objective shape optimisation strategy became essential. 

Table 1. Different design variants of the proposed implicit-based BCC lattice structure achieved by 
increasing 𝑓௥ while keeping 𝑡௥ constant at 0.1. 

      
      𝑓௥ = 4.0 𝑓௥ = 8.0 𝑓௥ = 12.0 𝑓௥ = 16.0 𝑓௥ = 20.0 𝑓௥ = 24.0 

Table 2. Different design variants of the proposed implicit-based BCC lattice structure achieved by 
increasing 𝑡௥ while assigning lower band values to 𝑓௥ from 𝑓௥ = 12 ∗ 𝑡௥. 

      
      

J. Manuf. Mater. Process. 2023, 7, x FOR PEER REVIEW 6 of 23 
 

 

 
Figure 5. The procedure used for the construction of the proposed implicit surface-based BCC lattice 
unit cell and tessellation into a 4 ൈ 4 ൈ 4 lattice structure. 

Table 1 shows various design configurations achieved by varying the design variable 𝑓௥, while keeping 𝑡௥ constant at 0.1. It can be seen that increasing 𝑓௥ beyond a specific 
value significantly influences the resulting configuration, allowing control over the mini-
mum strut thickness through the 𝑓௥ variable. Since the geometry of the proposed BCC 
structure was defined using an implicit equation, there was a certain range of design var-
iables, which enabled the generation of a valid geometry. For instance, when 𝑓௥ = 0, the 
implicit equation did not form a valid surface model. Thus, an experimental relation was 
derived to establish the lower bound of 𝑓௥ in relation to 𝑡௥ as 𝑓௥ = 12 ൈ 𝑡௥. This ensured 
a minimum value of 𝑓௥ for a valid iso-surface, which enabled the generation of the corre-
sponding STL model. Table 2 presents various design configurations achieved by adjust-
ing the design variable 𝑡௥ while adhering to the assigned lower band values for 𝑓௥. In-
creasing 𝑡௥ led to a higher relative density of the lattice unit cell, which in turn had a 
significant impact on the stiffness and stress distribution within the BCC lattice structure. 
Similarly, 𝑓௥ was expected to have a significant impact on these factors. To achieve the 
desired design objectives and find the optimal configuration for the lattice structure, the 
implementation of a multi-objective shape optimisation strategy became essential. 

Table 1. Different design variants of the proposed implicit-based BCC lattice structure achieved by 
increasing 𝑓௥ while keeping 𝑡௥ constant at 0.1. 

      
      𝑓௥ = 4.0 𝑓௥ = 8.0 𝑓௥ = 12.0 𝑓௥ = 16.0 𝑓௥ = 20.0 𝑓௥ = 24.0 

Table 2. Different design variants of the proposed implicit-based BCC lattice structure achieved by 
increasing 𝑡௥ while assigning lower band values to 𝑓௥ from 𝑓௥ = 12 ∗ 𝑡௥. 

      
      tr = 0.2

fr = 2.4
tr = 0.4
fr = 4.8

tr = 0.6
fr = 7.2

tr = 0.8
fr = 9.6

tr = 1.0
fr = 12

tr = 1.2
fr = 14.4

2.2. Finite Element Analysis

A finite element (FE) model of the lattice structures employing a tetrahedral mesh
was developed in MATLAB® using the MATLAB PDE toolbox. The boundary conditions
corresponding to the FE model are presented in Figure 6. The bottom surface of the lattice
structure model was fixed in the vertical (z-axis) direction, while it was allowed to move
freely (frictionless) in the x-y horizontal plane. The top surface of the lattice was subject
to a displacement loading of 2 mm downward (-z-axis), producing an overall strain of
εo = 5%. A static structural FEA was performed to study the linear elastic behaviour of
lattice structures under uni-axial compression. The total reaction force on the top surface
of the lattice geometry was derived from FEA. The reaction force was divided by the face
area (40 × 40 mm) of the lattice sample to calculate the overall stress generated, which was
then divided by the applied strain (εo = 5%) to find the elastic modulus El of the lattice
model. The relative elastic modulus Er of the lattice was calculated by dividing the elastic
modulus of the lattice by the Young’s modulus of the building material (Es), i.e., Er =

El
Es

.
The von-Mises stress (σvm) was also calculated across the lattice structure for the further
investigation of the performance of different designs.
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The tetrahedral mesh used in this study for all samples had a maximum element size 
of 0.2 mm providing a balance between the computation cost and numerical accuracy. 
Figure 7 demonstrates a sample of the BCC structure with such a mesh density. To inves-
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Figure 6. Boundary conditions applied to a lattice structure and the resultant reaction forces on the
top surface of the lattice.

The tetrahedral mesh used in this study for all samples had a maximum element size of
0.2 mm providing a balance between the computation cost and numerical accuracy. Figure 7
demonstrates a sample of the BCC structure with such a mesh density. To investigate the
accuracy of the FEA results for the given element size, a mesh sensitivity analysis was
performed on the BCC structure with a relative density of 18%. Figure 8 shows the
convergence plot associated with the maximum von-Mises stress (σmax

vm ) for different mesh
densities. It can be seen from the convergence plot that when a maximum element size
of 0.2 mm (which corresponds to the total number of elements = 20,000 in this case) was
utilised, the maximum von-Mises stress (σmax

vm ) exhibits less than a 1% deviation from the
converged value of σmax

vm .
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2.3. Preliminary Investigation of the Effect of Design Variables on the Mechanical Response
of the Lattice

To investigate the effect of design variables tr and fr on the relative density (ρr) of
the lattice as well as its mechanical response to external loads, the domain of the design
variables was discretized into a 30 × 30 grid, and the lattice structure corresponding to
each grid point was constructed through the methodology presented in Section 2.1. These
lattice structures were then saved in an STL file format for further analysis. The relative
density ρr of each design was calculated by dividing the volume of the solid region within
the lattice by the volume of the whole cubic domain. Furthermore, FEA was performed
on each lattice structure subjected to the boundary conditions presented in Section 2.2 to
calculate the von-Moses stress σvm and relative modulus Er.

Figure 9a presents the relationship between two design variables (tr and fr) and the
relative density ρr of the corresponding lattice structure. As can be expected, increasing
the value of each design variable can lead to an increase in ρr of the constructed lattice
structure. Figure 9b presents the effects of tr and fr on the relative modulus Er of the



J. Manuf. Mater. Process. 2023, 7, 156 8 of 23

constructed lattice structure. It can be seen that increasing each design variable has a
positive effect on increasing Er.
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Figure 10 presents the measurements of Er and ρr for the 900 different lattice designs.
Figure 10a displays the measurements across the full density range, while Figure 10b
focuses on the relative density range of 0–30%. The Ashby–Gibson power-law model [32],
commonly used for analysing the properties of cellular structures, was employed to estab-
lish the density–stiffness relationship. It can be seen from Figure 10a that the power-law
model does not fit well for the data points covering the full density range. However, when
the model is applied to relative densities within the 0–30% range, the best fit curve aligns
well with the data points. This particular density range has been suggested in the literature
as the effective range for the implementation of Ashby–Gibson power-law model in the
analysis of cellular structures [33]. From Figure 10a, it can also be seen that the variation
in Er, which serves as an indicator of stiffness, is primarily related to the density of the
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lattice. However, Figure 10b highlights the presence of data points with different stiffness
values at the same density. This observation suggests that factors other than density, though
potentially not significant, can influence the stiffness of the lattice structure when variables
vary at the same density.

J. Manuf. Mater. Process. 2023, 7, x FOR PEER REVIEW 9 of 23 
 

 

constructed lattice structure. It can be seen that increasing each design variable has a pos-
itive effect on increasing 𝐸௥. 

  
(a) (b) 

Figure 9. (a) The relation between tr, fr, and ρr. (b) The relationship between tr, fr, and Er. 

Figure 10 presents the measurements of 𝐸௥ and 𝜌௥  for the 900 different lattice de-
signs. Figure 10a displays the measurements across the full density range, while Figure 
10b focuses on the relative density range of 0–30%. The Ashby–Gibson power-law model 
[32], commonly used for analysing the properties of cellular structures, was employed to 
establish the density–stiffness relationship. It can be seen from Figure 10a that the power-
law model does not fit well for the data points covering the full density range. However, 
when the model is applied to relative densities within the 0–30% range, the best fit curve 
aligns well with the data points. This particular density range has been suggested in the 
literature as the effective range for the implementation of Ashby–Gibson power-law 
model in the analysis of cellular structures [33]. From Figure 10a, it can also be seen that 
the variation in 𝐸௥, which serves as an indicator of stiffness, is primarily related to the 
density of the lattice. However, Figure 10b highlights the presence of data points with 
different stiffness values at the same density. This observation suggests that factors other 
than density, though potentially not significant, can influence the stiffness of the lattice 
structure when variables vary at the same density. 

   
Power-law fit equation: 𝐸௥ = 0.969𝜌௥ଷ.଴଺ 

Power-law fit equation: 𝐸௥ = 0.639𝜌௥ଶ.ସ଼ 
(a) (b) 
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Figure 11 presents the datapoints corresponding to σmax
vm for BCC lattice structures

with respect to the design variables (Figure 11a) and relative density ρr (Figure 11b). The
von-Mises stress vs. design variables plot presented in Figure 11a does not provide suffi-
cient clarity on the relationship between σmax

vm , tr, and fr, due to the scattered distribution
of data points within the 3D plot. From Figure 11b, it can be seen that, in general, as ρr
increases, so does σmax

vm (it should be noted that the results are obtained under displace-
ment loading, where the applied displacement remains constant for all lattice samples;
however, the reaction force varies, resulting in different stress levels within the lattice
structures). However, compared to the stiffness–density data presented earlier in Figure 10,
the stress–density data appears more scattered over a wider range. This indicates the
importance of carefully adjusting the design variables to achieve the desired response
from the lattice structure. In any case, the preliminary investigation of the effect of design
variables on lattice structure properties demonstrates the significance and necessity of
the implementation of an appropriate optimisation strategy for the design of the lattice
structure, particularly for multi-objective optimisation problems, for instance, when the
lattice structure is designed for maximum stiffness and minimum von-Mises stress with a
target volume fraction (relative density) constraint. This was further investigated in the
following section.

2.4. Parametric Shape Optimisation of BCC Structures through the Multi-Objective
Genetic Algorithm

The genetic algorithm (GA) invented in 1970s by John Holand [34] is a computational
method rooted in the principles of natural evolution. These fundamental principles en-
compass selection, mutation, and crossover, guided by the survival of the fittest criterion.
The GA, as an evolutionary algorithm, involves the definition of an objective function,
which is either maximised or minimised across successive generations, primarily driven
by the fittest individuals that possess superior genetic traits. Given its ability to tackle
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complex optimisation problems, for instance, where there is a high chance of falling into a
local minima during the optimisation process, or when the problem involves optimising
multiple conflicting objectives, the GA serves as a strong tool in the pursuit of optimal
solutions [35]. The GA has been implemented in several previous studies focused on the
design of AM, such as the optimisation of auxetic metamaterials [23] and the material
optimisation of biomedical composite devices [36].
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This work employed a multi-objective genetic algorithm (MOGA) approach [37] avail-
able in MATLAB® to optimise two or more objectives simultaneously. MOGA begins by
a random creation of an initial population of candidate solutions (individuals or chro-
mosomes), which are then evaluated in terms of their performance (fitness) based on the
objective functions of the problem. A non-dominated sorting technique is then used to
rank the chromosomes based on their dominance relationship. Selection operators, such
as tournament or roulette wheel selections, are used by MOGA to choose the best fit
chromosomes. It also uses genetic operators, including crossover and mutation, to create
offspring for the next generation. The offspring, along with some individuals from the
population at present, replaces the previous generation, and the process is repeated until a
termination criterion, such as a maximum number of generations or achieving a desired
level of convergence, is met. Throughout the evolutionary process, MOGA maintains a set
of non-dominated solutions, the solutions that cannot be improved in any objective without
sacrificing the performance of another, known as the Pareto front. This set represents the
trade-off between conflicting objectives offering decision makers a diverse set of solutions
to choose from, based on their preferences.

In this work, MOGA was implemented to find the best design variables tr and fr,
which can optimise the two objective functions of the problem. Objective 1 (Equation (3))
was to maximise the stiffness of the BCC lattice structure (the relative modules Er) and
objective 2 (Equation (4)) was to minimise the maximum value of the von-Mises stress
(σmax

vm ) within the lattice structure:

Objective 1 : maximise f1(tr, fr) = Er (3)

Objective 2 : minimise f2(tr, fr) = σmax
vm (4)
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In this study, it was assumed that the optimised solutions were manufacturable,
taking into account the selected material, AM process, and geometric properties of the
cells, including the cell size, which was an important consideration if the unit cell was not
self-supporting for AM. However, to extend the applicability of the proposed optimisation
approach for AM, additional manufacturing constraints, such as minimum strut thickness
and minimum/maximum relative density, must be incorporated into the optimisation
problem to further refine the search domain.

To perform MOGA, the population size was set to 100, the number of generations was
set to 200, the number of pairs of chromosomes to cross over was 20, and the number of
chromosomes to be mutated was two. Convergence was achieved when the best solutions
across generations remained relatively unchanged or changed only minimally. Figure 12a
presents the Pareto front corresponding to the optimisation of the two objective functions
through MOGA. For reference, Figure 12b demonstrates the distribution of objectives
corresponding to the 900 different designs studied in Section 2.3. Comparing the two
graphs presented in Figure 12, it can be seen that MOGA is able to identify designs with
high values for objective 1 (Er) and low values for objective 2 (σmax

vm ). It can also be seen
that the Pareto front offers a diverse set of solutions representing a trade-off between the
two objective functions Er and σmax

vm .
J. Manuf. Mater. Process. 2023, 7, x FOR PEER REVIEW 12 of 23 
 

 

  
(a) (b) 

Figure 12. (a) MOGA Pareto front presenting a set of optimised solutions with respect to objective 1 
(𝐸௥) and objective 2 (𝜎௩௠௠௔௫); (b) distribution of objectives corresponding to the 900 different designs 
studied in Section 2.3. 

Figure 13a shows the 𝐸௥-𝜌௥ graph for the set of solutions presented by the Pareto 
front. The graph reveals a diverse range of designs, encompassing relative densities that 
range from 0 to 1. This provides designers with the flexibility to choose solutions based 
on their preference in relation to the relative density. Poisson’s ratio, defined as the nega-
tive of the ratio of transverse strain to axial strain, is another important property affecting 
the behaviour of cellular structure. Figure 13b demonstrates the Poisson’s ratio of the 
MOGA solutions presented by the Pareto front. It can be seen that the Poisson’s ratio of 
the designs exhibits a range of 0.45–0.5 at lower relative densities. However, as the relative 
density increases towards 1, the Poisson’s ratio decreases and falls within the range of 
0.25–0.3, reaching the value of the Poisson’s ratio for the bulk material. 

  
(a) (b) 

Figure 12. (a) MOGA Pareto front presenting a set of optimised solutions with respect to objective 1
(Er) and objective 2 (σmax

vm ); (b) distribution of objectives corresponding to the 900 different designs
studied in Section 2.3.

Figure 13a shows the Er-ρr graph for the set of solutions presented by the Pareto front.
The graph reveals a diverse range of designs, encompassing relative densities that range
from 0 to 1. This provides designers with the flexibility to choose solutions based on their
preference in relation to the relative density. Poisson’s ratio, defined as the negative of
the ratio of transverse strain to axial strain, is another important property affecting the
behaviour of cellular structure. Figure 13b demonstrates the Poisson’s ratio of the MOGA
solutions presented by the Pareto front. It can be seen that the Poisson’s ratio of the designs
exhibits a range of 0.45–0.5 at lower relative densities. However, as the relative density
increases towards 1, the Poisson’s ratio decreases and falls within the range of 0.25–0.3,
reaching the value of the Poisson’s ratio for the bulk material.
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From the set of optimised solutions achieved from MOGA, a solution with a relative
density of ρr = 18.7% was selected for further analysis, including mechanical testing.
This relative density was within the valid range for the implementation of the Ashby–
Gibson power law and was also within the same range as the BCC structures studied in the
literature, Refs. [28,30], allowing for a meaningful comparison to be performed with the
results presented in previous studies on BCC structures.

2.5. Single-Objective Genetic Algorithm Optimisation (SOGA)

Following the results obtained from the multi-objective optimisation using MOGA
in the previous section, this section presents the designs optimised for each single ob-
jective and compares them with those simultaneously optimised for the two objectives
through MOGA. The single-objective optimisation was performed through standard GA at
a relative density constraint of ρr = 18.7% ± 0.01%. To limit the search space within the
specified range of the relative density, the range of the design variables were adjusted as
0.1 ≤ tr ≤ 0.4 and 0 ≤ fr ≤ 5. The implementation of SOGA involved two runs. The first
run focused on maximising objective 1 Er (or minimising 1

Er
), exclusively. In the second run,

the objective was to minimise objective 2 σmax
vm , exclusively. Figure 14 presents the evolution

histories of the two objective functions associated with the two separate runs. It can be seen
that they both converge within 20 generations. A great improvement in the mean objective
can be observed in both runs of SOGA. From Figure 14a, it can be seen that the mean
value of 1

Er
reduces from approximately 105 in the first generation of designs converging to

around 91 within the evolutionary process. This corresponds to an average Er of 0.0095 at
the first generation converging to Er = 0.011. A similar trend can be observed in Figure 14b
for the minimisation of objective 2 σmax

vm through SOGA. The average σmax
vm decreases from

approximately 8.3 MPa in the initial generation to around 6.66 MPa as the evolutionary
process progresses.
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2.6. Numerical Comparison of the Solutions

FEA was performed on the BCC structures optimised through MOGA (BCCM) and
SOGA (BCCE denoting stiffness-optimised BCC and BCCvm denoting σmax

vm -optimised
BCC), as well as the classical BCC structure (BCCC) to compare the performance of different
designs in terms of Er and σmax

vm at the relative density of ρr = 18.7 ± 0.01%. The numerical
results are summarised in Table 3.

Table 3. Performance comparison of different BCC structures optimised through MOGA and SOGA
as well as the classical model of BCC.

Classical BCC (BCCC)
MOGA-Optimised

BCC for Both
Er and σmax

vm (BCCM )

SOGA-Optimised
BCC for Er (BCCE )

SOGA-Optimised
BCC for σmax

vm (BCCvm )

Design variables − tr = 0.178
fr = 9.338

tr 0.179
fr = 9.338

tr = 0.100
fr = 10.500

σvm contour
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a significant enhancement of the mechanical performance when compared with the clas-
sical model of BCC. The comparison of the numerical results corresponding to 𝐸௥ and 𝜎௩௠௠௔௫ underscores the effectiveness of the optimisation strategy. However, the three opti-
mised designs appear very similar in shape and also performance (two almost identical), 
indicating that optimising one objective of this multi-objective problem can positively im-
pact the improvement of the second objective. This was further investigated in the follow-
ing sections though the additive manufacturing of the samples and subsequent mechani-
cal testing. 

3. Additive Manufacturing and Mechanical Testing 
The BCC lattice specimens studied earlier were printed through the DLP process us-

ing a Phrozen Mini 8k printer with an XY print resolution of 22 µm. Three samples for 
each design were printed for further testing to ensure experiment repeatability. The slic-
ing software ChituBox V1.9.3 was used to generate machine-readable files. The print set-
tings included a bottom-layer exposure time of 35 s, other-layer exposure time of 10 s, and 
a layer thickness of 0.1 mm. A high-resolution transparent photopolymer resin (UV DLP 
Crystal Clear by Photocentric) [38] with a curing wavelength of 𝜆஽௅௉  =  420 nm was uti-
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printing to avoid the non-homogeneous penetration of the UV light into the lattice struc-
tures during post-processing, which can create non-homogenous material properties 
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From Table 3 it can be seen that all three structures optimised through MOGA and
SOGA (BCCM, BCCE, and BCCvm) have superior performances compared to BCCC, in
terms of both Er and σmax

vm . Comparing the optimised designs in terms of stiffness, it can
be seen that BCCM and BCCE have very similar values of Er, which is slightly higher than
that of BCCvm. Similarly, comparing them against σmax

vm , it can be seen that the design
optimised for the von-Mises stress (BCCvm) has a smaller value of σmax

vm compared to
the other two optimised designs. Overall, the optimised designs for the BCC structure
show a significant enhancement of the mechanical performance when compared with
the classical model of BCC. The comparison of the numerical results corresponding to
Er and σmax

vm underscores the effectiveness of the optimisation strategy. However, the
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three optimised designs appear very similar in shape and also performance (two almost
identical), indicating that optimising one objective of this multi-objective problem can
positively impact the improvement of the second objective. This was further investigated in
the following sections though the additive manufacturing of the samples and subsequent
mechanical testing.

3. Additive Manufacturing and Mechanical Testing

The BCC lattice specimens studied earlier were printed through the DLP process using
a Phrozen Mini 8k printer with an XY print resolution of 22 µm. Three samples for each
design were printed for further testing to ensure experiment repeatability. The slicing
software ChituBox V1.9.3 was used to generate machine-readable files. The print settings
included a bottom-layer exposure time of 35 s, other-layer exposure time of 10 s, and a layer
thickness of 0.1 mm. A high-resolution transparent photopolymer resin (UV DLP Crystal
Clear by Photocentric) [38] with a curing wavelength of λDLP = 420 nm was utilised for
the 3D printing of the specimens. The printed specimens were not UV-cured after printing
to avoid the non-homogeneous penetration of the UV light into the lattice structures during
post-processing, which can create non-homogenous material properties across the lattice
volume. Instead, a longer exposure time per layer (10 s) during the print process was used
to maintain homogenous properties across the lattice. Using the same print settings, solid
cubes 10 mm in size were also printed to evaluate the density and mechanical properties of
the bulk material. From the mass and volume measurements obtained from the solid cubes,
the density of the bulk material was calculated as 1188 kg/m3.

Table 4 presents the 3D-printed samples of the different BCC structures, including
BCCC, BCCM, BCCE, and BCCvm, along with their experimentally measured mass and
relative density values. Using the experimental measurement of the density of bulk material,
the intended design mass for the BCC samples at ρr = 18.7 could be calculated as 14.22 g.
However, the data presented in Table 4 show a discrepancy of up to 23% between the
mass/relative density values of the BCC lattice designs and the corresponding values of the
3D-printed specimens. This can be attributed to the geometric overgrowth during the DLP
3D-printing process, which was observed and discussed in the literature [39]. Geometric
overgrowth is caused by UV-light scattering effects, which depend on different factors, such
as layer thickness, layer exposure time, and exposure intensity. Since the lattice structure
has a complex geometry with a high surface to volume ratio, the deviation from the original
design geometry is more pronounced compared to simpler shapes, such as cubes. Despite
the observed design-to-build discrepancy in the mass, it was noteworthy that the relative
densities of all 3D-printed specimens were about ρr = 0.22 ± 0.01, providing a sufficient
level of accuracy for the performance comparison of different 3D-printed specimens, as
discussed in the following section.

In order to assess the mechanical performance of the DLP-printed BCC structures and
compare it with the numerically evaluated results presented in Section 2, a compression
test was executed on the entire set of printed samples. All the specimens were tested along
the build direction. The compression test was conducted using an Instron 3367 machine,
equipped with a 30 kN load cell, in accordance with the ASTM D1621-16 standard [40]. A
uniform compression rate of 0.1 mm/s was applied to each individual sample. Throughout
the compression process, the reaction force and corresponding displacement were recorded
through the employment of the load cell and a displacement gauge, respectively. The data
were then collected and managed using the Bluehill® computer program, which captured
readings at a frequency of 20 readings per second. To visually document the deformation
induced by the compression plate of the machine, a high-speed, high-resolution camera
capable of capturing 60 frames per second and performing high-definition video recording
was utilised. An illustrative depiction of a BCC structure undergoing compression testing
is presented in Figure 15.
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Table 4. The comparison between the theoretical masses and the 3D-printed specimens.

Classical BCC (BCCC)
MOGA-Optimised BCC

for Both Er
and σmax

vm (BCCM )

SOGA-Optimised BCC
for Er (BCCE )

SOGA-Optimised BCC
for σmax

vm (BCCvm )

Unit cell
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In order to assess the mechanical performance of the DLP-printed BCC structures 
and compare it with the numerically evaluated results presented in Section 2, a compres-
sion test was executed on the entire set of printed samples. All the specimens were tested 
along the build direction. The compression test was conducted using an Instron 3367 ma-
chine, equipped with a 30 kN load cell, in accordance with the ASTM D1621-16 standard 
[40]. A uniform compression rate of 0.1 mm/s was applied to each individual sample. 
Throughout the compression process, the reaction force and corresponding displacement 
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In order to assess the mechanical performance of the DLP-printed BCC structures 
and compare it with the numerically evaluated results presented in Section 2, a compres-
sion test was executed on the entire set of printed samples. All the specimens were tested 
along the build direction. The compression test was conducted using an Instron 3367 ma-
chine, equipped with a 30 kN load cell, in accordance with the ASTM D1621-16 standard 
[40]. A uniform compression rate of 0.1 mm/s was applied to each individual sample. 
Throughout the compression process, the reaction force and corresponding displacement 
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In order to assess the mechanical performance of the DLP-printed BCC structures 
and compare it with the numerically evaluated results presented in Section 2, a compres-
sion test was executed on the entire set of printed samples. All the specimens were tested 
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chine, equipped with a 30 kN load cell, in accordance with the ASTM D1621-16 standard 
[40]. A uniform compression rate of 0.1 mm/s was applied to each individual sample. 
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In order to assess the mechanical performance of the DLP-printed BCC structures 
and compare it with the numerically evaluated results presented in Section 2, a compres-
sion test was executed on the entire set of printed samples. All the specimens were tested 
along the build direction. The compression test was conducted using an Instron 3367 ma-
chine, equipped with a 30 kN load cell, in accordance with the ASTM D1621-16 standard 
[40]. A uniform compression rate of 0.1 mm/s was applied to each individual sample. 
Throughout the compression process, the reaction force and corresponding displacement 
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In order to assess the mechanical performance of the DLP-printed BCC structures 
and compare it with the numerically evaluated results presented in Section 2, a compres-
sion test was executed on the entire set of printed samples. All the specimens were tested 
along the build direction. The compression test was conducted using an Instron 3367 ma-
chine, equipped with a 30 kN load cell, in accordance with the ASTM D1621-16 standard 
[40]. A uniform compression rate of 0.1 mm/s was applied to each individual sample. 
Throughout the compression process, the reaction force and corresponding displacement 
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Figure 15. (a) Demonstration of a BCC lattice specimen during compression test and (b) different
stages of the compression test presented from left to right.

During the compression testing of the specimens, the force values were systematically
documented in a spreadsheet alongside their respective displacements. These force values
were subsequently divided by the face area of the cubic lattice sample (40 × 40 mm2) under
compression, resulting in the computation of global stress values (σ). Plotting these stress
values (σ) against the strain (ε) induced by the compression test machine facilitated the
determination of the Young’s modulus of the lattice material (El), based on the slope of the
linear elastic region within the stress–strain curve. Similarly, following ASTM D695-15 [41], the
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Young’s modulus (Es) of solid samples sized 10.0 mm × 10.0 mm × 10.0 mm was calculated.
These solid samples were 3D-printed using the same material and settings as those used for
the lattice samples. This process yielded the stress–strain curves depicted in Figure 16, from
which a Young’s modulus of Es = 104.3 MPa was computed for the bulk material. Parallel to
the numerical calculations presented in Section 2, the experimental relative modulus values
(Er) for each lattice structure were deduced, employing the formula Er =

El
Es

.
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Figure 16. Stress–strain plots corresponding to five solid samples fabricated through the DLP process
resulting in an average Young’s modulus of 104.3 MPa.

The numerical model developed for FEA and the optimisation of BCC lattice structures
applied a 5% strain to calculate the elastic modulus of the lattice structure. As the simula-
tions were based on the linear FEA model neglecting large deformations, the magnitude of
the applied strain did not affect the magnitude of the calculated elastic modulus for the
specimen. However, when investigating the results of the compression testing of the lattice
structures, it was observed that the specimens subjected to a 5% strain underwent large
deformations. Consequently, the elastic modulus was determined within a smaller strain
range of 1–2% to account for this behaviour. The initial strain range of 0–1% was omitted
from the calculations to mitigate potential impacts arising from uneven sample surfaces
during the experimental measurements.

Based on the literature, it is well-established that solid samples produced through
AM can exhibit varying mechanical properties, which partly depend on their orientations
during fabrication and testing processes [42]. Similarly, DLP-printed solid specimens have
been observed to display anisotropic behaviour in stiffness and strength tests [43]. However,
the literature reports suggest that the compressive behaviour of AM lattice structures is
not influenced by build orientation in the same manner as AM solid structures [42]. In this
study, all samples were tested along the build orientation. Nevertheless, future studies
can take into account material anisotropy when studying the mechanical properties of
DLP-printed lattice structures.

4. Results and Discussion

This section presents the results and discussions related to the compression testing of
BCC lattice specimens, followed by additional comments on the broader application of the
proposed method in lattice structure design for AM.
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4.1. Comparison of Different Designs

Figure 17 illustrates the stress–strain plots corresponding to the compression test of
a set of four different BCC structures, including BCCC, BCCM, BCCE, and BCCvm. The
stiffness of the lattice structures presented in terms of Er was directly related to the slope of
the curves in the linear elastic region, which is calculated and demonstrated in Figure 18.
From the comparison of the stiffness values presented in this figure, it can be observed
that the experimental values of Er are slightly smaller than their corresponding numerical
values, despite the fact that the experimental tests were performed on the lattices with a
slightly larger mass (due to print inaccuracies) in comparison to their intended designs. The
observed discrepancy can be attributed to various factors, including the influence of surface
roughness effects, which become more prominent in samples with a high surface-to-volume
ratio, such as lattice structures. These factors prevent the experimental performance from
achieving the numerically estimated values. This emphasises the need for the consideration
of size effects in the design and optimisation of lattice structures for AM in the future
research. It is important to note that the similarity between the numerical and experimental
Er values observed for MOGA and stiffness-optimised solutions in Figure 18 did not
inherently establish the accuracy of the experimental measurements. This was due to the
fact that the experiments were conducted on samples with slightly higher relative densities.
Consequently, to address this concern, a MOGA solution with a relative density of 22%
(similar to the relative density of the printed lattice samples) was investigated. Through
FEA, a relative modulus of Er = 0.0161 was calculated, which notably exceeded the value
obtained from the experimental measurements Er = 0.0198.
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The second important thing that can be observed from Figure 18 is that the experi-
mental measurements of Er for the set of four BCC structures results in the same stiffness
ranking as that for the numerical measurements, i.e., BCCE and BCCM have higher val-
ues of stiffness within this set of four samples, followed by BCCvm, while BCCC ranks at
the bottom. This demonstrates the correlation between the experimental and numerical
results with respect to the stiffness. The experimental evaluation of the von-Mises stress
in different lattice samples would not be as straightforward as the procedure used for the
stiffness measurement and is beyond the scope of this study. However, by looking at the
peaks of the stress–strain plots presented in Figure 17, it can be observed that all plots
corresponding to the optimised samples have higher values of maximum stress compared
to the classical model of the BCC structure, indicating the effectiveness of the proposed
design and optimisation approach in improving the strength of the lattice structures.

4.2. Insights into the Failure Modes of DLP-Printed BCC Lattices

Following the compression testing, a further examination of the lattice structures was
conducted to determine the mode of failure within the structures. Figure 19 presents the
findings from this observation, comparing the failure mode of a classical BCC structure
(BCCC) with the one for an optimised BCC structure, e.g., BCCM. The observations were
performed on three levels: lattice structure, unit cell, and strut levels. The observation of
the failure mode at the lattice structure level for the classical BCC structure (Figure 19a)
indicated the shear failure mode for this structure. This mode was observed in all three
samples of the classical BCC structure repeated for testing and was reported in the litera-
ture [27]. By observing the failure of the classical BCC structure at the unit cell (Figure 19b)
and strut (Figure 19c) levels further, it can be noticed that the failure starts from the nodes
that are under high levels of von-Mises stress due to stress concentration. This non-uniform
distribution of stress and concentration at the nodes can be observed from the von-Mises
stress contour of BCCC presented Table 3. Figure 19d–f shows the failure mode of the
optimised BCC at the lattice structure, unit cell, and strut levels, respectively. It can be ob-
served that failure occurs in the middle of the struts, where the struts have their minimum
thickness. This failure mode occurred due to bending, as discussed in [27]. When the filet
radius at the nodes is increased while keeping the relative density constant, it leads to a
reduction in the stress concentration effects and can subsequently enhance the strength
of the lattice structure. However, to maintain a constant relative density while increasing
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the fillet radius, the diameter of the struts in the middle must be proportionally reduced,
resulting in failure occurring at the middle of the struts. As can be seen in Figure 17, the
optimised BCC structures require higher levels of global stress to reach the failure point.
This can be attributed to a more uniform distribution of stress within the optimised lattice
structures, as is evident from the corresponding von-Mises stress contours presented in
Table 3.
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4.3. Further Remarks on the Generalisation of the Lattice Structure Design for AM

The primary objective of this study was to apply an innovative design approach based
on implicit geometry modelling and GA optimisation on the design of BCC lattice structures
intended for manufacturing through the DLP process. However, a more comprehensive
design workflow for AM can be considered, aligned with the presented approach, to
broaden its scope and encompass the design of diverse lattice structures for various AM
processes [44,45].

An initial problem statement identifying the design space followed by a preliminary
macroscale FEA or topology optimisation performed on the design space can provide
insights into the mesoscale design requirements and objectives. An important step towards
achieving the generalisation of the proposed approach would be the extension of the im-
plicit modelling to other types of strut-based lattice unit cells through the development of
an implicit equation representing the geometry of the corresponding unit cell. Moreover,
following the selection of an appropriate material and an AM process, AM constraints
and considerations need to be integrated into the proposed parametric optimisation ap-
proach as design constraints. Such design constraints can be related to geometrical features,
which affect the self-supporting aspect of a unit cell, minimum feature size, and/or maxi-
mum/minimum relative densities. To achieve the utmost precision in accordance with the
input geometry, it is essential to fine-tune the AM process parameters in alignment with
the chosen build material and lattice geometry. Depending on the selected AM process,
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material anisotropy effects corresponding to the build material can also be taken into
account when evaluating the response of the designed lattice structures associated with
certain loading conditions and design objectives. The design workflow can also benefit
from the development of appropriate testing equipment for evaluating the response of
additively manufactured lattice structures. Efficient metrological measurements of the
3D-printed specimens should be considered to evaluate the design-to-build discrepancy. A
clear understanding of this discrepancy would be advantageous in design and optimization
stages to provide insights into the potential adjustments needed to compensate for the
discrepancy in forthcoming print iterations.

5. Summary and Conclusions

This study introduced a design and optimisation methodology for the parametric
shape optimisation of BCC lattice structures based on an implicit modelling scheme inte-
grated with single-/multi-objective genetic algorithm optimisations. Stiffness responses
associated with a classical BCC structure as well as single-objective and multi-objective
optimised BCC structures were investigated and compared through FEA and mechanical
testing. The distribution of the stress and the maximum value of the von-Mises stress were
also studied numerically in different BCC structures.

When comparing the relative elastic modulus (Er) values of various BCC structures
with identical relative densities, it was observed that the optimised BCC structures exhibited
an improved stiffness response compared to the conventional BCC structure. Specifically,
at a relative density of ρr = 18.7%, the numerical analysis and experimental measurements
indicated an estimated improvement in Er of up to 57% and 83%, respectively. Furthermore,
it was observed that the stress concentration was significantly reduced by implementing
the proposed shape optimisation approach. At the relative density of ρr = 18.7%, up to a
25% reduction in the maximum von-Mises stress in a BCC structure was observed upon the
application of the proposed design and optimisation strategies. The experimental results
further confirm these numerical findings, demonstrating that the optimised BCC structures
subjected to a compression test exhibit higher maximum stress values compared to the
classical BCC structure.

This research effectively implemented the multi-objective GA (MOGA) for the para-
metric shape optimisation of lattice structures involving multiple objectives. The range of
solutions provided by MOGA allowed for flexibility in choosing a preferred design from
a variety of optimised designs with different relative densities. The research also studied
the use of single-objective GA (SOGA) optimisation for the design of BCC lattices at a
particular relative density. Although SOGA seeks the best design associated with a single
objective, the results for the second objective are still comparable to those obtained from
MOGA. This evidently depends on the objectives included in the problem and whether
they are in conflict with each other. In cases where conflicting objectives are present, the
application of MOGA proves advantageous.

In this study, a high-resolution DLP process was utilised for the additive manufac-
turing of the designed BCC structures. While the process showed excellent capabilities in
the fabrication of lattices with a high resolution, a noticeable design-to-build discrepancy
was observed between the mass of the fabricated samples and their intended designs. This
phenomenon has been discussed in the literature, attributing it to geometric overgrowth
triggered by the scattering effects of UV light. These effects also have the potential to
impact the shape of printed samples, leading to deviations from the original CAD model.
A thorough exploration of the shape of 3D-printed lattice specimens can offer insights
into these geometric discrepancies. Future research can greatly benefit from incorporat-
ing manufacturing-related effects into the design process to mitigate the design-to-build
discrepancy. However, achieving this goal necessitates considering numerous process-
related factors during the design phase, thereby increasing the complexity of the design
and optimisation approach.
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Overall, the application of implicit modelling in conjunction with a GA-based
optimisation strategy was determined as a robust and promising approach for designing
and optimising lattice structures for additive manufacturing. Future research should
expand the application of the presented implicit modelling technique to design various
types of lattice structures with desired structural responses, which can be tailored
through the GA optimisation.
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