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Abstract: This research investigates the multi-response of both material removal rate (MRR) and
surface roughness (Ra) for the wire electrical discharge machining (WEDM) of two stainless steel
alloys: AISI 304 and AISI 316. Experimental results are utilized to compare the machining responses
obtained for AISI 316 with those obtained for AISI 304, as previously reported in the literature.
The experimental work is conducted through a full factorial experimental design of five running
parameters with different levels: applied voltage, transverse feed, pulse-on/pulse-off times and
current intensity. The machined workpieces are analyzed using an image processing technique
in order to evaluate the size of cut slots to allow the calculation of the MRR. Followed by the
characterization of the surface roughness along the side walls of the slots. Different mathematical
regression techniques were developed to represent the multi-response of both materials using the
MATLAB regression toolbox. It was found that WEDM process parameters have a fuzzy influence
on the responses of both material models. This allowed for multi-objective optimization of the
regression models using four different techniques: multi-objective genetic algorithm (MOGA), multi-
objective pareto search algorithm (MOPSA), weighted value grey wolf optimizer (WVGWO) and
osprey optimization algorithm (OOA). The optimization results reveal that the optimal WEDM
parameters of each response are inconsistent to the others. Hence, the optimal results are considered a
compromise between the best results of different responses. Noteworthily, the multi-objective pareto
search algorithm outperformed the other candidates. Eventually, the optimal results of both materials
share the high voltage, high transverse feed rate and low pulse-off time parameters; however, AISI
304 requires low pulse-on time and current intensity levels while AISI 316 optimal results entail
higher pulse-on time and current levels.

Keywords: WEDM; stainless steel 304; stainless steel 316; surface integrity; MRR; productivity;
multi-objective optimization

1. Introduction

The challenging issue of manufacturing functional products with high accuracy and
superior mechanical and thermal properties encourage several researchers to develop new
material processing techniques or improve the existing ones [1,2]. In return, this leads
to the necessity of the optimization of process parameters in order to obtain the highest
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quality and productivity [3]. Each material cutting process has its own effect on the material
structure and properties. In addition, the capability of the cutting methods does not have
to include the processing of all material types as some materials require high cutting force
or power [4]. Wire electrical discharge machining (WEDM) is one of the key thermo-
electric processes of cutting materials, irrespective of their high hardness and strength
properties [5,6], such as high-carbon steels [7,8], stainless steel 316 (AISI 316) [9], etc. In
WEDM, the cutting process is carried out by means of eroding the workpiece (as a cathode)
with a travelling thin wire tensioned between two guide rollers (as an anode) by initiating a
series of sparks between the electrodes in the presence of a dielectric medium [10,11]. One
of the advantages of WEDM is to process difficult-to-cut materials, irrespective of their
hardness, with acceptable surface properties and accurate dimensions, which promotes
WEDM as a prime cutting method to produce punch dies and molds of high-strength
materials [1,8,10].

There are a wide range of WEDM controlling parameters, such as servo voltage,
pulse-on/pulse-off times, transverse feed rate, peak current, machined material thermo-
physical properties, wire tension, wire material, wire diameter, and dielectric fluid type
and pressure [12–18]. The most challenging problem in WEDM is that most of the men-
tioned controlling parameters have a fuzzy influence on the desired output, such as surface
roughness (Ra) and material removal rate (MRR). In return, the process is considered
a stochastic problem that requires sufficient mathematical representation and optimiza-
tion [19–22]. However, using a mathematical model and MATLAB simulated annealing
(SA) algorithm, it is claimed that feed rate, peak current and pulse-one time are the most
influential parameters of the WEDM of EN31 high-strength steel alloy [23].

Sharma et al. [14] used Taguchi L9 and ANOVA to analyze the MRR, gap current and
machining time responses of D2 tool steel. It was found that pulse-off time was the most
influential and significant parameter for all responses, followed by pulse-on time, while
the peak current and wire tension influence were negligible. Using the amalgamation of
response surface modeling (RSM), genetic algorithm (GA) and ANOVA, Sharma et al. [24]
obtained the optimal WEDM parameters of the minimum overcut (9.9922 µm) of machined
high-strength low-alloy (HSLA) steel using brass wire as an electrode at pulse-on/pulse-off
times of 117 and 50 µs, respectively; gap voltage of 49 V; current of 180 A; and wire tension of
6 g. Meanwhile, using Taguchi L9, analysis of variance (ANOVA) and signal-to-noise (S/N)
ratio, the optimal WEDM process parameters of machining AISI 1045 alloy were obtained.
The most influential parameter is current, with a p-value of 0.026. Moreover, the best MRR
is 0.7112 mm3/min, which was obtained at current = 16 A, voltage = 50 V and pulse-on
time = 100 µs. The authors recommended further experimental-based multi-objective
optimization that includes more responses and variable parameters [25]. Involving eight
parameters and using a larger Taguchi array (L18 21 × 37) followed by the ANOVA and S/N
ratio, the optimal cutting conditions of Skd 61 alloy steel were obtained separately for the
MRR and Ra—64.79 mm2/min and 1.279 µm, respectively—as two single objectives, with
a maximum relative error to the experimental data that did not exceed 9.8%. In addition,
the study stated that pulse-on time is the most influential factor on both MRR and Ra
models [26]. Additionally, Huang and Liao [27] confirmed that pulse-on time has the main
influence on both MRR and Ra using grey relational analysis (GRA) and S/N ratio. In
a recent study using similar methods, Kumar et al. [28] reduced the number of process
parameters to four. In addition, the optimal parameters of the best MRR of D2 steel were a
wire speed of 21 m/min, flushing pressure of 159 kgs/m2, voltage of 81 V and current of
61 A, while the best Ra was obtained at 31 m/min, 121 kgs/m2, 82 V and 80 A, with the
same aforementioned order.

Furthermore, an optimization study using GRA on the WEDM machining of tungsten
carbide material found that the optimal surface roughness (0.3435 µm) can be obtained
at current = 2 A, voltage = 5 V and pulse-off time = 8 µs [29]. Chen et al. [30] used a
combined multi-objective algorithm based on support vector machine and particle swarm
optimization (SVR-PSO) to obtain the minimum Ra of 3.6 µm and the maximum MRR
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of 0.261 mm2/s of 65 vol.% SiCp/Al composite. The optimal WEDM parameters were
pulse-on time = 258.2 ns, pulse-off time = 125.3 ns, voltage = 41 V, wire feed = 9.452 mm/s
and wire tension = 12.7 N. To wrap up, a review study on the optimization techniques
of WEDM used in the literature showed that most researchers are mainly interested in
multi-responses such as MRR, Ra and tool wear rate (TWR). The authors also stated that the
most used optimization technique is Taguchi’s methodology followed by GRA and fuzzy
logic. Eventually, it was confirmed that current is a dominant factor requiring optimal
control in order to obtain optimal multi-response answers [31].

The aim of this study is to widely investigate and optimize WEDM process parameters
in order to achieve the trade-off between maximizing the MRR and keeping the Ra at
the minimum level of two different steel alloys: stainless steels 304 and 316 (AISI 304
and AISI 316). A previously reported experimental investigation of WEDM of AISI 304
is experimentally extended for AISI 316, for which five parameters are investigated and
modeled using the MATLAB regression toolbox. A combination of four multi-objective
algorithms is used and compared. The algorithms are: (1) multi-objective genetic algorithm
(MOGA), (2) multi-objective pareto search algorithm (MOPSA), (3) weighted value grey
wolf optimizer (WVGWO) and (4) osprey optimization algorithm.

2. Materials and Methods

As formerly mentioned, this is a significant extension of the work reported by Naeim
et al. in [10], in which the MRR and obtainable surface roughness in the WEDM of AISI 304
were analyzed. Herein, AISI 316 samples are machined under similar cutting conditions to
those reported in [10] with the aim of comparatively assessing the machining responses of
both materials under similar conditions. In addition, statistical analyses of the experimental
results for both materials are carried out and discussed. The materials’ compositions and
properties are presented in depth. In addition, the equipment setup of the WEDM process
is illustrated. The details of the design of the experiment are also discussed. Finally, the
measurement instruments and conditions are provided.

2.1. Materials

Stainless steel is the most commonly utilized material for contact surfaces in dairy
processing equipment. This metal possesses corrosion resistance, mechanical strength,
hardness and ease of manufacture (weldability). AISI types 304 and 316 are the most
suitable grades for general process fluid heating, storage and distribution. Because of
the presence of molybdenum, type 316 is more expensive but offers superior corrosion
resistance. Given that it is primarily required to protect the machine from the atmosphere,
water and any spilled liquids, AISI 304 is almost always utilized externally or for the
outside vessel jacket. Not only are they known for their resistance to corrosion but also for
their clean appearance and overall cleanliness [32].

The experiments were conducted on AISI 304 and AISI 316 specimens with geometry
of 120 mm × 30 mm × 3.1 mm. The chemical compositions of both materials are listed in
Table 1. The physical and mechanical properties of both materials are listed in Table 2.

Table 1. Chemical compositions of used materials (%).

Grade Mn C S P Si Ni Cr Mo N V Fe

AISI 304 [10] 2.00 0.08 0.03 0.045 0.75 8 18–20 - 0.10 - Balance

AISI 316 [33] 1.97 0.077 0.005 0.0004 0.49 10.18 17.13 1.853 - 0.0615 Balance
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Table 2. Physical and mechanical properties of used materials [34].

Property AISI 304 AISI 316

Density (g/cm3) 8.00 8.00

Melting Point (◦C) 1450 1400

Modulus of Elasticity (GPa) 193 193

Electrical Resistivity (Ω·m) 0.72 × 10−6 0.74 × 10−6

Thermal Conductivity (W/m·K at 100 ◦C) 16.2 16.3

Thermal Expansion (10−6/K at 100 ◦C) 17.2 15.9

2.2. Equipment Setup

The WEDM machine used is an ONA NX3, which has a positioning resolution of 1 µm.
The cutting wire is molybdenum with diameter 0.18 mm. The wire tension is 8 (index).
Water and gel were used as dielectrics. For preprocessing, the specimen surface is machined
by grinding using a silicon carbide abrasive wheel in order to ensure the specimen’s top
and bottom surfaces are flat and parallel in all experiment trials (see Figure 1).
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Figure 1. Experiment setup of WEDM: (a) schematic illustration of WEDM process and (b) real
experiment on ONA NX3 EDM machine.

2.3. Design of Experiment

The selected running conditions for the WEDM, as reported in [10], are voltage (V) in
V, transverse feed ( f ) in mm/min, pulse-off time (Po f f ) in µs, pulse-on time (Pon) in µs and
current intensity (C) in A. Each parameter has certain levels, from 2 to 3 levels, as shown in
Table 3.

Table 3. WEDM selected parameters and their levels.

Parameter Levels

Voltage (V), V Low High

Transverse feed ( f ), mm/min 80 120

Pulse-off time (Po f f ), µs 6 7

Pulse-on time (Pon), µs 25 30 40

Current intensity (C), A 1 2 4

The design of experiment (DOE) used in this research is a full factorial design. This
led to conducting 72 experimental runs for both 304 and 316 stainless steels. Each run
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was carried out 3 times and the average of trial results was considered. The order of the
72 experiment’s running conditions is illustrated in Figure 2.
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Figure 2. Full factorial DOE of experiment.

2.4. Measurement and Characterization

Each experimental trial of a certain set of cutting parameters had two wire cuts. The
first cut was 15 mm in length and was machined in order to evaluate the cut width. The
machined specimens were photographed by a high-resolution camera under appropriate
lighting conditions. Following that, the collected images were processed and analyzed
using the image processing techniques presented in [10] to detect the edge and precise
width of the cut slot along its entire length. In addition, the machining time was calculated
alongside the cut width. This allowed the material removal rate (MRR) to be calculated. The
second cut was a full-width cut of 30 mm that allowed the characterization of the surface
quality of the side walls of the cut. A Mitutoyo SJ-210 surface profilometer (Mitutoyo Corp.,
Kawasaki, Japan) was used to measure the surface roughness (Ra) along the full length
of the side walls. To eliminate measurement uncertainty, seven readings were measured
for each specimen and the average measurement was considered; further details of the
characterization procedures can be found in [10].

3. Results and Discussion
3.1. Experimental Results

Figures 3 and 4 illustrate the experimental results of the MRR and Ra of the AISI 304
alloy. Remarkably, the MRR increases proportionally with the increase in the feed rate of
120 mm/min and high voltage. Also, the MRR is higher at Po f f = 6 µs than at 7 µs, as
shown in Figure 3c,d. Figure 3c–h show the MRR behavior to the change of the Pon and C.
The MRR tends to achieve the best results at high Pon and C on the top-right corner of the
contours. The MRR can reach 7 mm3/min at high voltage, f = 120 mm/min, Po f f = 6 µs,
Pon = 40 µs and C = 2.4 A, as shown in Figure 3c. On the contrary, Figure 4a–h show that
the Ra is tailored with the best surface quality at low Pon and C on the bottom-left corner of
the contours. This leads to the best surface quality of Ra = 3.39 µm at high voltage and at
the lowest level of the remaining parameters, as shown in Figure 4a.
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Figures 5 and 6 explain the parameters’ effect on the MRR and Ra of the AISI 316
alloy. Again, the MRR is high at the upper bounds of voltage, feed rate, pulse-on time and
current; conversely, low pulse-off time is recommended for higher productivity of AISI 316,
as shown in Figure 5a–d. Hence, the MRR entails the best productivity at 6.59 mm3/min,
with the corresponding parameters as shown in Figure 5c. Regarding the surface quality of
wired AISI 316, the most desired surface quality (3.64 µm) can be obtained at high voltage,
low feed rate, low pulse-on and pulse-off times and low current, as shown in Figure 6a.
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3.2. Mathematical Model Regression

The mathematical models of both used materials are developed using the MATLAB
regression learner toolbox. In order to obtain close accurate fitting, the parameters are
normalized to the interval [−1,1] using Equation (1). Hence, the subscript n stands for the
normalized parameter (see Table 4).

xn = 2
(

x − xmin
xmax − xmin

)
− 1 (1)

Table 4. WEDM normalized parameters and their new levels.

Parameter Levels

Voltage (V), V −1 1

Transverse feed ( f ), mm/min −1 1

Pulse-off time (Po f f ), µs −1 1

Pulse-on time (Pon), µs −1 −0.3333 −1

Current intensity (C), A −1 −0.3333 −1

3.2.1. AISI 304 Model

MATLAB quadratic regression is used to develop the material removal rate (MRR)
model of AISI 304, as shown in Equation (2). The values of the R-squared = 90.1% and
R-adjusted = 88.3%. Meanwhile, the model p-value = 5.92 × 10−26. Also, a comparison
between the developed model and the experimental trials is conducted, as shown in
Figure 7. It was found that the maximum error between the developed model and the
experiment results is 36.47% and the average error is 5.74%. The maximum error appeared
in one trial that the model was incapable of fitting with.

MRR304 = 4.9286 + 0.17772 Vn + 1.0069 fn + 0.037764 Po f f n+

0.14666 Ponn + 0.28073 Cn + 0.085168 Vn fn − 0.11894 VnCn−
0.0766 fnPo f f n + 0.14842 fnPonn + 0.093122 fnCn − 0.099665 Po f f nPonn

(2)
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For the roughness (Ra) model, the linear stepwise regression method on MATLAB
is used (see Equation (3)). The fitting is quite inappropriate, as the R-squared = 60% and
R-adjusted = 50%; however, the model p-value is 5.64 × 10−6, which is a good indicator
of significance. The comparison between the regression model and the actual experiment
results, shown in Figure 8, revealed that the maximum error is 34.04% while the average
error increased to 7.88% due to the low R-squared and R-adjusted values. To wrap up, the
model can be incapable of fitting with the exact values of the experimental results; however,
the model maintained the proportionality of results in a desired shape.

Ra304 = 5.3725 − 0.090425 Vn − 0.091921 fn + 0.17402 Po f f n+

0.40703 Ponn + 0.51585 Cn + 0.044755 Vn fn + 0.028745 VnPo f f n−
0.1892 VnPonn − 0.13684 VnCn − 0.091468 fnPo f f n + 0.076865 Po f f nCn−

0.055949 PonnCn − 0.33842 Cn
2

(3)
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3.2.2. AISI 316 Model

The MRR model of the second material AISI 316 is developed using the MATLAB linear
interaction method, which is considered a first-order linear regression, as in Equation (4).
Figure 9 depicts a comparison between the model and the experiment with R-squared = 87.8%,
R-adjusted = 84.5% and p-value = 3.53 × 10−20. The calculated errors are maximum
error = 21% and average error = 7.77%. Fruitfully, this promotes the model to be reliable
for further calculations.

MRR316 = 4.7202 + 0.20988 Vn + 0.91948 fn + 0.10544 Po f f n+

0.34751 Ponn + 0.39651 Cn + 0.049668 Vn fn + 0.073788 VnPo f f n+

0.072056 VnPonn + 0.072247 VnCn − 0.061812 fnPo f f n − 0.18745 PonnCn

(4)
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Equation (5) is obtained by using the MATLAB linear stepwise regression method. The
previously calculated values—R-squared = 61%, R-adjusted = 60%, p-value = 2.24 × 10−10,
maximum error = 21% and average error = 6.44%—are obtained. Again, the Ra model
slightly lacks a fit with the experiment; however, the fitting is in good proportion, as shown
in Figure 10.

Ra316 = 5.0791 − 0.031417 Vn − 0.28337 fn + 0.05213 Po f f n+

0.32202 Ponn − 0.21772 Cn + 0.13506 Vn fn + 0.25158 PonnCn + 0.99187 Cn
2 (5)
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3.3. Multi-Objective Optimization Results

In this stage, the developed models in the previous Section 3.2 are promoted to be used
as objective functions in the multi-objective optimization model. In order to equalize the
optimization results for a better solution, the model results of MRR and Ra are normalized
from 0 to 1. Hence, the new symbols MRRn and Ran are used. Then, the objective functions
minimize Ran and maximize MRRn. Almost all optimization algorithms tend to minimize
the objective function; although, the minimization of (1−MRRn) is considered. The lower
and upper bounds of the parameters are set to be −1 and 1, respectively, as the inputs
parameters are normalized. However, the voltage parameter is forced to be equal to −1
(if Vn ≤ 0) for a low value and 1 (if Vn > 0) for a high value. In this work, four multi-
objective algorithms are used; two of them are built-in MATLAB functions—the multi-
objective genetic algorithm (MOGA) [35,36] and multi-objective pareto search algorithm
(MOPSA) [37–39]—while the other two are brought from the literature—the weighted value
gray wolf optimizer (WVGWO) [40,41] and osprey optimization algorithm (OOA) [42]. The
MOGA, MOPSA and WVGWO algorithms showed impressive solutions in recent work
by the authors of [43,44]. Meanwhile, the OOA was introduced in 2023, and the author
claimed that OOA outperformed many recent and late, well-known algorithms [42]. The
optimization models of both materials are quite similar for all algorithms, as shown in
Table 5.

Table 5. The multi-objective optimization model.

Model Item Values

Number of Variables 5

Lower Bounds
(

Vn fn Po f fn Ponn Cn
−1 −1 −1 −1 −1

)
Upper Bounds

(
Vn fn Po f fn Ponn Cn
1 1 1 1 1

)
Linear Inequality [ ]

Linear Equality [ ]

Initial Starting Point
(

Vn fn Po f fn Ponn Cn
0 0 0 0 0

)
Objective Function 1 Min (1−MRRn)

Objective Function 2 Min (Ran)

3.3.1. MOGA Model

The two material models are inserted into the MOGA toolbox in MATLAB. The addi-
tional options are maximum stall generations, set to 1000, and the maximum generations
are 2000. In fact, the MOGA’s output is a 2D x–y plot of the two normalized objectives,
see Table 5, on both axes considering all data on the plot as a solution. This graph shows
the trade-off between the two objectives—that is, the so called “Pareto front”. Figure 11
illustrates the Pareto front graph of both AISI 304, Figure 11a, and AISI 316, Figure 11b.
The gold dash box surrounds the desirable solution region, which is called the “Feasible
Solution Area”. One can resize the feasible solution area as required, for example, the box
is set to be [0.4, 0.4] in size. The optimal solution is selected depending on the furthest point
on a parallel line to a trend line connecting the plot data. There is a remarkable difference
between the two materials’ optimal solutions. Both optimal solutions are triggered at high
voltage. The AISI 304 model is optimal at f = 119.37 mm/min, Po f f = 6.16 µs, Pon = 28.66 µs
and C = 1.06 A; in addition, AISI 316 achieved the optimal solution at f = 119.97 mm/min,
Po f f = 6.06 µs, Pon = 39.53 µs and C = 3.36 A. At these running conditions, the MRRs of
AISI 304 and AISI 316 are 5.707 mm3/min and 6 mm3/min, respectively. Also, the surface
roughness (Ra) is 4.353 µm and 4.741 µm for the same mentioned order. The MRR of AISI
316 is 5% better than that of AISI 304; however, the surface quality is reduced by 9%.
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3.3.2. MOPSA Model

Similar to the MOGA, the input parameters in Table 5 are the same except for the
options used. The maximum iterations are 1000. Also, the output is a Pareto front graph.
The MOPSA works by defining a mesh grid around an initial point. This grid expands or
shrinks depending on the previous search fitness. Figure 12 shows the Pareto front of both
materials plus the selected optimal solutions. As mentioned before, the graph is a trade-off
between the two objective functions; hence, one cannot say whether the MOPSA outper-
formed the MOGA as the MOPSA’s solution is another feasible solution in the feasible area.
Both materials have their optimal solution at high voltage and f = 120 mm/min. However,
the other three parameters are different; AISI 304 is optimal at Po f f = 6.44 µs, Pon = 25 µs
and C = 1 A, while AISI 316 is optimal at Po f f = 6. µs, Pon = 39.53 µs and C = 3.34 A. For
AISI 304, the MRR is 5.933 mm3/min (4% higher than the MOGA’s solution) and the surface
roughness Ra is 4.448 µm (2% difference to the MOGA). In addition, the optimal MRR of
AISI 316 is 5.96 mm3/min and the optimal Ra is 4.676 µm (better surface quality and lower
productivity than the MOGA’s solution).
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3.3.3. WVGWO Model

This algorithm is a bio-inspired simulation of the hunting journey of a wolf pack.
Usually, the pack has an alpha wolf (leader); lower rank wolves, beta and delta; and the
rest of the pack are called omega wolves. The WVGWO begins with the initial wolf pack
(population) that is searching for prey (best solution) and moving together in a certain
direction. If the pack find prey in a certain location (parameter set in the current population),
this promotes the winner wolf to a higher rank in the next search. These promotions are
stored in an archive during the whole searching process. This archive is named the non-
dominated wolves, which are the red plotted data on Figure 13. The final population is
called the grey wolves, which includes the non-dominated wolves. Similar to the previously
illustrated algorithms, the non-dominated wolves are considered as the Pareto front date;
however, the graph keeps the other solutions of the final population as grey wolves who
cannot outperform the non-dominated wolves. Clearly, it is found that the optimal solution
of the WVGWO is very similar to the MOPSA’s solution (see Figures 12 and 13). Another
remark, on achieving the same MRR for both stainless steel materials, AISI 304 attains
better surface quality (around 4 to 5%) than AISI 316. Also, this final remark is found in the
MOPSA model.
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3.3.4. OOA Model

Another bio-inspired algorithm is used called the osprey optimization algorithm
(OOA). This algorithm is quite similar to the WVGWO; however, the hunting population
moves separately and randomly, unlike the grey wolves that move together in one random
direction. Ospreys start hunting fishes from underwater. The winner osprey indicates
a hunt location that updates the current population by the evaluation of the objective
function. The proposed MATLAB code by [42], obtained from the MathWorks website,
creates one generation and finds the optimal solution after a certain number of iterations.
In this work, a loop of generations is added while the optimal solution of each generation is
stored in an archive. The optimal solutions are compared with the previous algorithms in a
way that considers Ra as the first criterion. If a better surface quality solution is selected,
the corresponding MRR solution is chosen—that is, the surface roughness objective of the
OOA is the best amongst the algorithms studied; however, the MRR solution is lower than
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that of the other algorithms. Table 6 provides the optimal solutions obtained by the OOA
for both materials. Once more, the ratio between the surface quality of both materials is 4
to 5% (AISI 304 better than AISI 316) on achieving the same productivity (MRR).

Table 6. Optimal solutions by OOA of both stainless steels 304 and 316.

Parameter AISI 304 AISI 316

Voltage (V), V High High

Transverse feed ( f ), mm/min 120 120

Pulse-off time (Po f f ), µs 6.38 6

Pulse-on time (Pon), µs 26.85 39.97

Current intensity (C), A 1 3.16

Material removal rate (MRR), mm3/min 5.886 5.89

Surface roughness (Ra), µm 4.427 4.61

Table 6 entails the optimal solutions obtained by the OOA for both materials. Once
more, the ratio between the surface quality of both materials is 4 to 5% (AISI 304 better
than AISI 316) for achieving the same productivity (MRR).

To summarize, Scott et al. [45] concluded that no single combination can be an optimal
solution for multi-responses of WEDM. However, the trade-off optimal solutions of both
addressed responses (MRR and Ra) of all algorithms for both stainless steel materials are
presented in Table 7.

Table 7. Optimal solutions comparison by all used algorithms.

Model
AISI 304 AISI 316

V f Poff Pon C MRR Ra V f Poff Pon C MRR Ra

MOGA High 119.37 6.16 28.66 1.06 5.707 4.353 High 119.97 6.06 39.53 3.36 6 4.741

MOPSA High 120 6.44 25 1 5.933 4.448 High 120 6 39.53 3.34 5.96 4.677

WVGWO High 120 6.48 25.16 1 5.97 4.474 High 120 6 40 3.36 5.97 4.689

OOA High 120 6.38 26.85 1 5.886 4.427 High 120 6 39.97 3.16 5.89 4.61

Obviously, both materials’ optimal running voltage is high and feed rate is 120 mm/min.
For AISI 304, mid-range pulse-off, low pulse-on and low current are optimal running
parameters. On the other hand, the running conditions of AISI 316 are optimal at low
pulse-off, high pulse-on and high current.

4. Conclusions

The findings of this optimization experimental-based study on the surface roughness
and material removal rate of stainless steels 304 and 316 by WEDM are presented in this
paper. The wire used in this research is molybdenum wire with a diameter of 0.18 mm.
The investigated parameters are voltage, transverse feed rate, pulse-on/pulse-off times
and current intensity. The surface roughness and material removal rate were evaluated
and analyzed. Mathematical regression models were developed using MATLAB. Multi-
objective optimization is carried out on these regression models. The main outputs of this
research are as follows:

• Despite the fact that the WEDM process has a fuzzy proportion with the running pa-
rameters, the developed mathematical regression models represented the experimental
results with small negligible errors that promote the models for optimization.

• The most influential parameters on both MRR and Ra are pulse-on time (Pon and
current (C).
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• For the optimization model of AISI 304, the MOGA algorithm attained the best surface
roughness at 4.353 µm, while the optimal MRR was obtained by the WVGWO at a
value of 5.97 mm3/min. However, the MOPSA provided a trade-off multi-response
solution as Ra = 4.448 µm (−2.18% from the optimal solution by the MOGA) and
MRR = 5.933 mm3/min (−0.62% from the best solution by the WVGWO). The optimal
parameters obtained by the MOPSA are high voltage, f = 120 mm/min, Po f f = 6.44 µs,
Pon = 25 µs and C= 1 A.

• Similarly, for the AISI 316 model, the optimal Ra of 4.61 µm is obtained by the OOA and
the optimal MRR = 5.97 mm3/min by the WVGWO. Again, the MOPSA outperformed
the other algorithms and resulted optimal MRR and Ra values of 5.96 mm3/min and
4.677 µm, respectively. In this case, the obtained optimal parameters by the MOPSA
are high voltage, f = 120 mm/min, Po f f = 6 µs, Pon = 39.53 µs and C = 3.43 A.

• The optimal solution by the WVGWO of both materials in Table 7 show that the ma-
chining of AISI 304 and AISI 316 have the same productivity of MRR = 5.97 mm3/min;
however, AISI 304 has better surface roughness (Ra = 4.474 µm) than AISI 316
(Ra = 4.689 µm), making AISI 304 better by 4.58%.

• Obviously, the workpiece material’s thermo-physical properties play a great role in
the influence of WEDM parameters on the responses in terms of MRR and Ra.
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